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1 Efficiency of the BS search method based on

local regulation

RegTransBase (RTB) is an extensive database of prokaryotic binding sites (BSs)[1].
BSs are grouped in alignments associated to ortholog transcriptional factors (TFs).
These alignments are based on experimental and/or bioinformatic approaches. For
each alignment, the sets of TFs and BSs are displayed separately and there may
be several TFs corresponding to a same organism. Most alignments are built
from BSs recognized by LacI family members. In this case, orthologs associated
to a same alignment could differ in their respective recognition helices. Thus,
to compare our results with RTB data (contemporary version v5) we proceed as
follows:

i) within each alignment, and whenever it was possible in an univocal way, we
assigned as potential regulator of a given BS the TF that is encoded in the
same genome;

ii) we removed those TFs with redundant HTH-LacI domains (using the same
criterion we applied over our own data);

iii) redundancies associated to double annotation of BSs regulating divergent
operons were also removed;

iv) BSs were regrouped in sets, each associated to a different recognition helix.

The advantages of our BS search method based on local regulation lie in:
i) the chance of its direct application over each annotated genome and ii) the
avoidance of those problems related to orthology and functionality –it is trivial
that in the case of autoregulation the functional relationship between the TF
and the regulated operon does exist. On the other hand, the main disadvantage
of this method when compared with orthology-based ones is the exclusion as a
target of search of those BSs which are not located in the neighborhood of the
gene encoding the TF. Thus, the number of BSs that the local approach can relate
to a same domain will be smaller on average.

However, as our search spans over every sequenced and annotated genome,
we associated BSs to a large number of TFs, what was vital to define the level
of universality of our conclusions. The number of TFs with at least a found BS
–712 out of 1490, involving 572 autoregulations and 207 downstream neighbor
regulations (see Figure 2.A, main text)– almost triplicates the 271 members of
the TVSR set1 in RTB v5 (Figure S5.A), after the process above was applied.
Moreover, the big number of considered TFs compensates the local limitation of
the search because the total number of found BSs is also larger (942 vs 721 in
RTB, Figure S5.B).

1See the Glossary section of this document.
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2 Resolution of the recognition correlations

This section explains the protocol we followed to build Table S1, that contains
the correlations between the pair of recognition amino acids (AA-15, AA-16) and
the recognized sequences in (NT-5, NT-4). The protocol firstly removes those
BSs with potential spurious nucleotides exhibiting no special affinity and next
solves the different degeneracies (which are explicitely annotated in Table S1).
We exemplify this method in the set of BSs associated to the recognition amino
acids K15S16 because in this particularly complex case we found the three types
of scenarios for degeneracy.

However, we have to introduce, first of all, the notation criteria we follow
in this document for the set of nucleotides in the specificity-associated positions
NT-4 and NT-5.

2.1 Notation criteria

Table S3 displays four double-stranded BS sequences. In each case, upper strand
is the sense strand (where the BSs we found are always read). Let’s consider
now the non-palindromic sequence #3. The direct reading of the quartet of nu-
cleotides occupying the specificity positions in both half sites is written between
parentheses:

(NT-5L, NT-4L; NT-4R, NT-5R) → (GT, CT).

It will be convenient to notate the positions corresponding to the right semise-

quence (see Glossary) as read from 5’ to 3’ in the antisense strand. In this case,
we use square brackets (c for complementary nucleotides):

[NT-5L, NT-4L; NT-5c
R, NT-4c

R] → [GT, AG].

Palindromes –as sequences #1 y #2 in Table S3– can be easily identified under
this last notation:

(GT, AC) → [GT, GT] (AG, CT) → [AG, AG].

There are 44 = 256 potential combinations of this type. The frequency f̃
in which each of these combinations appears in the BS alignment associated to a
same amino-acid recognition sequence can be arranged in a matrix of elements f̃i,j,
where both subindexes run over the 16 possible combinations of two nucleotides
on each semisequence. The sum of all the frequencies in the matrix is the num-
ber N of BSs in the alignment. Under the square-bracket notation, frequencies
corresponding to palindromes are located in the main diagonal, f̃i,i; and non-
palindromic combinations which are invariants excepting orientation interchange
their row and column indexes (f̃i,j ↔ f̃j,i). This is the case of those combinations
extracted from BSs #3 and #4 in Table S3: [GT, AG] and [AG, GT], respectively.
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In fact, we consider as equivalents –in what refers to the binding energy– those
sequences exhibiting this mere orientation difference2. Thus, we group them in
what we define as a same state, which is notated between curly brackets:

{AG, GT}=[AG, GT] ∪ [GT, AG]=(AG, AC) ∪ (GT, CT).

For palindromic cases there is only a semisequence combination per state. We can
also abbreviate the notation for palindromes without lost of information:

{AG}=[AG, AG]=(AG, CT).

This is the final notation for our space of semisequence combinations, which
is now restricted to 16× (16 + 1)/2 = 136 different states. Consequently, the set
of frequencies for all the states can be arranged in a triangular matrix (including
the main diagonal for palindromes). This matrix (called F ) is related with the
previous 16 x 16 one through fi,j = f̃i,j + f̃j,i for non-palindromic states and
fi,i = f̃i,i for palindromes. The sum of all the frequencies in the matrix is again
the number N of BSs associated to a same recognition sequence.

Figure S6 shows the matrix F corresponding to K15S16. The most populated
state is the palindrome {GG} with 44 instances. Coming back to the most con-
ventional notation, this dominant palindrome (GG, CC) is reflected in the biggest
letters exhibited by the logo (Figure S6, insert) in the quartet of positions (NT-5L,
NT-4L; NT-4R, NT-5R).

2.2 Significant states

A given BS could incorporate nucleotides for which the corresponding TF does
not have a special affinity –although the BS could be still functional. The incor-
poration of such low-affinity nucleotides in a degenerate position (as it is often the
case of NT-4 and NT-5) has a small penalty under a PWM-based BS search –in
contrast to the big penalties associated to the substitution of a clearly dominant
nucleotide. As we were interested only in those nucleotides for which the corre-
sponding TF exhibited at least a minimal moderate affinity, we removed all those
semisequences without a minimal statistical significance when compared with a
null model in which they arise as neutral combinations of the genomic background.

As a first step, we identified those states whose frequencies are significantly
large when compared with a null model in which the probability of a state is
simply determined by the probability of the corresponding nucleotide sequences
in the intergenic background. That is, and following with our previous examples,
the probability in the null model of the states {AG; GT} and {AG} would be

2Although in our example the invariance between #3 and #4 involves every BS coordinate,
we only require the specificity positions to satisfy this invariance: [GT, AG]∼[AG, GT].
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given by

p{AG; GT} = p[AG; GT ] + p[GT ; AG] = p(AG; AC) + p(GT ; CT ) =

= pA pG pA pC + pG pT pC pT ,

p{AG} = p[AG; AG] = p(AG; CT ) = pA pG pC pT ,

respectively, being pi (i = A,C,G, T ) the background probability of the four
nucleotides, which is calculated from the nucleotide content of the sense strand3.
To compute the p-value of each state, we built a set of 105 random F -matrices,
F (rnd), in which the population of each of the 136 states is determined by its null-
probability, p{s} (s = 1 . . . 136). Being the single nucleotide probability normalized
(
∑

i=A,C,G,T pi = 1), so are the p{s}’s.

Algorithm S1 Pseudocode for the F (rnd) matrices set generation.
for j = 1 to 99999 do

for i = 1 to N do

generate u according to U(0|1)
select s such that cs = max({cr|cr ≤ u})

f
(rnd)
s,j ← f

(rnd)
s,j + 1

end for

end for

The set of matrices F (rnd) was built following Algorithm S1 where the quan-
tities cs (s = 1 . . . 136) are the starting points in which the unitary segment [0, 1]
is divided, so that each partition length equals the probability of one state:

cs =

{

0 s = 1,
∑s−1

r=1 p{r} s = 2 . . . 136.

The inner loop of Algorithm S1 generates N times a random number u following
the standard uniform distribution U(0, 1). The value of each generated u selects
one state s whose frequency increases in one unity. In the outer loop 99999 trials[2]
generate the same number of matrices F (rnd). Finally, for each of the 136 states
s we calculated the p-value Ps associated to the observed frequencies fs when
compared with the set of random frequencies associated to the same state f

(rnd)
s,j

(j = 1 . . . 99999),

Ps =
(number of f

(rnd)
s,j for which f

(rnd)
s,j ≥ fs) + 1

105
.

In Figure S6 significantly large frequencies (Ps < 0.05 after correcting for multi-
ple testing[3]) are highlighted in red. Finally, we discarded those semisequences

3Specifically, the random probability of each base was calculated from its frequency in the
set of intergenic regions of search associated to the corresponding recognition class.
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that were not involved in any significant state. When the corresponding rows
and arrows were removed from matrix F we obtained a triangular submatrix.
We named this submatrix as matrix S. Figure S7.A shows that extracted from
Figure S6. Note that, aside all the significant frequencies (that inherit red color
from the original matrix F ) several non-significant ones are included in S. The
previous protocol was applied over each set of BSs associated to a same sequence
of recognition amino acids, i.e., to a same recognition TF class4.

Once we obtained matrix S, we solved the different degeneracy scenarios (see
Figure 3.B, main text). We first separated intrinsic from extrinsic degeneracies.
A second step distinguished, inside the intrinsic scenario, between symmetrical
and asymmetrical recognitions. We detail this next.

2.3 Extrinsic vs. intrinsic degeneracies

Let’s consider the matrix S for K15S16 in Figure S7.A5. The palindromic states
P1={GA} and P2={GG} are significant. However, this is not the case of the
corresponding mixture M={GA, GG} (circled in blue). This suggests a scenario
of extrinsic degeneracy between the sets of TFs binding P1 and P2, respectively
(see main text, Figure 3.B, right). In general, a matrix S can involve more than
two palindromic states and, in consequence, more than one mixture –for example,
matrix S in Figure S7.A involves 5 different semisequences that can be combined in
5 palindromic states and 10 potential mixtures. Thus, when the matrix S involves
more than two different semisequences we detected significantly low-frequency
mixtures by contrasting the extant frequencies in S with a null model in which
semisequences combine randomly (this penalizes underrepresented mixtures).

The null model was built as follows: i) we counted the frequency of each semise-
quence in matrix S, taking into account that each palindromic case contributes
with two semisequences of the same type and each mixture adds one instance
of two different semisequences –for example, there are 44 × 2 + 2 + 4 + 4 = 98
semisequences GG and 4×2+2+8 = 18 semisequences GA in Figure S7.A, ii) the
probability of a given semisequence equals the number of this type of semisequence
divided by the total number of semisequences (2 x n) in S, being n the total sum
of frequencies in this matrix (n = 68 ergo 136 semisequence counts in Figure
S7.A), iii) the probability of a semisequence combination is given by the product
of the probabilities of its constituting semisequences, and iv) the probability of a
state is given by the sum of the probabilities of its corresponding combinations
(recall that a non-palindromic state contains two combinations).

Finally, we made 104 random trials with an algorithm similar to Algorithm
S1, substituting N for n and using the state probabilities. Each mixture with

4We did not detect any significant frequency in the F matrix associated to H15T16. In this
exceptional case, we selected as significant the state corresponding to the largest frequency.

5Note how it is built from the cells highlighted in dark gray in Figure S6.
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a significant low frequency (P < 0.05 after correcting for multiple testing) was
associated to an event of extrinsic degeneracy. For instance, the circled state in
Figure S7.A was confirmed as such a critical mixture. In this case, the extrinsic
degeneracy would imply that there exists a subset of regulators of the K15S16-
class that is able to bind semisequence GA but not GG, and other subset with the
opposite behavior6. In principle, we did not exclude that both groups can share
affinities for third semisequences.

Thus, in the presence of a low-frequency mixture we extracted two submatrices
from matrix S7. Each submatrix was obtained by removing all those combina-
tions having one of the semisequences of the mixture as constituent. This can be
easily view if we redefine the matrix indexes associated to each semisequence of
S in such a way that the critical combination is now placed in the upper right
corner of the matrix (Figure S7.B). The submatrices are then extracted by re-
moving alternatively the first row and the last column of the reordered S matrix8.
Finally, within each submatrix we removed rows and columns corresponding to
semisequences only involved in zero-frequency combinations (as in the case of the
upper submatrix in Figure S7.C).

2.4 Symmetrical vs. asymmetrical degeneracies

Except in the trivial case of 1 x 1 submatrices, the different semisequences in the
submatrices were associated to an intrinsically degenerate recognition. Next, we
wanted to determine its symmetrical (Figure 3.B, left) or asymmetrical (Figure
3.B, center) character. We assumed within each submatrix (or in matrix S when
no events of extrinsic degeneracy were detected) a starting null model of intrinsic
symmetrical recognition, in which all the TFs have similar affinities for each com-
bination of the considered semisequences. If all these combinations suffer the same
selective pressure as BSs constituents, we could expect that, after the selection,
the distribution of the respective frequencies is only determined by the conditional
probability that results from the restriction (and subsequent renormalization) of
the neutral genomic-background probability we used in Section 2 to the combi-
nations considered in the given submatrix. For example, in this symmetrical null
model the post-selection probability p′ of each state in the upper submatrix of
Figure S7.C would be

p′{GA} =
1

norm
p{GA},

p′{GA, GT} =
1

norm
p{GA, GT},

6This result could be questioned if at least two different members of the triad [P1, M, P2]
were associated to a same TF. We never found such a case.

7In absence of such a mixture, we jumped directly to the next step of the protocol.
8All this process complicates if more than one critical mixture were found per set of BSs. In

practice, we did not encounter this case.
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p′{GT} =
1

norm
p{GT},

with norm = p{GA} + p{GA, GT} + p{GT}.

Next, we compared the extant frequencies in the submatrix with a set of 104

random submatrices where the frequencies are distributed under this probability.
Randomizations were made with an algorithm similar to Algorithm S1, substitut-
ing N for the sum of all frequencies in the submatrix and using the p′ probabilities.
When a palindrome is found with particularly high frequency (being statistically
significant with P < 0.05 after correcting for multiple testing) the submatrix was
associated to a scenario of asymmetrical intrinsic recognition, where this palin-
drome dominates (as P1 in Figure 3.B, center). In absence of such large frequencies
or when they were associated to a mixture, we kept the symmetrical situation of
the null model.

2.5 Integration of all scenarios for degeneracy

The upper matrix in Figure S7.C lacks a dominant palindrome. This is thus
a case of intrinsic symmetrical degeneracy. The corresponding graph in Figure
S7.D schematizes this relationship by means of a bidirectional arrow connecting
the palindromic states. The frequency and semisequence of the palindromes are
placed at the extremes of the arrow and the number at the middle of the arrow
is the frequency of the mixed state. We kept the original red color for significant
frequencies. On the contrary, in the lower submatrix of Figure S7.C the (circled
in green) palindrome {GG} dominates. In this case we used unidirectional arrows
directed from the dominant to the dominated palindromes (Figure S7.D). We did
not plot arrows for zero-frequency mixtures.

Figure S7.E integrates all the scenarios of degeneracy we found: the two graphs
in Figure S7.D are joined and the extrinsic relationship in Figure S7.B is added
(using special double-head arrows). This resultant graph, which covers all the n
frequencies in matrix S, is finally included in the Table of Correlations (Table S1).
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3 Comparison with Milk et al. mutational data

The agreement of our theoretical predictions with mutational data seemed to be
in conflict with the following conclusion of the mutational study by Milk et al.:
comparative genomics is not sufficient for predicting synthetic (AA-15, AA-16,
AA-20)/(NT-6, NT-5, NT-4) associations[4]. This followed from an experiment
in which the sequence of the recognition triplet (AA-15, AA-16, AA-20) of LacI
was swapped for that of MalR, RbtR, FruR, PurR, RbsR, GalR, CytR, RafR and
ScrR (the last four belonging to the TVSR set). For each of these regulators the
sequence of (NT-6, NT-5, NT-4) in the symmetrical operator SymL was changed
to that identified in one of the natural BSs the regulator binds. Only the mutants
associated to the recognition sequence of GalR and FruR were able to bind the
corresponding operator[4].

The nucleotides occupying the specificity associated positions in a particular
BS are not always those for which the TF has the strongest preference. The rest
of protein/DNA contacts could suffice for a functional binding (note how a large
fraction of the mutants in Figure S3 are still able to bind with the wild type
sequence of SymL). To avoid this effect, the binding preferences of a given recog-
nition sequence should be better identified through the PWM (or its logo) for
the corresponding BS alignment[5]. Thus, it could be that the use of single BSs
could be influencing the mentioned conclusion. To investigate this, we contrasted
the nucleotide sequences that were tested in the mutational work with those pre-
dicted by our PWM-based recognition associations. For the five TFs which do not
belong to the TVSR set, the sequences of the BSs used in the mutational work
correspond in general to bases with a high information content in the respective
logo (data not shown). This confirmed then the unpredictability conclusion for
this small set of non–TVSR members of the LacI family.

However, Figure S3 suggested that a different scenario could be applying within
the TVSR set. Moreover, the existence of highly conserved positions in the con-
sensus logo of Figure 2.E implies that for many TFs in this set there is possibly
a canonical mode of binding associated to an ideal BS backbone given by the
sequence (T)G--A-CG-T--C(A). In this case, we could reasonably expect that
mutational experiments on the (AA-15, AA-16) pair would recover the predicted
new specificities on the (NT-5, NT-4) positions. This is the case of the LacI mu-
tant with the recognition sequence of GalR (AA-15, AA-16)=VA, which is able
to bind the SymL variant with (NT-5, NT-4)=TA[4, 6, 7]. This is also in agree-
ment with our genomically-derived predictions (Figure 4.A, main text). On the
contrary, the chance for successful experimental redesign would be lower when
the reference BSs diverge significantly from the consensus pattern. In fact, the
exceptions to the dominant mode of binding within the TVSR set includes the
regulators CytR, RafR and ScrR. This exceptionalness explains why the LacI mu-
tants with the recognition sequence of these regulators fail to bind SymL variants
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built from their respective natural BSs.
The case of CytR is the most clear case of a missed positive result in the

mutational test. For the corresponding SymL variant, Milk et al. used the (NT-
6, NT-5, NT-4) sequence of a BS from which Escherichia coli’s CytR regulates
the transcription of the deo operon. It is known that this particular regulator
exhibits an exceptional mode of binding within the LacI family. Effectively, E.

coli’s CytR does not use hinge-helix for minor groove recognition[8] and needs
to constitute a regulatory complex with CRP to bind the DNA[9]. However,
our results for the TF recognition class with the same recognition sequence of
CytR, (AA-15, AA-16)=TA, showed that a more canonical behavior dominates
in this class. As reflected in Figure 4.A, this pair recognizes (NT-5, NT-4)=TA
preferably. Accordingly, a SymL variant with this sequence was associated to
T15A16 in the mutational screening (Figure S3).

Since RafR and ScrR shares the same recognition sequence V15T16, both reg-
ulators were associated to a same LacI mutant. This mutant was tested against
SymL variants also designed from two natural BSs which did not respond to the
consensus behavior of Figure 2.E. Both of these BSs lacked the conserved guanine
in NT-6. In fact, the arginine in AA-20 of the close orthologs of ScrR (like SacR
in Lactobacillus plantarum) possibly contacts a guanine in NT-7 (instead of NT-6)
giving wider BSs[10]. See the section of conclusions in the main text for comments
on the loss of non-canonical BSs in our search protocol.
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Glossary

Half site: The BSs for the LacI family exhibit a palindromic or almost palin-
dromic nature inherited from the axial symmetry of the binding dimers (see
Figure 1.A, main text). A half site is constituted by the sequence of nu-
cleotides to the left or right side of the BS center. The sequences of both
half sites can be directly compared by reading the right half site in the
5’-to-3’ sense over the complementary DNA strand.

TVSR set: The majority set of members of the LacI family of domains exhibit-
ing the TVSR sequence of AAs in the range of recognition helix positions
from AA-17 to AA-20 (see Figure S2). Our analysis is restricted to this
leading subgroup.

AA-15 and AA-16: The main specificity-associated positions in the helix-turn-
helix (HTH) recognition domain. We refer to the coordinates of any amino
acid in a particular HTH-LacI domain by the position (plus the prefix AA-)
that the given amino acid has in the domain alignment of Figure 1.B, main
text.

Recognition class: TFs of the TVSR set sharing the same (AA-15, AA-16)
recognition sequence.

NT-4 and NT-5: The main specificity-associated positions in each half site
–four nucleotide positions in total, but usually cited as a pair (NT-5, NT-4),
see next entry.

Semisequence: In this work we restrict the term semisequence for the left or
right components of the quartet (NT-5L, NT-4L; NT-4R, NT-5R). Under
our notation criteria, semisequences are always read from 5’ to 3’ and cited
as a pair (NT-5, NT-4). In this way, palindromic combinations for this
quartet are easily identified, and so are the relationships between mixtures
and palindromes. When we refer to a full BS, we use the term half site

instead of semisequence to avoid confusion.

Combination (of semisequences): We often use this term to refer the se-
quence (NT-5L, NT-4L; NT-4R, NT-5R) because it can be formally under-
stood as an assembly of its constituting semisequences. This also inspires
our matrix-based approach. There are 44 = 256 possible combinations.

State: We group two complementary combinations in a same state because we
consider that they are equivalent in what refers to specificity. Thus, there
are 136 possible states.
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Palindrome: In general, it is a nucleotide sequence equals to its complementary
one (both read in the same 5’-to-3’ or 3’-to-5’ sense). For instance, this is the
case of synthetic palindromic BSs as SymL: 5’-AATTGTGAGC·GCTCACAATT-3’.
However, in most cases we restrict this term for the specificity-associated
quartet (NT-5L, NT-4L; NT-4R, NT-5R). Thus, we talk about palindromes
when (NT-5L, NT-4L) = (NT-5c

R, NT-4c
R), with c for complementary nu-

cleotides.

Mixture: We apply this term to each given non-palindromic state because this
can be formally understood as the assembly of the semisequences of two
different palindromes. For example, the mixture M={GA, GG} is built
from the semisequences of palindromes P1={GA} and P2={GG}. Note
how our notation criteria enhances this formal approach.

Matrix F : Triangular matrix containing the frequencies of all the 136 states in
the BS set associated to a same recognition class. See an example in Figure
S6. Due to our notation criteria, palindromic combinations are easily located
in the main diagonal.

Matrix S: Triangular submatrix extracted from matrix F . Only semisequences
involved in at least a significant state are considered. Palindromic combina-
tions in main diagonal.

Specificity degeneracy: In a broad sense, it is the ambiguity exhibited by a
BS-logo when two or more nucleotides compete for any of the specificity-
associated positions.

Intrinsic degeneracy: The specificity degeneracy has an intrinsic nature if
the set of TFs sharing the same recognition amino acids is able to bind
the competing nucleotides. Thus, each TF exhibit a (same) degenerate
specificity, strictly speaking. See Figure 3.B (left and center) in main text.

Extrinsic degeneracy: In contrast to intrinsic ones, extrinsic degeneracies
do not involve a truly recognition degeneracy for each isolated TF. In this
case the ambiguity exhibited by the logo is due to the alignment of BSs
recognized by TFs with different specificities despite their shared (AA-15,
AA-16) sequence. See Figure 3.B (right) in main text.
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Appendix: BS logos

Each logo corresponds to the alignment of the set of BSs associated to a recognition
class –constituted by TFs sharing the same (AA-15, AA-16) recognition sequence.
All the considered domains exhibit the TVSR sequence in the range of recognition-
helix positions from AA-17 to AA-20. Above each logo we show the amino-acid
recognition sequence and a triad of numbers (i/ii/iii) corresponding to i) the total
number of TFs with this recognition sequence, ii) the number of TFs for which at
least one BS was found, and iii) the total number N of found BSs.

Below the logo other two triads of numbers appear. They distinguish the
cases corresponding to autoregulations (AU) or downstream neighbor regulations
(NR). Now, each triad (i/ii/iii) corresponds to i) the number of intergenic region
of search, ii) the number of these regions for which at least one BS was found,
and iii) the total number of found BSs in the regions. Note that in the case of
autoregulation the value of i) equals the number of TFs because there is an inter-
genic region located upstream of every operon. However, as we only considered
downstream neighbor regulations in which the TF and its potentially regulated
operon are encoded in the same DNA strand (see Figure 2.A, main text), there is
on average only an available downstream search region for half the TFs.

Logos were created with WebLogo correcting the information content overesti-
mation that results from small samples[11] –this is reflected in smaller letter sizes
for logos involving a more limited number of BSs.



VA   138/93/122

AU: 138/87/103    NR: 67/17/19

TA   101/53/74

AU: 101/47/63    NR: 61/10/11

IA   91/46/63

AU: 91/43/55    NR: 45/7/8

KS   87/49/69

AU: 87/25/33    NR: 55/26/36

PS   76/36/48

AU: 76/29/39    NR: 44/9/9

KM   68/40/55

AU: 68/19/20    NR: 39/25/35

IS   57/29/36

AU: 57/21/25    NR: 28/10/11

KA   50/29/36

AU: 50/29/30    NR: 24/5/6

MA   47/28/31

AU: 47/28/31    NR: 26/0/0

LA   44/20/24

AU: 44/11/12    NR: 38/11/12

VT   40/15/15

AU: 40/12/12    NR: 26/3/3

VS   36/16/24

AU: 36/15/22    NR: 21/2/2

PA   34/20/24

AU: 34/19/19    NR: 23/5/5

IK   29/11/15

AU: 29/10/12    NR: 9/2/3

YQ   24/13/18

AU: 24/0/0    NR: 19/13/18

VG   24/13/20

AU: 24/6/6    NR: 21/7/14

RA   22/0/0

AU: 22/0/0    NR: 8/0/0

QS   22/0/0

AU: 22/0/0    NR: 9/0/0



RS   21/7/10

AU: 21/6/6    NR: 18/4/4

PT   21/9/12

AU: 21/8/10    NR: 6/2/2

EM   20/8/8

AU: 20/8/8    NR: 9/0/0

PM   19/8/11

AU: 19/7/9    NR: 5/2/2

QA   18/0/0

AU: 18/0/0    NR: 11/0/0

TS   16/11/13

AU: 16/8/8    NR: 11/4/5

LK   14/0/0

AU: 14/0/0    NR: 10/0/0

KK   14/12/19

AU: 14/5/5    NR: 12/11/14

ES   14/7/9

AU: 14/7/9    NR: 5/0/0

AS   14/8/9

AU: 14/7/8    NR: 8/1/1

SA   13/9/9

AU: 13/9/9    NR: 1/0/0

AI   13/10/13

AU: 13/10/12    NR: 4/1/1

TM   12/11/18

AU: 12/11/18    NR: 5/0/0

IT   12/5/7

AU: 12/4/4    NR: 9/3/3

PI   11/8/12

AU: 11/8/12    NR: 7/0/0

KT   11/8/11

AU: 11/8/8    NR: 6/3/3

AM   10/7/10

AU: 10/7/9    NR: 5/1/1

AA   10/6/7

AU: 10/5/6    NR: 3/1/1



SM   9/6/9

AU: 9/6/9    NR: 0/0/0

RT   9/0/0

AU: 9/0/0    NR: 5/0/0

QT   9/7/8

AU: 9/7/8    NR: 7/0/0

QP   9/0/0

AU: 9/0/0    NR: 4/0/0

LM   9/7/11

AU: 9/5/9    NR: 2/2/2

HQ   9/5/9

AU: 9/2/2    NR: 8/5/7

EA   9/0/0

AU: 9/0/0    NR: 8/0/0

RM   8/0/0

AU: 8/0/0    NR: 5/0/0

RG   8/5/5

AU: 8/3/3    NR: 5/2/2

HT   8/3/4

AU: 8/2/2    NR: 4/2/2

IG   7/3/5

AU: 7/3/4    NR: 4/1/1

VK   6/0/0

AU: 6/0/0    NR: 4/0/0

LQ   6/5/5

AU: 6/3/3    NR: 3/2/2

IN   6/5/9

AU: 6/4/6    NR: 4/3/3

VP   5/3/4

AU: 5/3/3    NR: 4/1/1

SS   5/0/0

AU: 5/0/0    NR: 2/0/0

TQ   4/0/0

AU: 4/0/0    NR: 0/0/0

TG   4/3/3

AU: 4/3/3    NR: 2/0/0



ST   4/0/0

AU: 4/0/0    NR: 3/0/0

QQ   4/0/0

AU: 4/0/0    NR: 1/0/0

PK   4/0/0

AU: 4/0/0    NR: 4/0/0

IC   4/3/3

AU: 4/2/2    NR: 4/1/1

HA   4/2/2

AU: 4/2/2    NR: 0/0/0

AQ   4/0/0

AU: 4/0/0    NR: 1/0/0

AG   4/0/0

AU: 4/0/0    NR: 2/0/0

YS   3/0/0

AU: 3/0/0    NR: 3/0/0

SQ   3/2/3

AU: 3/2/3    NR: 3/0/0

RV   3/3/4

AU: 3/1/1    NR: 3/3/3

PQ   3/0/0

AU: 3/0/0    NR: 3/0/0

PG   3/0/0

AU: 3/0/0    NR: 3/0/0

NK   3/3/4

AU: 3/3/4    NR: 2/0/0

NI   3/0/0

AU: 3/0/0    NR: 0/0/0

NA   3/0/0

AU: 3/0/0    NR: 3/0/0

HS   3/2/2

AU: 3/2/2    NR: 1/0/0

HM   3/0/0

AU: 3/0/0    NR: 2/0/0

AT   3/0/0

AU: 3/0/0    NR: 1/0/0




