
Supplementary Notes

Note 1:

Roxin and Ledberg [1] showed that, in a reduction of the attractor model to a one-dimensional
nonlinear diffusion equation, higher common inputs to both selective populations lead to a decrease
in performance and reaction times. Strictly speaking, the one-dimensional reduction, and hence
also the monotonic dependence of the mean input to speed and accuracy, are analytically only valid
close to the first network bifurcation, where the spontaneous symmetric state becomes unstable
[1]. In the presented model, the optimal working point of the system in order to account for
the experimental data, however, lies close to the other bifurcation, where the symmetric state
reappears with elevated firing rates in both selective pools (Fig. 6A). Nevertheless, the mean-field
analysis and complementary simulations with different selective inputs (Fig. 6) revealed that,
in order to explain the frequency of changes found by [2], high common inputs to the selective
pools are required in addition to a low threshold and the monotonic speed-accuracy relation to
the selective inputs still holds.

Supplementary Methods

Mean field approximation:

The mean field approximation [3] provides fixed points of the population firing rates, the stationary
states of the populations after the period of dynamical transients. In this formulation the potential
of a neuron is calculated as:

τx
dV (t)
dt

= −V (t) + µx + σx
√
τxη(t) (S.1)

where V (t) is the membrane potential, x labels the populations, τx is the effective membrane
time constant, µx is the mean value the membrane potential would have in the absence of spiking
and fluctuations, σx measures the magnitude of the fluctuations and η is a Gaussian process with
absolute exponentially decaying correlation function and time constant τAMPA. The quantities µx
and σ2
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where νext is the external incoming spiking rate, νI is the spiking rate of the inhibitory population,
τm = Cm/gm with the values for the excitatory or inhibitory neurons depending of the population
considered. The other quantities are given by:

Sx = 1 + Textνext + TAMPAn
AMPA
x + (ρ1 + ρ2)nNMDA

x + TIn
GABA
x (S.4)

τx =
Cm

gmSx
(S.5)

nAMPA
x =

p∑
j=1

fjw
AMPA
jx νj (S.6)



nNMDA
x =

p∑
j=1

fjw
NMDA
jx ψ(νj) (S.7)

nGABA
x =

p∑
j=1

fjw
GABA
jx νj (S.8)

ψ(ν) =
ντNMDA

1 + ντNMDA

(
1 +

1
1 + ντNMDA

∞∑
n=1

(−ατNMDA,rise)nTn(ν)
(n+ 1)!

)
(S.9)

Tn(ν) =
n∑
k=0

(−1)k
(
n

k

)
τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay
(S.10)

τNMDA = ατNMDA,riseτNMDA,decay (S.11)

Text =
gAMPA,extτAMPA

gm
(S.12)

TAMPA =
gAMPA,recNEτAMPA

gm
(S.13)

ρ1 =
gNMDANE

gmJ
(S.14)

ρ2 = β
gNMDANE(〈Vx〉 − VE)(J − 1)

gmJ2
(S.15)

J = 1 + γ exp(−β〈Vx〉) (S.16)
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〈Vx〉 = µx − (Vthr − Vreset)νxτx, (S.18)

where p is the number of excitatory populations, fx is the fraction of neurons in the excitatory
population x, ωj,x the weight of the connections from population x to population j, νx is the
spiking rate of the excitatory population x, γ = [Mg2+]/3.57, β = 0.062 and the average membrane
potential 〈Vx〉 has a value between -55 mV and -50 mV.

The mean field approximation finally yields a set of n nonlinear equations describing the average
firing rates of the different populations in the network as a function of the defined quantities µx
and σx:

νx = φ(µx, σx), x = 1, ..., n , (S.19)

where φ is the transduction function of population x, which gives the output rate of a population
x in terms of the inputs, which in turn depend on the rates of all the populations.
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with erf(u) the error function and τrp the refractory period which is considered to be 2 ms for
excitatory neurons and 1 ms for inhibitory neurons. To solve the equations defined by equation
(S.19) for all x, we numerically integrate equation (S.18) and the differential equation below, whose
fixed point solutions correspond to solutions to equation (S.19):
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= −νx + φ(µx, σx). (S.23)



For the numerical integration we used the Heun’s method with a step-size of 0.1 ms. To find all
the possible fixed points that coexist for a given parameter set, we integrated equation (S.23) with
different initial conditions of population firing rates over a range of external inputs ν from 0 to
200 Hz in steps of 1.0 Hz.
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