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1 EM Algorithm for Hyperparameter Estimation

We use the same notation as in the main manuscript. For simplicity, Yt and St are used as
shorthand for Y1,t and S1,t, respectively. Extending the arguments in Lai et al. [1], we can show
that the conditional density function of yt given (Yt−1,Sn) is

f(yt|Yt−1,Sn) =
(
p∗t +

t∑
i=1

q∗i,t
)
φ0,σ2(yt), (1)

where p∗t and q∗i,t are given by (11) and are functions of the hyperparameter vector Φ =
(p, b, c,µ, V , ΣAA,ΣAB,ΣBA,ΣBB). Given Φ and the observed data (Yn,Sn), the log likelihood
function is

l(Φ|Sn) =

n∑
t=1

log f(yt|Yt−1,Sn) =

n∑
t=1

log
{(
p∗t +

t∑
i=1

q∗i,t
)
φ0,σ2(yt)

}
, (2)

in which f(·|·) denotes conditional density function. Maximizing (2) over Φ yields the maximum
likelihood estimate Φ̂.

Since Φ is a 20-dimensional vector and the functions p∗t (Φ) and q∗i,t(Φ) have to be computed
recursively for 1 ≤ t ≤ n, direct maximization of (2) may be computationally expensive due to
the curse of dimensionality. An alternative approach is to use the EM algorithm which exploits
the much simpler structure of the log likelihood l(Φ|Sn) of the data {(yt,θt), 1 ≤ t ≤ n}:

l(Φ|Sn) = −1

2

n∑
t=1

{
(yt −Xstθt)

′Σ−1st (yt −Xstθt) + log |Σst |+ 2 log(2π)
}

−1

2

n∑
t=1

{
(θt − µ)′V −1(θt − µ) + log |V |+ 2 log(2π)

}
1{µ0 6=θt 6=θt−1}

+

n∑
t=1

{
[log(1− p)]1{θt=θt−1=µ0} + (log p)1{θt 6=θt−1=µ0}

}
(3)

+
n∑
t=1

{
[log(1− b− c)]1{θt=θt−1 6=µ0} + (log c)1{θt=µ0 6=θt−1} + (log b)1{µ0 6=θt 6=θt−1 6=µ0}

}
.

Since l(Φ|Sn) decomposes into normal and multinomial components, the E-step of the EM
algorithm involves E

(
(θt − µ)(θt − µ)′|Yn,Sn

)
, E
(
(yt − Xstθt)(yt − Xstθt)

′|Yn,Sn
)

and the
conditional probabilities

P (θt = µ0 = θt−1|Yn,Sn) =
(1− p)pt−1αt

(1− p)pt−1 + cqt−1
,
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P (θt = µ0 6= θt−1|Yn,Sn) =
cqt−1αt

(1− p)pt−1 + cqt−1
,

P (θt 6= θt−1 = µ0|Yn,Sn) = cq̃tαt−1

/
{(1− p)p̃t + cq̃t},

P (µ0 6= θt 6= θt−1 6= µ0|Yn,Sn) = (
n∑
j=t

βt,j,t)bqt−1

/
{bqt−1 + ppt−1},

together with P (θt = θt−1 6= µ0|Yn,Sn), which is determined by the property that those five
conditional probability have to sum up to 1. In view of (3), the M-step of the EM algorithm
involves the closed-form updating formulas

1− p̂new =
[
Σn
1P (θt = θt−1 = µ0|Yn,Sn, Φ̂old)

]/[
Σn
1P (θt−1 = µ0|Yn,Sn, Φ̂old)

]
,

ânew =
[
Σn
1P (θt = θt−1 6= µ0|Yn,Sn, Φ̂old)

]/[
Σn
1P (θt−1 6= µ0|Yn,Sn, Φ̂old)

]
,

ĉnew =
[
Σn
1P (θt = µ0 6= θt−1|Yn,Sn, Φ̂old)

]/[
Σn
1P (θt−1 6= µ0|Yn,Sn, Φ̂old)

]
,

µ̂new =
[
Σn
1E(θt1{µ0 6=θt 6=θt−1}|Yn,Sn, Φ̂old

]/[
Σn
1P (µ0 6= θt 6= θt−1|Yn,Sn, Φ̂old)

]
,

V̂new =
[
Σn
1E{(θt − µ̂old)(θt − µ̂old)′1{µ0 6=θt 6=θt−1}|Yn,Sn, Φ̂old}

]
·
[
Σn
1P (µ0 6= θt 6= θt−1|Yn,Sn, Φ̂old)

]−1
,

Σ̂AA,new = Σn
t=1E

[
(yt −Xstθt)(yt −Xstθt)

′1{st=AA}|Yn,Sn, Φ̂old)
]/

Σn
t=11{st=AA}, (4)

Σ̂AB,new = Σn
t=1E

[
(yt −Xstθt)(yt −Xstθt)

′1{st=AB}|Yn,Sn, Φ̂old)
]/

Σn
t=11{st=AB},

Σ̂BA,new = Σn
t=1E

[
(yt −Xstθt)(yt −Xstθt)

′1{st=BA}|Yn,Sn, Φ̂old)
]/

Σn
t=11{st=BA},

Σ̂BB,new = Σn
t=1E

[
(yt −Xstθt)(yt −Xstθt)

′1{st=BB}|Yn,Sn, Φ̂old)
]/

Σn
t=11{st=BB}.

It can be shown that

E(θt1{µ0 6=θt 6=θt−1}|Yn,Sn) =
∑
t≤j≤n

βt,j,tµt,j ,

E((θt − µ̂)(θt − µ̂)′1{µ0 6=θt 6=θt−1}|Yn,Sn) =
∑
t≤j≤n

βt,j,t(µt,jµ
′
t,j + Vt,j − 2µµ′t,j + µµ′),

which can be applied to compute µ̂new and V̂new in (4). The iterative scheme (4) is carried out
until convergence or until some prescribed upper bound on the number of iterations is reached.

To speed up the computations involved in the preceding EM algorithm, one can use the
BCMIX approximations instead of the full recursions to determine qi,t, q̃j,t, etc. Moreover,
one can accelerate the EM algorithm by using a hybrid approach that combines EM with some
classical optimization technique, e.g., quasi-Newton methods as in Lange (1999) [2]. Applications
to array-CGH data have shown that the EM estimates of µ, V, σ2 and b typically converge quite
fast. This suggests switching, after these parameter estimates stabilize, from the EM algorithm
to global search for the optimizing p and c, which are particularly important as they represent
relative frequencies of departures from, and returns to, the baseline state. The global search in
this hybrid procedure uses (2) as a function only of p and c, with the other parameter estimates
fixed at the time of switch from EM.
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2 BCMIX approximations

Although the Bayes method uses a recursive updating formula for the weights qi,t (1 ≤ i ≤ t),
the number of weights increases with t, resulting in rapidly increasing computational complexity
and memory requirements in estimating θt as t keeps increasing. A simple idea to lower the
complexity is to keep only a fixed number k of weights at every stage t (which is tantamount to
setting the other weights to 0). We keep the most recent m weights qi,t (with t−m < i ≤ t) and
the largest k−m of the remaining weights, where 1 ≤ m < k. Specifically, the updating formula
(9) in the manuscript for the weights qi,t is modified as follows to obtain a bounded complexity
mixture (BCMIX) approximation. Let Kt−1 denote the set of indices i for which qi,t−1 is kept
at stage t − 1; thus Kt−1 ⊃ {t − 1, , · · · , t − m}. At stage t, define q∗i,t by formula (9) in the
manuscript for i ∈ {t} ∪ Kt−1 and let it be the index not belonging to {t, t− 1, · · · , t−m+ 1}
such that

q∗it,t = min{q∗i,t : j ∈ Kt−1 and j ≤ t−m}, (5)

choosing it to be the one farthest from t if the minimizing set in (5) has more than one element.
Define Kt = {t} ∪ (Kt−1 − {it}) and let

pt = p∗t

/(
p∗t +

∑
j∈{t}∪Kt−1

q∗j,t

)
, (6)

qi,t =
(
q∗i,t

/∑
j∈Kt

q∗j,t

)( ∑
j∈{t}∪Kt−1

q∗j,t

/[
p∗t +

∑
j∈{t}∪Kt−1

q∗j,t
])
, i ∈ Kt. (7)

For the smoothing estimate E(θt|Yn) and its associated posterior distribution, we can con-
struct BCMIX approximations by combining forward and backward BCMIX filters, which have
index sets Kt for the forward filter and K̃t+1 for the backward filter at stage t. The BCMIX
approximation

αtδ0 +
∑

i∈Kt,j∈{t}∪K̃t+1

βi,j,tN(µij , Vij)

to formula (7) in the manuscript is defined by

αt = α∗t
/
At, βi,j,t = β∗i,j,t

/
At, At = α∗t +

∑
i∈Kt,j∈{t}∪K̃t+1

β∗i,j,t,

α∗t = pt[(1− p)p̃t+1 + cq̃t+1]
/
c,

β∗i,j,t =

{
qi,t(pp̃t+1 + bq̃t+1)

/
p, i ∈ Kt, j = t,

aqi,tq̃j,t+1ψi,tψt+1,j/(pψψi,j), i ∈ Kt, j ∈ K̃t+1.

3 Accuracy of Genotyping

We expand here on the section “Accuracy of Estimation of Genotype States” in the main paper.
Table 1 shows the number of each type of misclassification among the 42037 SNPs in HapMap
sample NA06991 in the simulation data with different levels of normal cell contamination. As
in the main paper we see that the number of misclassifications declines rapidly with increased
normal cell contamination.

Figure 1 and Figure 2 show how the model performs in estimating the parental allele config-
urations at two separate normal contamination ratios (5% and 15%). We can see that as long
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as the normal contamination exceeds 15%, the error in estimating parental allele configurations
is very low. On the other hand, when the normal contamination is below 15%, the data values
for the homozygous and heterozygous SNPs merge together in the regions containing loss of
heterozygosity, and it becomes very hard to distinguish them using only the tumor data.

4 Example of Segmentation of an Affymetrix Sample

We applied PSCN to two samples analyzed through the Affymetrix platform: Chromosome 2
of TCGA glioblastoma sample 23-1027 and chromosome 17 of SW1417, a breast cancer sample.
The former one does not contain non-polymorphic markers while the latter one does.

Figure 3 shows the major and minor copy number estimates of chromosome 2 of TCGA
sample 23-1027, along with the sum of A and B intensities (R) and BAF. With so many data
points, it is hard to visually assess the segmentation result, although the gain in total copy
number at around SNP# 40000 and the split in BAF in the q-arm are clearly visible by eye.
PSCN identified the gain at 40000 as a partial gain/normal event and the split in BAF as a
balanced gain/loss event, which seems reasonable.

Many events are identified between SNPs 1 to 40000. For closer inspection, Figure 4 zooms
in to SNPs 5001 to 10000. We see that, at the fine level, PSCN captures all of the visible splits
in the BAF profile and the local shifts in the R profile, eg. the short rises in R near SNP 7500
and 9200. The many balanced gain/loss events detected in this region are visibly obvious from
the BAF profile. Whether these “gain/loss regions” are inherited blocks of homozygous SNPs
or somatic LOH can not be determined without a matched normal sample.

Figure 5 shows the major and minor copy number estimates for chromosome 17 of SW1417,
a breast cancer sample, along with its R and BAF profiles. The visibly detectable upward shift
in R at around SNP 14000 is captured by the program. The program determines that, prior to
SNP 14000, the chromosome contains a mix of unbalanced gain/loss regions and a normal/loss
region; with the events after SNP 14000 being mainly balanced gain/loss. Note that the program
is data-adaptive in the sense that it does not give a fixed value for what a normal R should be.
Instead, it uses the median of R across all of the chromosomes in a sample as a guess for the
normal R. In this case, we only analyzed the data on chromosome 17. We could also argue that
the events before SNP 14000 are copy neutral gain/loss and that the events after SNP 14000
are either gain/normal or unbalanced gain/loss with more in gain. Without a good estimate of
the ploidy of the sample, we do not have enough information to determine whether the latter
argument or the one we got from the program is closer to the truth. Estimation of ploidy
in a possibly contaminated, highly differentiated sample is a difficult problem, which could be
resolved by molecular cytogenetic analyses such as 24-colour karyotyping [3]. More data from
the same experiment on the same sample would be helpful in resolving this issue since it would
provides a better guess for normal R. Nevertheless, the program provides reasonable results
with the limited information. Figure 6 zooms in to SNPs 20001 to 25000. We can see from the
figure that the program captures the local trend of R at around SNP 24500.

5 Robustness to the Violation of the Gaussian Error Assump-
tion

Figures 7 and 8 examine the adherence to Gaussianity of the errors. In testing the performance
of the model, we used two simulated data sets. One is from Staaf et al. [4], which is a dilution
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data set based on experimental 550k Illumina data for HapMap sample NA06991. Within this
data set, one sample corresponds to normal cell contamination 100%, which does not contain
any long somatic copy number aberrations, and hence can be used to analyze the noise we feed
into the model. (The sample does contain very short regions of germline copy number variants,
but these make up such a small fraction of the data (estimated at < 1%) that they do not affect
the bulk behavior of the noise.) We examined the noise of A allele intensity for BB, BA, AB, AA
states through histograms and Q-Q plots. From the figures, it is clear that the true distribution
deviates from multivariate Gaussian. However, as we have shown in the manuscript, the model
performs quite well for this dilution data set and the simulated data set, which is obtained by
adding signals to this HapMap sample NA06991 with 100% normal cell contamination. This
shows that the estimation method is robust to violation of the Gaussian error assumption.
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Normal Contamination (%) AA → AB BB → AB AB → AA AB → BB

0 893 392 1373 1418

5 735 251 1 0

10 165 63 0 0

15 42 22 0 0

20 18 13 0 0

25 11 9 0 0

30 8 6 0 0

35 20 5 0 0

40 32 14 0 0

45 54 24 0 0

50 65 28 0 0

55 104 54 0 0

60 95 43 0 0

65 88 45 0 0

70 54 28 0 0

75 61 25 0 0

80 61 31 0 0

85 61 29 0 0

90 23 16 0 0

95 18 8 0 0

100 62 22 0 0

Table 1: The count of the four types of incorrect estimation of parental allele configurations
among the 42037 SNPs in HapMap sample NA06991 in the simulation data with different levels
of normal cell contamination
.
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Figure 1: The BAF plot for normal contamination 5%. The SNPs with parental allele con-
figuration correctly estimated are shown in grey. The SNPs with parental allele configuration
incorrectly estimated are shown in red (AA/BB → AB) and blue (AB → AA/BB).

Figure 2: The BAF plot for normal contamination 15%. The SNPs with parental allele con-
figuration correctly estimated are shown in grey. The SNPs with parental allele configuration
incorrectly estimated are shown in red (AA/BB → AB) and blue (AB → AA/BB).
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Figure 3: Plot of R, BAF, copy number estimation of Chromosome 2 of TCGA-23-1027 analyzed
through the Affymetrix platform.
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Figure 4: Plot of R, BAF, copy number estimation of Chromosome 2 of TCGA-23-1027 for
SNPs 5001-10000 analyzed through the Affymetrix platform.
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Figure 5: Plot of R, BAF, copy number estimation of Chromosome 17 of SW1417, a breast
cancer sample, analyzed through the Affymetrix platform.
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Figure 6: Plot of R, BAF, copy number estimation of Chromosome 17 of SW1417 for SNPs
20001-25000 analyzed through the Affymetrix platform.
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Figure 7: Histograms and Q-Q plots for errors of the fit of a chromosome from a normal cell.
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Figure 8: Histograms and Q-Q plots for errors of the fit of a chromosome from a normal cell
(continued).
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