Table S	1: Mod	el summary.	Parameter	values ar	e given in	Table S2.

Α	Model Summary				
Populations	Four				
Topology	One module				
Connectivity	Full connectivity, no synaptic delay				
Neuron model	Leaky integrate-and-fire neurons, fixed voltage threshold, fixed absolute refractory periods				
Channel models					
Synapse models	Conductance-based synapses, AMPA and GABA _A receptors (instantaneous rise, exponential decay), voltage-dependent NMDA receptors (exponential rise and decay)				
Plasticity	-				
Input	Independent fixed-rate poisson spike trains to all neurons				
Measurements	Spike activity				

В		Populations	
Total number of neurons	N = 1000	Excitatory neurons	$N_E = 0.8 \cdot N$
		Inhibitory neurons	$N_I = 0.2 \cdot N$
Name	Size	Name	Size
Name Selective pool 1 (right)	Size $N_{S1} = f \cdot N_E$	Name Nonselective	Size $(1-2f) \cdot N_E$

С				Connectivity			
Source		Target	Weight	Source		Target	Weight
inhibitory	\mapsto	all	$\omega_I = 1.125$	nonselective	\mapsto	selective	$\omega_{-} = 0.8725$
excitatory	\mapsto	inhibitory	$\omega = 1$	selective i	\mapsto	selective j	$\omega_{-} = 0.8725$
excitatory	\mapsto	nonselective	$\omega = 1$	selective i	\mapsto	selective i	$\omega_+ = 1.51$

Гуре	Neuron and Synapse Model Leaky integrate-and-fire neurons, conductance-based synapses
Subthreshold dynamics	$C_{\rm m}\dot{V}(t) = -g_{\rm m}(V(t) - V_{\rm L}) - I_{\rm syn}(t)$
Synaptic currents	$I_{\text{syn}}(t) = I_{\text{AMPA,rec}}(t) + I_{\text{NMDA,rec}}(t) + I_{\text{GABA}}(t) + I_{\text{AMPA,ext}}(t)$
	$I_{\text{AMPA,ext}}(t) = g_{\text{AMPA,ext}}(V(t) - V_{\text{E}}) \sum_{j=1}^{N_{\text{ext}}} s_j^{\text{AMPA,ext}}(t)$
	$I_{\text{AMPA,rec}}(t) = g_{\text{AMPA,rec}}(V(t) - V_{\text{E}}) \sum_{j=1}^{N_{\text{E}}} \omega_j s_j^{\text{AMPA,rec}}(t)$
	$I_{\text{NMDA,rec}}(t) = \frac{g_{\text{NMDA}}(V(t) - V_{\text{E}})}{1 + [\text{Mg}^{2+}]exp(-0.062V(t))/3.57} \times \sum_{j=1}^{N_{\text{E}}} \omega_j s_j^{\text{NMDA}}(t)$
	$I_{\text{GABA}}(t) = g_{\text{GABA}}(V(t) - V_{\text{I}}) \sum_{j=1}^{N_{\text{I}}} \omega_j s_j^{\text{GABA}}(t)$
Fraction of open channels	$\frac{ds_j^{\rm X}(t)}{dt} = -\frac{s_j^{\rm X}(t)}{\tau_{\rm X, decay}} + \sum_k \delta(t - t_j^k), {\rm X} = {\rm AMPA}, {\rm GABA}$
	$\frac{ds_j^{\text{NMDA}}(t)}{dt} = -\frac{s_j^{\text{NMDA}}(t)}{\tau_{\text{NMDA,decay}}} + \alpha x_j(t) (1 - s_j^{\text{NMDA}}(t))$
	$\frac{dx_j(t)}{dt} = -\frac{x_j(t)}{\tau_{\text{NMDA,rise}}} + \sum_k \delta(t - t_j^k)$
Spiking	if $V(t) \ge V_{\text{th}} \wedge t > t^* + \tau_{\text{ref}}$ 1. set $t^* = t$ 2. smit spike at time t^*
	2. emit spike at time t^* 3. set $V(t) = V_{\text{reset}}$

Measurement	ł
-------------	---

Spike activity: firing-rates were calculated using the spike count in a 50 ms time window shifted by 5 ms steps and dividing by the number of neurons in the population and by the window size.

F