
Supporting Information Text S1

S1.1: Derivation of equations governing Notch signaling

With inclusion of mutual inactivation (MI)

Notch signaling occurs via the trans-interaction of Notch (Ni) on the surface of a cell i with DSL (Dj) on the surfaces

of its neighbors j, which initiates a sequence of biochemical events resulting in cleavage of the Notch receptor to

free its intercellular signaling domain (Si) for translocation to the nucleus, where it may induce the expression of

some Notch signaling reporter (Ri). Additionally, Notch and DSL on the same cell surface (Ni and Di) cis-inhibit

by forming a complex that inactivates both molecules in what we term the Mutual Inactivation (MI) mechanism

[1]. Thus the reactions we consider are the following:

Ni + Dj 
 [NiDj ] → Si trans–activation, with association/dissociation rates k±D and cleavage rate kS

Ni + Di 
 [NiDi] → ∅ cis–inhibition, with association/dissociation rates k±C and inactivation/dilution rate γND

Si → Ri Signal activation of reporter

The first reaction corresponds to trans-activation, the second to cis-inhibition with mutual inactivation, and the

third to Notch signaling-mediated induction of reporter expression, as described above. These reactions are described

by the following kinetic equations:

Ṅi = αNmNi − γNNi −

k+
D

∑
j=]i[

1
lij

NiDj − k−D
∑
j=]i[

1
lij

[NiDj ]

−
(
k+
CNiDi − k−C [NiDi]

)
(S1.1.1a)

ṁNi
= η (βmN − γmNmNi

) (S1.1.1b)

Ḋi = αDmDi − γDDi −

k+
D

∑
j=]i[

1
lij

NjDi − k−D
∑
j=]i[

1
lij

[NjDi]

−
(
k+
CNiDi − k−C [NiDi]

)
(S1.1.1c)

ṁDi
= η (βmD − γmDmDi

) (S1.1.1d)

˙[NiDj ] = k+
DNiDj − k−D [NiDj ]− kS [NiDj ] (S1.1.1e)

˙[NiDi] = k+
CNiDi − k−C [NiDi]− γND [NiDi] (S1.1.1f)

Ṡi = kS

∑
j=]i[

1
lij

[NiDj ]− γSSi (S1.1.1g)

ṁRi = η (fA (Si;βm, n, kRS)− γmmRi) (S1.1.1h)

Ṙi = αRmRi − γRRi (S1.1.1i)

The notation j =]i[ refers to indices j representing neighbors of cell i and lij measures the ratio of the length

of the interface between cells i and j and the total perimeter of cell i, reflecting the assumption that Notch and



DSL are uniformly distributed on the cell surface. The increasing Hill function fA (Si;βm, n, kRS) ≡ βm
Sn

i

kRS+Sn
i

phenomenologically parametrizes the transcriptional promotion process. The parameter η scales the dynamics of

the mRNA molecules while preserving their steady-state values. We work mostly in the regime of γS, kS, γND, and η

large, where the dynamics of the trans intermediate [NiDj ], intracellular signal Si, and the mRNA are rapid relative

to the Notch/DSL and Reporter protein dynamics, allowing the quasi-steady-state approximation to their dynamics

( ˙[NiDj ] ≈ Ṡi ≈ ṁXi ≈ 0). These approximations are made here for convenience of presentation, and relaxing them

does not modify our conclusions (Section 5). In particular, Fig. S4 demonstrates this for mRNA dynamics on a scale

comparable to the first-order Notch and DSL protein lifetimes (η = 1 with γmN = γmD = γmR = 1). Furthermore,

we assume that Notch binds to cis-Delta irreversibly (k−C = 0), and thus Notch dynamics become independent of

the [NiDi] complex. With these approximations, the model is reduced to

Ṅi = βN − γNi −Ni

〈Dj〉i
kt

−Ni
Di

kc
(S1.1.2a)

Ḋi = βD − γDi −
〈Nj〉i

kt
Di −Ni

Di

kc
(S1.1.2b)

Ṙi = fA

(
1
γS

Ni

〈Dj〉i
kt

;βR, n, kRS

)
− γRRi (S1.1.2c)

where we have defined βN = βmNαN

γmN
,βD = βmDαD

γmD
,βR = βmαR

γm
, k−1

t ≡ k+
DkS

k−D+kS
and k−1

c ≡ k+
C , and employed the

notation 〈Xj〉i ≡
∑

j=]i[
1

lij
Xj for the average of the enclosed quantity in the neighbors j of cell i weighted by the

magnitudes of the cell-cell interfaces. We have also taken the simplifying assumption that γN = γD ≡ γ. Solving

with different degradation rates is straightforward, and is guaranteed to leave conclusions relating to the system’s

steady-state properties unchanged (as is clear from the freedom to rescale parameters).

Excluding cis–inhibition

By reviewing the preceding derivation and omitting those terms relating to cis-inhibition, we see that the kinetic

equations become

Ṅi = βN − γNi −Ni

〈Dj〉i
kt

(S1.1.3a)

Ḋi = βD − γDi −
〈Nj〉i

kt
Di (S1.1.3b)

Ṡi = Ni

〈Dj〉i
kt

− γSSi ≈ 0 → Si ≈
1
γS

Ni

〈Dj〉i
kt

(S1.1.3c)

Ṙi = fA

(
1
γS

Ni

〈Dj〉i
kt

;βR, n, kRS

)
− γRRi (S1.1.3d)
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S1.2: Boundary formation

With mutual inactivation

If the expression rate of DSL varies spatially (i.e. βD → βD(x)) the dynamics of Notch signaling with MI are

governed by the following equations:

Ṅi = βN − γNi −Ni

〈Dj〉i
kt

−Ni
Di

kc
(S1.2.1a)

Ḋi = βD (x)− γDi −
〈Nj〉i

kt
Di −Ni

Di

kc
(S1.2.1b)

Ṙi = fA

(
1
γS

Ni

〈Dj〉i
kt

;βR, n, kRS

)
− γRRi (S1.2.1c)

These equations, labeled (1)–(3) in the main paper text, are sufficient to generate sharply-defined bands of Notch

signaling at the crossing point (supposing its existence) between the DSL and Notch expression rates.

Without cis–inhibition — The Band–Pass Filter model

In the absence of cis–inhibition, a mechanism that explicitly limits the report of Notch signaling to a band of

signaling levels is required for the conversion of a DSL expression gradient to strips of signal Reporter activity. The

band–pass model described in the main text is governed by a modification of the equations (S1.1.3a)–(S1.1.3d) to

allow for spatially-varying DSL expression and restrict Reporter expression to a narrow band of Signal induction

levels, yielding the following equations:

Ṅi = βN − γNi −Ni

〈Dj〉i
kt

(S1.2.2a)

Ḋi = βD (x)− γDi −
〈Nj〉i

kt
Di (S1.2.2b)

Ṡi = Ni

〈Dj〉i
kt

− γSSi ≈ 0 → Si ≈
1
γS

Ni

〈Dj〉i
kt

(S1.2.2c)

Ṙi = βR
Sp

i

kp
b + Sp

i

kq
b

kq
b + Sq

i

− γRRi = βR

(
Ni 〈Dj〉i

)p
kp
RS +

(
Ni 〈Dj〉i

)p kp
RS

kp
RS +

(
Ni 〈Dj〉i

)p − γRRi (S1.2.2d)

corresponding to equations (4)–(6) in the main text.

S1.3: Lateral inhibition

Transcriptional lateral inhibition with mutual inactivation (LIMI)

With the condition that the production rate of DSL may be repressed by the reporter Ri, i.e. βD → fR (Ri;βD,m, kDR)

where fR (Ri;βD,m, kDR) ≡ βD
kDR

kDR+Rm
i

is a repressive Hill function, we have the equations representing lateral inhi-

bition by transcriptional downregulation of DSL with mutual inactivation. It is convenient to convert the equations

to a set of dimensionless parameters as follows: t ≡ γRt, N ≡ N
N0

, D ≡ D
D0

, and R ≡ R
R0

where N0 = D0 ≡ γkt,
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and R0 ≡ kDR. The equations are then

τṄi = βN −Ni −Ni 〈Dj〉i −Ni
Di

κc
(S1.3.1a)

τḊi = fR (Ri;βD,m, 1)−Di − 〈Nj〉i Di −Ni
Di

κc
(S1.3.1b)

Ṙi = fA

(
Ni 〈Dj〉i ;βR, n, kRS

)
−Ri (S1.3.1c)

where τ ≡ γR
γ , βN ≡ βN

γN0
, βD ≡ βD

γD0
, βR ≡ βR

γRR0
, κc ≡ kc

kt
, and kRS ≡ kRSγSkt

N0D0
. These correspond to the equations

labeled (10)–(12) in the main text.

Simplest lateral inhibition with mutual inactivation (SLIMI)

The mutual inactivation mechanism permits a lateral inhibition mechanism driven by a single feedback connecting

Notch expression to Notch signaling, as follows:

Ṅi = αN + fA

(
1
γS

Ni

〈Dj〉i
kt

;βN, n, kNS

)
− γNi −Ni

〈Dj〉i
kt

−Ni
Di

kc
(S1.3.2a)

Ḋi = βD − γDi −
〈Nj〉i

kt
Di −Ni

Di

kc
(S1.3.2b)

where we have included a promoter “leakiness” term (αN, representing imperfect repression) in the kinetic equation

for the regulated component, which in this case is Notch. Here we use a set of dimensionless parameters as follows:

t ≡ γt, N ≡ N
N0

, and D ≡ D
D0

where N0 = D0 ≡ γkt

Ṅi = αN + fA

(
Ni 〈Di〉j ;βN , n, kNS

)
−Ni −Ni 〈Dj〉i −Ni

Di

κc
(S1.3.3a)

Ḋi = βD −Di − 〈Nj〉i Di −Ni
Di

κc
(S1.3.3b)

where we have defined αN ≡ αN
γN0

, βN ≡ βN
γN0

, βD ≡ βD
γD0

, κc ≡ kc

kt
, and kNS ≡ kNSγSkt

N0D0
. These equations are used in

Fig. 6.

Without cis-inhibition (LI)

With the condition that the production rate of DSL may be repressed by the reporter Ri, i.e. βD → βD
kDR

kDR+Rm
i

,

combined with equations (S1.1.3a)–(S1.1.3d), we have the equations representing “canonical” lateral inhibition by

transcriptional downregulation of DSL. It is convenient to convert the equations transforming variables as t ≡ tγR,

N ≡ N
N0

, D ≡ D
D0

, and R ≡ R
kDR

where N0 ≡ βN
γ and D0 ≡ γSkRS

kt

1
N0

to give

τṄi = 1−Ni −Ni 〈Dj〉i (S1.3.4a)

τḊi = fR (Ri;βD,m, 1)−Di − 〈Nj〉i Di (S1.3.4b)

Ṙi = fA

(
Ni 〈Dj〉i ;βR, n, 1

)
−Ri (S1.3.4c)

where τ ≡ γR
γ , βD ≡ βD

D0γ , and βR ≡ βR
kDRγR

. These correspond to the kinetic equations governing the system of

which certain properties are plotted in Figs. 4D, 5AC of the main text and S3ACE of the Supporting Information.
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S1.4: Linear stability analysis of lateral inhibition equations

It is immediately clear that a necessary condition for spontaneous development of a lateral inhibition pattern from

an initially near-homogeneous collection of cells is the instability of the homogeneous steady state (N∗, D∗, R∗) in

which every cell has the same value of Ni, Di, and Ri. Thus a linear stability analysis about the homogeneous

steady state can provide necessary conditions for patterning [2]. The stability analysis requires the computation of

the Jacobian at the homogeneous steady state, which is in this case complicated by the large number of variables

(three times the number of cells). This is made simpler by an observation originally from Othmer and Scriven [3]

that the Jacobian can be expressed as the sum of two tensor products of matrices, one for the internal dynamics

and the other for interactions with neighbors: J = Ik ⊗ H + M ⊗ B. The matrix tensor product is defined as

A ⊗ B =

(
a11B ··· a1kB

...
. . .

...
ak1B ··· akkB

)
. Also, here Ik is the k × k identity matrix (k is the number of cells involved in the

interactions in question), Hij = ∂q̇i

∂qj
is the change in production of species i for a change in species j in the same

cell, Bij = ∂q̇i

∂〈qj〉 is the change in production of species i for a change in species j in a neighboring cell, and M is

the connectivity matrix defined as Mij =

1/6 if i and j are neighbors

0 otherwise
. Notch, Delta, and Reporter correspond

to species i = 1, 2, 3 respectively.

Once the Jacobian has been written in this form, Othmer and Scriven further show that its eigenvalues are the

eigenvalues of the various matrices H +qkB where qk are the eigenvalues of the connectivity matrix M . An analysis

of the matrix M in [3] tells us that qk ≥ −0.5, meaning that we need only compute an eigenvalue for the extreme

case qk = −0.5 to determine if the highest eigenvalue (known as the Maximum Lyapunov Exponent — MLE) has a

positive real part, simplifying the problem enormously. We can execute this process for each of the lateral inhibition

models we have described above to compute their MLE profiles as a function of various parameters, as plotted in

Figs. 5 and 6. The derivations of the MLEs are as follows:

Relevant partial derivatives

i) “Canonical” LI

H =
1
τ


−1− 〈Dj〉i 0 0

0 −1− 〈Nj〉i − m
βDRi

fA (Ri;βD,m, 1) fR (Ri;βD,m, 1)

τ n
βRNi

fA

(
Ni 〈Dj〉i ;βR, n, 1

)
fR

(
Ni 〈Dj〉i ;βR, n, 1

)
0 −τ



B =
1
τ


0 −Ni 0

−Di 0 0

0 nτ
βRDj

fA (Si;βR, n, 1) fR (Si;βR, n, 1) 0


ii) LIMI

H =
1
τ


−
(
1 + 〈Dj〉i + Di

κc

)
−Ni

κc
0

−Di

κc
−
(
1 + 〈Nj〉i + Ni

κc

)
− m

βDRi
fA (Ri;βD,m, 1) fR (Ri;βD,m, 1)

nτ
βRNi

fA (Si;βR, n, kRS) fR (Si;βR, n, kRS) 0 −τ


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B =
1
τ


0 −Ni 0

−Di 0 0

0 nτ
βRDj

fA (Si;βR, n, kRS) fR (Si;βR, n, kRS) 0


iii) SLIMI

H =

 n
βN Ni

fA (Si;βN , n, kNS) fR (Si;βN , n, kNS)−
(
1 + 〈Dj〉i + Di

κc

)
−Ni

κc

−Di

κc
−
(
1 + 〈Nj〉i + Ni

κc

) 
B =

 0 n
βN Dj

fA (Si;βN , n, kNS) fR (Si;βN , n, kNS)−Ni

−Di 0


Evaluation of the homogeneous steady state

In each case the homogeneous steady state of the system was found numerically by solving the systems of equations

for Ni = N , Di = D, and (if relevant) Ri = R.

Diagonalization of the reduced Jacobian

The matrices H and B, evaluated at the values N , D, and R fixed by the homogeneous steady state, were combined

as prescribed in [3] and diagonalized with qk = −0.5 which is the extreme eigenvalue of the structure matrix M

for a regular hexagonal lattice. The diagonalization may be written explicitly in terms of the homogeneous steady

state values and qk in each case because the characteristic equation is of order three or less, but the expressions are

complicated and not very illuminating. The maximal resulting eigenvalue is the MLE.

S1.5: Noise in boundary formation

As written in the main text, based on an intuitive understanding of the mutual inactivation mechanism we suspect

that MI-based models might be more sensitive to intrinsic sources of noise (contributing to uncorrelated variabilities

of Notch and DSL production in a given cell) than those that are extrinsic (by which the Notch and DSL production

rate variabilities in a given cell are correlated). To test this we numerically simulate the boundary formation process

subject to static noise in the Notch and Delta production rates with varying degrees of correlation between their

variability, ranging from fully-intrinsic (correlation coefficient = 0) to fully-extrinsic (correlation coefficient = 1).

In order to make the comparisons in the outcome of interest (the variability in the location of the vein boundary-

defining peak) fairly we must also be able to control the total variability in the Notch and DSL production rates

independently of the correlation between them.

Using a model of multiplicative noise, in which the production rates of Notch in each cell are βN,i = ξN 〈βN 〉
and the production rates of DSL are βD,i = ξD 〈βD〉, we thus seek to draw the random variables ξN and ξD such

that:

1. Means are preserved, with 〈ξN 〉 = 〈ξD〉 = 1

2. Standard deviations are equal and set to some arbitrary σ, with σξN
= σξD

= σ
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3. The correlation between the variations in each production rate is some arbitrarily chosen r between zero and

one, with rξN ξD
= r

4. Unphysical negative production rates are excluded, with ξN , ξD ≥ 0.

We have chosen a mechanism of achieving this that entails choosing two uncorrelated random variables x and

y from normal distributions of mean zero and standard deviations σx and σy, respectively, rotating x and y by an

angle θ and shifting the result by Λ in each direction to generate distributions u and v, and then exponentiating

each to generate the final distributions ξβN
and ξβD

. The required conditions fix the free parameters σx, σy, θ, and

Λ as follows:

The distributions u and v are drawn from u = x cos θ − y sin θ + Λ and v = x sin θ + y cos θ + Λ, from which

we have that 〈u〉 = 〈v〉 = Λ, σ2
u = σ2

x cos2 θ + σ2
y sin2 θ, and σ2

v = σ2
x sin2 θ + σ2

y cos2 θ. Then the distributions

ξN and ξD drawn from ξN = eu and ξD = ev yield 〈ξN 〉 = eΛ+ 1
2 σ2

u , 〈ξD〉 = eΛ+ 1
2 σ2

v , σ2
ξN

= 〈ξN 〉2
(
eσ2

u − 1
)
, and

σ2
ξD

= 〈ξD〉2
(
eσ2

v − 1
)
. By the first requirement that the averages of the random variables ξ must be equal to

one, we have that σu = σv → θ = π
4 , and that 1 = eΛ+ 1

2 σ2
u → Λ = − 1

2σ2
u. The second requirement provides σ2 =

eσ2
u − 1 → σ2

u = ln
(
σ2 + 1

)
→ Λ = − 1

2 ln
(
σ2 + 1

)
. The final condition rξN ξD

= r provides σ2r + 1 = 〈ξNξD〉. By

computing 〈ξNξD〉 = 〈eu+v〉 = e2Λ
〈
e
√

2x
〉

= e2Λ+σ2
x this provides σ2

x = ln
((

σ2r + 1
) (

σ2 + 1
))

and correspondingly

σ2
y = ln

(
σ2+1
rσ2+1

)
.

Thus the following algorithm generates positive random distributions ξN and ξD such that their means are one,

standard deviations are σ, and correlation coefficient is r:

1. Draw from two independent normal distributions x and y with means zero and standard deviations σx =√
ln ((σ2r + 1) (σ2 + 1)) and σy =

√
ln
(

σ2+1
rσ2+1

)
2. From these, generate two related random distributions u = 1√

2
(x− y) − 1

2 ln
(
σ2 + 1

)
and v = 1√

2
(x + y) −

1
2 ln

(
σ2 + 1

)
3. Let ξN be drawn from eu and ξD be drawn from ev

S1.6: Influence of finite Signal and mRNA lifetimes

In the analyses described above, our calculations of the MLE explicitly neglected the dynamics of signaling inter-

mediates and mRNA molecules. This formally describes the limit in which the dynamics of those components are

assumed to be inifinitely fast, or at least much faster than the timescales on which the included components change

(namely, the protein degradation rates). Such an assumption is perhaps uncomfortably strong, especially with

respect to mRNA dynamics. We have therefore considered the effect of finite mRNA lifetimes in lateral inhibition
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patterning by explicitly modeling the entire system according to the following equations:

Ṅi = αNmNi
− γNNi −

1
kc

NiDi −
1
kt

Ni 〈Dj〉i (S1.6.1a)

ṁNi
= η (βmN − γmNmNi

) (S1.6.1b)

Ḋi = αDmDi − γDDi −
1
kc

NiDi −
1
kt
〈Nj〉i Di (S1.6.1c)

ṁDi
= η

(
βmD

1
1 + Rm

i

− γmDmDi

)
(S1.6.1d)

Ṡi =
1
kt

Ni 〈Dj〉i − γSSi (S1.6.1e)

ṁRi = η (fA (Si;βm, n, kRS)− γmmRi) (S1.6.1f)

Ṙi = αRmRi − γRRi (S1.6.1g)

These equations with very large kc represent the LI model. In the MLE calculation, we find that including mRNA

dynamics on a timescale comparable to those of the proteins (η = 1 with γmN = γmD = γmR = 1) decreases the

magnitude of the real part of the MLE, but does not change its sign (Fig. S4ABCD). Our conclusions regarding the

stability of the homogeneous steady state, and therefore the tendency of the system to pattern, are thus unaffected.

With respect to the dynamical simulations, incorporating finite mRNA lifetimes slows the overall process, but

our conclusion regarding the effect of the MI interaction predominantly decreasing the homogeneous patterning

time is unchanged (Fig. S4EF).
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