Derivation of equation (1) and its boundary condition

To determine the time evolution of n(C,t), we consider the fate of the cells $n(C,t)\Delta C$ an infinitesimally small time interval Δt later. In the interval Δt , an expected fraction $D(C)\Delta t$ of the cells die, where D(C) is the death rate of RBCs in which the concentration of RXP is C. In the surviving population, $n(C,t)\Delta C(1-D(C)\Delta t)$, the intracellular concentration of RXP increases by the amount $Q(C, C_c)\Delta t$, where $Q(C, C_c) = k_p C_c - k_d C$ is the net rate of increase of C due to phosphorylation, C_c is the intracellular concentration of (unphosphorylated) ribavirin, k_p is the phosphorylation rate and k_d is the rate of loss, including by possible slow dephosphorylation, of RXP. Consequently, cells with RXP concentration within $Q(C, C_c)\Delta t$ of $C + \Delta C$ at time t will have RXP concentrations larger than $C + \Delta C$ at time $t + \Delta t$. Assuming that the RXP concentration is uniformly distributed in the range C to $C + \Delta C$ at time t, it follows that the fraction $Q(C,C_c)\Delta t/\Delta C$ of the surviving cells are lost due to the increased concentration of RXP. Consequently, the population $n(C,t)\Delta C(1-D(C)\Delta t)(1-Q(C,C_c)\Delta t/\Delta C)$ survives and continues to carry RXP at concentrations between C and $C + \Delta C$ at time $t + \Delta t$. Similarly, considering the fate of the cells subpopulation $n(C - \Delta C, t) \Delta C$ it follows that the $n(C-\Delta C,t)\Delta C(1-D(C-\Delta C)\Delta t)(Q(C-\Delta C,C_c)\Delta t/\Delta C)$ will survive at time $t+\Delta t$ and have RXP at concentrations between C and $C + \Delta C$. Thus, the population of cells at time $t + \Delta t$ with С $C + \Delta C$ would be $n(C, t + \Delta t)\Delta C =$ RXP at concentrations between and $n(C,t)\Delta C \left(1 - D(C)\Delta t\right) \left(1 - Q(C,C_c)\frac{\Delta t}{\Delta C}\right) + n(C - \Delta C,t)\Delta C \left(1 - D(C - \Delta C)\Delta t\right) \left(Q(C - \Delta C,C_c)\frac{\Delta t}{\Delta C}\right).$

Rearranging terms, dividing by Δt and ΔC , and letting $\Delta t \rightarrow 0$ and $\Delta C \rightarrow 0$ yields Eq. (1):

$$\frac{\partial}{\partial t}n(C,t) = -\frac{\partial}{\partial C}[Q(C,C_c)n(C,t)] - n(C,t)D(C)$$

Equation (1) is constrained by the boundary condition that when t > 0, newborn cells contain no RXP. Thus, at any time t > 0, the cells $n(0,t)\Delta C$, with RXP concentration between 0 and ΔC , would be the cells produced in the interval $\Delta C/Q(0,C_c)$ preceding t. Thus, $n(0,t)\Delta C = P(t)\Delta C/Q(0,C_c)$, or $n(0,t) = P(t)/Q(0,C_c)$, where P(t) is the rate of production of RBCs at time t given by Eq. (3).