
Time-Delay in Template Biopolymerization Models S3–1

Text S3 Integral equation formulation

In this section, we transform the PDE problem, Eqs. 16, obtained in Text S2 into an integral equation
for the initiation rate, η(t), by using the method of characteristics [?].

Solution by the Method of Characteristics

For the problem in Eqs. 16, characteristic curves (those that satisfy ds/dt = cE(s, t)) divide the (s, t)
plane into two regions: characteristic curves that meet the t = 0 boundary have initial values determined
by z(s, 0) = z0(s) while those that meet the s = 0 boundary have values determined from z(0, t) = z1(t).
The curve s(t) between the two regions satisfies ds/dt = cE(s, t) with s(0) = 0, see Fig. S1.
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Figure 1. Characteristic curves on the (s, t) plane, displaying the two times TL and TN .

Region 1

The system of equations to be solved is

dz

dζ1
= −z∂scE(s, t), z|ζ1=0 = z0(ξ1), (28a)

ds

dζ1
= cE(s, t), s|ζ1=0 = ξ1, (28b)

dt

dζ1
= 1, t|ζ1=0 = 0, (28c)

ζ1 parameterizes displacement along the characteristics and ξ1 labels the different characteristic curves.
Let s = S1(ξ1, ζ1) and t(ξ1, ζ1) = ζ1 be the solutions to Eqs. S3.1b and S3.1c. These two relations

are to be inverted, in theory at least, to obtain ξ1 = ξ1(s, t) and ζ1 = ζ1(s, t). The solution is then:

z(s, t) =z0(ξ1)

· exp

{

−

∫ ζ1

0

∂scE(S1(ξ1, ζ
′

1), ζ
′

1)dζ′1

}

, (29)

where it is understood that ξ1 and ζ1 are written as functions of s and t.
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Region 2

The characteristic equations in this region are

dz

dζ2
= −z∂scE(s, t), z|ζ2=0 = z1(ξ2), (30a)

ds

dζ2
= cE(s, t), s|ζ2=0 = 0 (30b)

dt

dζ2
= 1, t|ζ2=0 = ξ2, (30c)

as before, ζ2 parameterizes displacement along the characteristics and ξ2 labels each one of them.
We have s = S2(ξ2, ζ2) and t(ξ2, ζ2) = ζ2 + ξ2 as solutions to Eqs. S3.3b and S3.3c, these are to be

inverted to obtain ξ2 = ξ2(s, t) and ζ2 = ζ2(s, t) in region 2. The solution for z(s, t) is then:

z(s, t) =z1(ξ2)

· exp

{

−

∫ ζ2

0

∂scE(S2(ξ2, ζ
′

2), ζ
′

2 + ξ2)dζ′2

}

, (31)

where ξ2 and ζ2 are to be written as functions of s and t.
The exponential factors that appear in the solutions of Eqs. S3.2 and S3.4, reflect the piling and

unpiling of ribosomes due to spatial gradients in the velocity. This effect is absent for a velocity of the
form cE(t), ∂scE = 0, since all ribosomes on the mRNA speed up or slow down at the same rate.

Transformation into an Integral Equation for z1(t).

The solution in region 2 requires that z1(t) be chosen to satisfy the boundary condition of Eqs. 16 at
s = 0. Carrying out this process yields an integral equation for the initiation rate, η(t), in which this
function is determined from its past and a delay model results.

We transform the problem into an integral equation by using the solutions of Eqs. S3.2 and S3.4 in
the boundary condition and changing variables from s to either ξ1 or ξ2, in regions 1 and 2, respectively.
In this form, the integral is evaluated in terms of the value of µz(s, t) along the boundary.

As the solution is given in terms of either z0(s) or z1(t) according to the region under treatment,
different situations arise in obtaining an integral equation. Let TL and TN be the times to travel from
s = 0 at t = 0 to s = L and s = N , respectively. These are given implicitly in terms of either solution
S1(ξ1, ζ1) or S2(ξ2, ζ2) as

L = S1(0, TL) = S2(0, TL), (32a)

N = S1(0, TN) = S2(0, TN), (32b)

see Fig. S1. The three different situations mentioned are: t < TL, TL < t < TN and TN < t.
The change of variables required is demonstrated only for 0 < t < TL, the other two cases TL < t < TN

and TN < t are very similar. The integral from s = 0 to s = L is broken in two

∫ L

0

µz(s, t)ds

=

∫ s0

0

µz(s, t)ds +

∫ L

s0

µz(s, t)ds, (33)

where

s0 = S1(0, t) = S2(0, t), (34)
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is the point where the characteristic dividing the regions intersects the t = constant line. Each integral
lies in a different region and so we use solutions of Eqs. S3.2 and S3.4 accordingly.

The integrals are evaluated along t = constant lines, which translates into a relation ζi = ζi(ξi), for
i = 1, 2. In region 1, ζ1(ξ1) = t =constant, the transformation is

s = S1(ξ1, t). (35)

The Jacobian of the transformation, dS1/dξ1(ξ1, ζ1(ξ1)), is obtained by calculating the derivative ∂ξ1
|t=const

of Eq. S3.1b:

∂

∂ζ1

∂s

∂ξ1

∣

∣

∣

t=const
=

∂cE

∂s

∂s

∂ξ1

∣

∣

∣

t=const
. (36)

Integrating and using the initial condition ∂s
∂ξ1

∣

∣

∣

t=const, ζ1=0
= 1, from Eq. S3.1b, the Jacobian is

d

dξ1
S1(ξ1, ζ1(ξ1))

= exp

{

∫ ζ1(ξ1)

0

∂scE(S1(ξ1, ζ
′

1), ζ
′

1)dζ′1

}

. (37)

For region 2, ζ2(ξ2) = t − ξ2, with t = constant, the transformation is

s = S2(ξ2, t − ξ2). (38)

Now the Jacobian, dS2/dξ2(ξ2, ζ2(ξ2)), is obtained by calculating the derivative ∂ξ2
|t=const of Eq. S3.3b:

∂

∂ζ2

∂s

∂ξ2

∣

∣

∣

t=const
=

∂cE

∂s

∂s

∂ξ2

∣

∣

∣

t=const
. (39)

The initial condition to this differential equation is found by considering

ds

dξ2

∣

∣

∣

t=const
=

∂s

∂ξ2
+

∂s

∂ζ2

dζ2

dξ2

=
∂s

∂ξ2
−

∂s

∂ζ2
(40)

to evaluate this at ζ2 = 0, we use the differential equation with its initial condition in Eq. S3.3b. From

the first, ∂s
∂ζ2

∣

∣

∣

ζ2=0
= cE(0, ξ2), and from the latter ∂s

∂ξ2

∣

∣

∣

ζ2=0
= 0, so that

∂s

∂ξ2

∣

∣

∣

t=const, ζ2=0
= −cE(0, ξ2). (41)

Integrating Eq. S3.12 and using Eq. S3.14, we have

d

dξ2
S2(ξ2, ζ2(ξ2)) = −cE(0, ξ2)

· exp

{

∫ ζ2(ξ2)

0

∂scE(S2(ξ2, ζ
′

2), ζ
′

2 + ξ2)dζ′2

}

. (42)
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Changing variables, we obtain
∫ L

0

µz(s, t)ds =

∫ sL(t)

0

µz0(s
′)ds′

+

∫ t

0

cE(0, t′)µz1(t
′)dt′ (43)

Here for the new limits of integration, it follows from Eq. S3.7 that s0 corresponds to ξ1 = ξ2 = 0, and
from Eqs. S3.3b-S3.3c that s = 0 corresponds to ξ2 = t. Here sL(t) is determined by

L = S1(sL(t), t). (44)

Similarly
∫ N

0

µz(s, t)ds =

∫ sN (t)

0

µz0(s
′)ds′

+

∫ t

0

cE(0, t′)µz1(t
′)dt′ (45)

and sN(t) given by

N = S1(sN (t), t). (46)

Similar transformations to the other time intervals yield the desired integral equation for η(t).
For 0 < t < TL:

η(t)

=α(t)

(

rT −

∫ t

0

η(t′)dt′ −

∫ sN (t)

0

µz0(s
′)ds′

)

·

(

µ −

∫ t

0

η(t′)dt′ −

∫ sL(t)

0

µz0(s
′)ds′

)

. (47)

with sL and sN given in Eqs. S3.17 and S3.19.
For TL < t < TN :

η(t)

= α(t)

(

rT −

∫ t

0

η(t′)dt′ −

∫ sN (t)

0

µz0(s
′)ds′

)

·

(

µ −

∫ t

tL(t)

η(t′)dt′

)

. (48)

with tL given by

L = S2(tL(t), t − tL(t)), (49)

And finally, for TN < t:

η(t) = α(t)

(

rT −

∫ t

tN (t)

η(t′)dt′

)

·

(

µ −

∫ t

tL(t)

η(t′)dt′

)

. (50)
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with tN (t) given by

N = S2(tN (t), t − tN (t)), (51)

With the concentration of mRNA known, the problem of determining the density z(s, t) has been
transformed to that of determining η(t) from the integral equation. Then, z1(t) is obtained from z1(t) =
η(t)/(cE(0, t)µ) and the ribosome distribution is given by Eq. S3.4.


