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Aggregate Properties of the Time Series

To explore how memory might influence collective conflict dynamics, we determine the scales of aggrega-
tion in our study group at which significant correlations in conflict properties occur. We test for spurious
correlations, which can arise without memory if the same individuals repeatedly engage in conflict simply
because they have an aggressive disposition or if particular individuals repeatedly agitate others.

We first consider the simple case of correlations across fights in the number of individuals involved
without regard to identity – for example, whether large fights follow large fights. We find that, for a
wide range of such statistics involving both the median and mean, and different nulls, that there are no
detectable correlations of this sort. This section elaborates on that finding.

Consider the statistic “median over-under correlation,” an average taken over all fight pairs separated
by time ∆t, which can be defined and computed with ensemble averages:

M(∆t) = 〈Θ(N [t] − N̄)Θ(N [t + ∆t] − N̄)〉, (1)

where the angle-bracket average is taken over the entire dataset but no pairs with fights on different days
are considered. Here Θ is a step-function: -1 for negative argument and +1 for positive argument. In the
case where the fight size of one of the pairs happens to be precisely the median value, i.e., the argument
is zero, we take the Θ function to be (n−m)/(n+m), where n is the number of fights with length strictly
above the median value, and m the number of fights strictly below the median value. The time, t, and
lag, ∆t, are in units of fights within a day; for example, t of five means the fifth fight that day.

The average fight size, N̄ , can computed within a day or across days. We find evidence for intra-day
variation associated with feeding times and onset of evening hours; however, using a time-dependent
N̄ complicates analysis without changing any qualitative aspects of the results, and so we do not use
this correction. Put simply, then M(∆t) estimates how likely a fight of above-median (equivalently,
below-median) size is expected to be found after a previous fight also of above-median (below-median)
size.

Any correlation statistic such as M will, in general, be non-zero for a particular data set – even if the
data were generated by a completely uncorrelated process. In order to determine the significance level of
a detection, we must compare to a null model. Here our null model is a shuffled time-series that leaves
the internal properties of the fights unchanged. This null has the advantage of efficiently ensuring that
detections will be sensitive to purely time-correlated aspects of the data, and not – for example – to the
“zero-lag” correlations that occur within a single fight or on average. In general, we find our statistics
insensitive to whether this shuffling is done within a day – i.e., keeping same day events on the same day
but rearranging their order – or across all days.

As shown in Fig. 1, there is no evidence for memory of previous interactions when considering only
fight size data. Conflicts at this coarse-graining appear to occur at random. Furthermore, the correlations
of fight sizes, fight durations, and peace durations with themselves and with each other (variations of
M(∆t) sensitive to, for example, whether a long peace follows a small fight) all appear largely independent
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Figure 1. Fight size, an aggregate-level variable, does not predict future fight size. A
coarse-grained correlation function, M(∆t), of the time series. At lag of zero, M is unity by definition;
at non-zero lag, M is indistinguishable from the null model with zero time correlation – the 68%
confidence range for this null is shown as the dashed line. The null model is generated by time shuffling
fight bouts.

of previous events. This result is robust regardless of whether we examine the correlation function in
real space or, conversely, in Fourier space where longer baseline trends, such as those involving a small
random walk component, might have become apparent.

The distribution of fight sizes is a central part of our study; as shown in the “Conflict Cost” subsection
of the Results, it has important consequences for individuals as well as the group as a whole. Larger fights
lead to greater amounts of injury and aggression; meanwhile, the consequences of different strategies for
fight size distributions are shown in Figs. 4 and 7 of the main paper. Here, we plot the distribution of all
fight fight sizes (on a linear scale) in Fig. 2 (overleaf); in Fig. 3 we plot the distribution for the subset of
those fights that include the most common fight participant (individual name Eocene, codename “Eo.”)

Individuals and Subgroups in the Time Series

At a finer level of resolution we consider correlations across fights in membership considering all 48
socially-mature individuals. This co-occurrence time-series describes which individuals, pairs, and higher-
n groups of individual appeared together in fights, regardless of their behavior.

Because our choice of null conserves the properties of individual fights, N(A) is the same for both the
data and the nulls. Given a sufficiently large set of Monte Carlo realizations of the null, we can determine
which pairs of individuals have significant time correlations – i.e., have a ∆P sufficiently positive or
negative that the ∆P is shared by less than, e.g., 5% of all Monte Carlo realizations of the null model.

Considering only the group’s 48 socially-mature individuals, there are 2,304 possible correlations of
the form ∆P (A → B). Results are shown in the (implicitly) causal network in Fig. 2. Many of the
strongest correlations are positive, meaning that individuals attract one another to subsequent conflicts,
rather than negative, which would mean individuals are inhibited from appearing after certain other
individuals appeared.

It is striking the extent to which the absence of signal at the most coarse-grained level of the conflict
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Figure 2. Distribution of fight sizes in the data set. Maximum fight size is 36, mean is 3.7,
median is 3.

Figure 3. Distribution of fight sizes in the data set, for those fights including the most
common individual, code name “Eo” (Eocene.) maximum is 36, mean is 5.6, median is 4.

time-series, Fig. 1, conceals a rich set of correlations once individual identities are considered, Fig. 2.
As mentioned, however, extracting overall significance levels for ∆P measurements requires caution. For
example, since individuals are correlated within fights, and these correlations are maintained by the null
model, the various ∆P measurements are not independent of each other.

The effects of these correlations can be seen when comparing the analysis done on the data to that
performed on a shuffled version of the data. Taking only those cases where N(B|A) is larger (or smaller)
than 95% of Nnull(B|A) found, there are 513 detections of non-zero ∆P in the data. There are however
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approximately 480 “detections” out of 2304 ∆P (A → B) for the shuffled data – if the different N(B|A)
were perfectly independent, this should be a factor of two lower.

Detections of the positive ∆P alone are more reliable; we find 296 ∆P values larger than zero in the
data, compared to an average of 212 in shuffled datasets, for an overall p < 0.001. When we come to
consider the two-step correlations, the ∆P can not be distinguished from the noise we expect from the
internal correlations of the null model. We defer more detailed discussion of these issues to later work.

The distributions of ∆P (A → B), ∆P (AB → C), and ∆P (A → BC) are shown in Fig. 4; these
statistics will play a central role in modeling the group, and in assessing how well the model reproduces
the group behavior. In Fig. 5 we show the distribution of the “absolute” probabilities P from which the
∆P are derived (P (A → B) is equal to N(B|A)/N(A), and so forth.)

The null here, recall, is the average from a large Monte Carlo set of null models generated by time-
shuffling the series but leaving fight compositions intact. It corresponds to a Markov process where the
group has a particular set of conflicts of different compositions that it visits in a biased but uncorrelated
fashion. It can be thought of as drawing a fully specified fight from an urn without replacement.

It is possible to consider relaxing the null model further, so that, for example, individuals join fights
with a probability independent of the other members of the group; in this case, one assembles a fight
by drawing, with probabilities P (A), N individuals, where N might be, for example, drawn from the
observed distribution of fight sizes. Such a model destroys many of the correlations, internal to a fight,
that are detectable in the time-averaged properties of the data.

This can be seen in Fig. 6, which compares the observed joint probability, P (AB), and the probability
expected if individuals appeared independently of each other, P (A)P (B). A two-sided Kolmogorov-
Smirnov test finds the two distributions different with p ≪ 10−6. Such strong rejections of nulls that
ignore correlations between individuals are a general feature of our system, which is strongly correlated
both within and between fights.

Simulation Specification

For a strategy class C(n, m), we specify two things. First the probabilities, associated with a particular n-
and m-tuple 1, that the n-tuple recommend the m-tuple “join,” or “avoid” the subsequent fight. In our
study here, we do not develop algorithms to search and “fit out” the many thousand-dimensional space,
but make a good first guess to associate the measurable ∆P from the simulations with these probabilities.
A positive ∆P for a particular n and m-tuple pair is read as a probability to generate a recommendation
to join. A negative ∆P is read as the negative of the probability of a recommendation to avoid.

A ∆P of zero (i.e., a ∆P that could not be detected above a particular confidence level) never
generates a recommendation; in many cases, the confidence level requirement zeros out ∆P s that may be
formally large – this is because we exclude measurements of a particular ∆P that rely on two or fewer
instances of fight pairs.

We have checked and find our results insensitive to reasonable changes in the ∆P cutoff – either in
amplitude or in the number of observations required to establish it. The dynamics of conflict are largely
driven by the tuples with easily measured, larger ∆P .

For each possible m-tuple in the population, we “roll the dice” for all the n-tuples in the previous
fight. For example, for a fight with four participants, there are four 1-tuples, six 2-tuples, four 3-tuples,
and one 4-tuple. If we are considering a strategy of C(2, 1), we are concerned with the six 2-tuples,
and we will have, for each of them, either a recommendation to join, a recommendation to avoid, or no
recommendation at all, for each of the 48 possible outgoing 1-tuples.

The next step is to combine these. We consider two simple choices of combinator. The recommenda-
tions can combined with an AND function, requiring a ‘recommendation to join’ from all relevant n-tuples

1Note that we use “tuple” here informally, to mean an unordered set of a particular size.
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at the previous step; here ‘relevant’ means “with a non-zero ∆P”. Or, the recommendations can be
combined with an OR function, i.e., needing at least one n-tuple in the previous time step to recommend
‘yes.’

An interpretation of the AND rule is conservatism – that individuals who require many recommenda-
tions, or recommendations from all previous conflict participants, to join a subsequent fight are conflict
averse. In contrast, an interpretation of OR is that individuals who require one or only a few recommen-
dations are pushed over the edge more easily – they are conflict prone.

Given both a model and a combinator, we can now simulate the group’s conflict dynamics. We start
with a seed pair drawn from the distribution of pairs in the data (we take the distribution of “fights with
only two individuals”, rather than P (AB), but find our results largely insensitive to this choice.) We
evaluate the strategies for each individual in the group to determine the composition of the next fight.
At some point, a particular fight will, through the propagation effects generated by playing particular
strategies, lead to no recommendations for subsequent m-tuples to join. At that point, the “cascade” is
terminated, and a new seed is chosen. As shown in Table 1, we consider six different possibilities within
the simplest subset of cognitively plausible models.

Our model is not exhaustive, and there are a number of “limit cases.” Many of them focus on how
to handle joint “avoid” and “join” recommendations for the same m-tuple. In the OR combinator case,
for instance, does the appearance of a single “avoid” recommendation force the tuple to avoid the next
fight, or is it overruled by a single “join” recommendation? We find that the role of the negative ∆P s is
very minor; in particular, it is rare that a recommendation to avoid frustrates the appearance of a tuple
that received recommendations to join from other tuples. This seems to indicate that non-appearance in
a fight is associated more with disinterest, rather than active decisions based on fear or calculation that
lead to successful avoidance.

Another limit case is the situation in which an individual receives a recommendation to join, but
no other individual does: the individual “can find nobody who wants to fight.” This might depict a
behavioral reality, or, conversely, it might indicate the need for new dynamical rules; the single individual
may be able to generate conflict in ways not detectable by our segmentation of the data into “fight” and
“peace” bouts. This question is necessarily limited by our coarse-graining of the continuous and complex
sequence of events – individual expressions of aggression over a spatially extended area.

Composition Statistics

We use a set of statistics to quantify how well different variants of C(2, 1) reproduce the data. We consider
P (A), the frequency of appearance of individual A, and Pc(AB), the connected pair correlation,

Pc(AB) = P (AB) − P (A)P (B), (2)

where P (AB) is the frequency of appearance of the pair P (AB). (The use of only the connected part
reduces the covariance of the two statistics.)

We also consider n̄(A) and n̄(AB), the size of the average fight in which one finds individual A, or
pair AB, respectively:

n̄(A) =

∑48

i=2
iN(A, i)

N(A)n̄
(3)

and

n̄(AB) =

∑48

i=2
iN(AB, i)

N(AB)n̄
(4)

where n̄ is the average fight size overall, N(A, i) is the number of fights that include A of size i, and
similarly for N(AB, i). Note that we normalize n̄(A) and n̄(AB) to the average fight size so that, for
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Table 1. The implications for social stability of different strategies.

Strategy Hypothesis Combinator Avg. Max. Size Avg. Length Consequences
C(1,1) “Rogue Actor” +OR 2.03 1.15 Anomalous Quiescence

+AND 2.02 1.10 Anomalous Quiescence
C(1,2) “Triadic Coordination” +OR ∼ 40 * ≫ 102 * Forest Fire

+AND 19.9 108 Forest Fire
C(2,1) “Triadic Discrimination” +OR 5.59 3.73 Forest Fire

+AND 2.89 2.12 Manageable

The severity of conflict dynamics, either in terms of average maximum fight size, or average cascade length, varies strongly depending on
the model. Column six gives the consequences for the group of a particular model: anomalous quiescence (few large fights), forest fires
(long cascades and large fights), or “manageable” (no extremely large fights). Memory is pair-wise for C(1, 1) and is triadic for C(1, 2)
and C(2, 1). C(1, 2) requires that two individuals jointly engage in conflict at the next time step. C(1, 1) and C(2, 1) do not require joint
action. C(2, 1) requires that individuals discriminate pairs rather than just individuals. As n and m increase, cognitive burden increases
because individuals must remember more conflict participants. An asterisk indicates that fights grew so large that reliable statistics
were computationally infeasible.
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example, n̄(Q) equal to 2 means that the average fight individual Q appears in is twice the size of an
ordinary fight.

Finally, we consider the long fraction, introduced in Eq. 4 of the main paper, and the causal statistic
∆P (A → B).

Likelihood Estimation for Model Comparison

In the main paper we used the Pearson correlation as a way to determine how well different strategies
reproduced the group’s behavior. That the base model (and coarse-grained versions with n ≥ 2) generally
outperformed the other model variants we took as evidence for the importance of the triadic nature of
the strategies.

Here, we take a further step towards quantifying the ways in which our model, and competing variants,
reproduce the data. We use the (natural) logarithm of the likelihood ratio per measured parameter, ∆L/n.
This gives an estimate of the relative likelihood of the data being produced by one model versus another.
If ∆L/n is α, then, for an average measurement, the base model is e−αn times more likely than the
variant in question.

The calculation of ∆L requires an estimate of the shape of the likelihood function, L; this is compu-
tationally infeasible to produce exactly. We thus settle for a multivariate Gaussian approximation, and
estimate the relative log-likelihoods per degree of freedom in this limit. This gives an estimate of how
more strongly preferred the base model is to its variants.

Given the predictions of a particular model we would like to quantify how well they reproduce the
data. Doing so requires us to estimate how the observables, which we write schematically as {xi}, would
change, and how those changes would be correlated with each other, were another set of observations
made of the same group under sufficiently similar conditions.

Different simulations imply different noise models, with different correlations. We estimate the in-
trinsic variation of the data from the simulations themselves, taking many sequences of length N = 1096
fights, and estimating the statistics – the various P (A), Pc(AB), n̄(A), n̄(AB) and ∆P – from them
in the same fashion as in the actual data. We thus reduce the problem to estimating the shape of the
likelihood function – the probability that a measurement drawn from a particular model H will take
the values {xi}, which we write as L({xi}|H). When there are only a few xi to measure, the function
can be sampled. Yet for the statistics of interest here, L is a function with potentially thousands of
dimensions (for example, the 1128 pairs, in the case of Pc(AB) and n̄(AB), or the 2304 tuples, in the
case of ∆P (A → B).)

The standard solution to this problem is to expand the logarithm of the likelihood to second order
about the maximum; this amounts to approximating the distribution of the n statistics as a multivariate
Gaussian. For a simultaneous measurement of n statistics – say, for example, the 1128 pair probabilities
of a Pc(AB) measurement – the second order expansion is

L = − lnL({xi}|H)

=
n

2
ln 2π −

1

2
detΣ +

1

2
∆iΣij∆j + . . . , (5)

where repeated indices indicate summation, ∆i is

∆i = (xi − x̄i), (6)

and x̄, the value the measurements that maximizes L, and Σ, sometimes called the precision matrix,
are a set of parameters we estimate from the simulations. The first two terms, the zeroth order part of
the expansion, are what ensure that the likelihood L is normalized properly so that

∫
L({xi})(

∏
dxi) is

unity.
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We can estimate x̄ and Σ by the average values, and the inverse of their covariance matrix, of a set
of A simulation runs. It is required that A > n for the covariance matrix to be invertible. We can then
compare two models – say, Base and Variant – by taking likelihood ratios – which is more convenient to
do in log space:

∆L = L({xD
i }|Base) − LH1({x

D
i }|Variant), (7)

where {xD
i } are measured from the data. The larger (more positive) ∆L, above, is, the greater the likeli-

hood of the variant; conversely, negative values of ∆L are associated with a higher likelihood attributed
to the base model.

Table 2. ∆L/n, log-likelihood per observable, relative to the Base model, for the model
variants.

Model P (A) Pc(AB) n̄(A) n̄(AB) ∆P Overall
∆L/n A → B
Shuffled
Total -6.0 -15 -8.2 -5.5 +0.58 -6.7
Outgoing -7.9 +0.78 +3.2 -0.06 -25 -6.7
Incoming -0.61 +0.58 -13.3 -8.0 +0.37 -3.5
Coarse Grained
n = 1 -7.7 -7.3 -9.7 -2.2 -3.1 -5.3
n = 2 -2.6 -9.7 -2.3 -1.6 -2.2 -4.0
n = 4 -3.3 -7.6 +2.4 -0.12 +0.08 -2.0

For observables of pair properties such as Pc(AB), only the top 100 pairs are considered. In general,
individual log-likelihoods are negative, indicating that the base model is preferred over the variants for
different subsets of the data; the overall log-likelihoods are all negative.

Table 2 shows the results, for all 48 individuals (in the case of P (A) and n̄(A)), the top 100 tuples
(in the case of Pc(AB) and n̄(AB)), or the top 100 “ordered pairs with repetitions allowed” (in the
case of ∆P (A → B).) In general, the entries are negative, indicating that the base model has higher
likelihood than the shuffled models. In some cases, ∆L/n is positive; indicating that one of the variants
has a slightly higher-likelihood for a particular class of measurements. There is, however, no variant that
consistently outperforms the base model, and the overall log-likelihoods (computed in the approximation
that the different classes of measurements are independent) are all negative.

Model Complexity

Some of the models that fit the data poorly – in particular, the two variants of C(1, 1) – have far fewer
parameters than our favored model, C(2, 1)+AND. There are, formally, 54,144 free parameters in the latter
model, while the simpler models have only 2,304. In this section, we investigate, in two different ways,
whether the improvements in goodness-of-fit, though large, are justified in an information-theoretic sense.

Our first intuition is that many of the parameters in C(2, 1)+AND have little influence on the evolution
of the system; for example, setting some of the smaller ∆P values to zero has little effect on the evolution
of the system (see the Supporting Information model specification.) Here, we use the notion of Bayesian
complexity to estimate the true number of free parameters; we then use an information theoretic criterion
to justify our favorable assessment of C(2, 1).

Bayesian complexity (see Ref. [1] and, e.g., Ref. [2, 3]) provides one way to measure the “effective”



9

number of free parameters, keff . It can be written

keff = 2(lnL(θ̂) − lnL(θ)), (8)

where the overbar denotes average with respect to the posterior PDF and θ̂ are the best estimates of the
parameters of the model, θ.

Without a fuller exploration of parameter space, we can not estimate lnL to great accuracy. However,
if we assume that many of our parameters will be degenerate – i.e., that our likelihood is reasonably flat
– then the average likelihood can be approximated by the likelihood at a single “average” position within
the prior distribution.

If we take as our prior only the distribution of ∆P values, then an average point in strategy space
is given by the Total shuffle, described in Results section of the main paper. We then compute the
log-likelihood for the 54,144 values of N(AB → C) (directly related to the ∆P values of the model, these
are quicker to compute.) Computing the multivariate Gaussian approximation to the likelihood function
for such a large set of parameters is computationally infeasible (it would require over 50, 000 simulation
runs), and so we approximate the likelihood as diagonal and Poissonian; because many of the observed
frequencies are small (of order one detection in a set of 100 simulation runs of 1000 fights each), we use
the functional form of the true Poisson distribution and not standard the Gaussian approximation. We
can check to see that the measured covariances are Poissonian (i.e., roughly equal to the measured mean);
they are, within the error expected for a measured covariance.

We find with this method that keff is ∼ 2000. Compared to the formal number of 54,144, this back-
of-the-envelope calculation suggests that our intuition – that many of the parameters of the model are
underdetermined and are thus not truly observable – is correct.

In general, adding more parameters will increase the goodness of fit – regardless of whether an under-
lying model requires such complexity; one may, for example, be fitting noise and not signal. There number
of information-theoretic statistical tools to penalize model complexity. The Akaike Information Criterion

(AIC; [4]), based on the relative Kullback-Leibler information, is one of the best known. Discussed in
detail in (for example) Ref. [3, 5], the AIC value is

AIC = −2 lnL + 2K +
2K(K + 1)

N − K − 1
(9)

where K is the number of parameters in the model and N is the number of observables. A lower AIC
value is better, and indicates the preferred model (only relative AIC values are meaningful.)

We can now compare C(2, 1) with C(1, 1); in particular, we can find an lower bound on the AIC for
the C(1, 1) model by assuming its number of effective parameters to be much less than the 2000 found
for C(2, 1).

We find that lnL/N is −1.1 for C(2, 1)+AND, and −1.9 for C(1, 1)+OR; the overall difference in log-
likelihood between the two models is then ∼ 80, 000. The complexity penalty is 2K + 2K(K + 1)/(N −
K−1) ∼ 4000. This means that, despite the complexity of added parameters, C(2, 1)+AND is significantly
preferred over the simpler C(1, 1)+OR.
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Figure 4. The distribution of correlations ∆P (A → B), ∆P (AB → C), and ∆P (A → BC) in
the observed data. These quantify the probability that an appearance of a particular individual or
group will be associated with a later appearance (or absence) of another individual or group. The
dotted lines, overlaid on the ∆P (AB → C) distribution, are referred to in the strategy specificity
subsection of the Results; they indicate the values to which probabilities are coarse-grained at two-level
resolution. ∆P (AB → C) values are larger since they are normalized by N(AB) and not N(A).
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Figure 5. As in Fig. 4, but now showing the distribution of the absolute probabilities,
P (A → B), P (AB → C) and P (A → BC).
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Figure 6. The distribution of measured joint appearance probability, P (AB) [solid line],
and that expected in the case that individuals appear in fights independently of each other
[dotted line]. The two distributions are significantly different under the Kolmogorov-Smirnov test.


