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Protocol S1

Modeling recombination

We begin by constructing mating matrices Rk for each genotypic class k. The component Rk;i j is the

probability that a mating between individuals in genotypic classes i and j will give rise to offspring

belonging to class k. We weight these components by the probability that individuals in genotypic classes

i and j encounter each other. Formally, this is included in the model by introducing a new operator “Rec”

for recombination:

Rec(~p) = ~p ·~R ·~p T =
(
~p ·R0 ·~p T , · · · ,~p ·Rk ·~p T )

We assume that the recombination rate within binding sites is zero. For example, considering the two

binding site case, the probability that a mating between genotypic classes (3,0) and (0,5) produces the

genotype (0,0) is R(0,0);(3,0),(0,5) = r/2, where r is the recombination rate between binding sites. Differ-

ent assumptions about how recombination operates can be represented by appropriate mating matrices.

The evolutionary dynamics of an infinite sexual population is then described by:

~pt+1 = Rec(~pt ·Q)◦ ~w
w

Yeast data

TF binding site models

We used 428 position weight matrices (PWMs) summarizing the binding specificities of 190 putative

yeast TFs reported in four studies: two analyses of a single genome-wide chromatin immunoprecipitation

data set [1, 2] and two independent protein binding microarray studies [3, 4] (Tables S1 and S2). Each

PWM was simplified in two steps:

1. Sequential deletion of all terminal (both 5’ and 3’) positions with a total information content under

0.125.

2. Deletion of all but the 8 positions with the highest information content and intervening positions

We then compared all PWMs of the same length to each other by calculating the following distance:

d =
∑

n
j=1 ∑

4
i=1(pi j− p′i j)

2

n

where, pi j is the frequency of nucleotide i at position j of the first PWM, and p′i j is the corresponding

position in the second PWM. The distance between the first PWM and the reverse complement of the
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second PWM was also calculated and the smallest value of d was used. Any pairs of PWMs showing

d < 0.05 were collapsed. Pairs of PWMs with equivalent consensus sequences at 100% or 95% of the

maximum PWM score were also collapsed (Table S2). The final PWM data set consisted of 326 PWMs

for 179 TFs (Table S1).

Mismatches

Scanning PWMs at 95% stringency means that certain low information positions allow mismatches.

The maximum number of mismatches allowed by a PWM decreased with the mean information content

per position (Spearman’s ρ = −0.682 , P < 0.0001) and increased with the length of the binding site

(ρ = 0.592 , P < 0.0001). Length and information content per position were, in turn, strongly negatively

correlated with each other (ρ =−0.504 , P < 0.0001).

Intergenic regions

We used the following sequence data: http://downloads.yeastgenome.org/sequence/genomic sequence/

intergenic/archive/NotFeature.20090220.fasta.gz.

Genomic features

We calculated the following quantities for each intergenic region:

1. Sequence length.

2. Proportion of sequence occupied by nucleosomes [5].

3. Whether the promoter contains a TATA box [6].

4. GC content. Positively correlated with recombinational activity [7] and nucleosome occupancy [5].

5. A measure of the frequency of meiotic double-strand breaks (DSBs) of a mutant (dmc1∆) defective

in DSB-repair obtained using microarray hybridization [8]; we used the mean of log-transformed

unsmoothed average ratios of background-normalized fluorescence.

6. Proportion of nucleotides that differ between S. cerevisiae and S. paradoxus [9]. Based on the orig-

inal alignments (http://www.broadinstitute.org/annotation/fungi/comp yeasts/downloads.html).

7. Total number of crossover events identified from examining all four products of 56 yeast meioses

[10].

We also calculated the following quantities for each gene downstream of these promoters:
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1. Three measures of robustness to trans-perturbations [11], derived from measurements of the vari-

ance (corrected for the mean) in levels of gene expression across: 167 viable knockout mutations

(genetic), 30 wild isolates (genetic background), and 35 environments (environmental robustness).

The robustness metrics are inversely related to the variance in gene expression.

2. Essentiality—whether a homozygous knock-out of the gene is lethal). We merged the lists of es-

sential genes in http://www-sequence.stanford.edu/group/yeast deletion project/Essential ORFs.txt

[12, 13] and the Comprehensive Yeast Genome Database (CYGD) [14]. We merged the lists of

nonessential genes in CYGD and three other studies [15–17]. Overlaps between the resulting lists

of essential and nonessential genes were reclassified as nonessential.

3. Whether the gene has a duplicate elsewhere in the genome [18].

4. The ratio between the rates of nonsynonymous and synonymous site substitution Ka/Ks based on

the comparison between S. cerevisiae and S. paradoxus [9] (ftp://ftp-genome.wi.mit.edu/pub/

annotation/fungi/comp yeasts/S4.MutationCounts/b.KaKs details.xls).

5. Degree centrality—total number of interactions between that gene and other genes, including tran-

scription regulatory and protein-protein interactions [19].

6. Protein expression noise, defined as the average of the log-transformed coefficient of variation in

protein expression in two environments [20]; inversely correlated with protein and mRNA abun-

dance [20] (Fig. 5B).

7. mRNA abundance [21].

8. Protein abundance [22]. Estimates of mean protein abundance in this study are strongly correlated

with those in [22].

Software

PWM scans were done using the Bioconductor package ‘Biostrings’. Effect size estimates and meta-

analyses were done using the ‘metafor’ package in R [23]. Cluster analyses were done using the ‘cluster’

package in R.
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