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1. Promoter strength with recruitment 

With transition rates defined in figure 2(a) we here present equations that connect 
these intrinsic promoter parameters to the overall activity and occupation probabilities 
of the promoter. With η  and θ  being respectively the probability that the promoter is 

occupied by a closed or open complex, the steady state implies:  
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which can be solved for η  and θ . Note that eq.(2) takes into account the occlusion of 

the promoter the elongating RNAP as it leaves the promoter region of length l  with 
velocity v . One finds:  
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where the last equality expresses θ  in terms of the aspect ratio  

 
(1 )

O O E
K E

α ′= = /
+

 (8) 

introduced by [8], where (1 )O O K′ = / + . 1α ≈  corresponds to class II promoters, 
whereas very large or small α  effectively corresponds to a single limiting step in 
transcription initiation (class I). Recruitment into the open complex will predict 
bunched activity for 1α <<  where formation of the open complex is rate limiting.  



The promoter strength activity given by the rate Eθ   
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For 1q →  the rate is approximated by:  
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This reflects transcription that is governed by elongation initiation, which in turn is 
limited by self occlusion.  
For a promoter where self occlusion is insignificant, the occupation probabilities are 
simplified to:  
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In the limit of large bk , this becomes  
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Note that all the equations here recover into the one for the standard three-step model 
if we set the recruitment probability 0q = .  

2. Promoter strength with dead-end complexes 

We can also develop an expression for the strength of the promoter when a fraction 
1 Q−  of complexes enter into a non-productive state, from which the only escape is 

through the removal of the stalled RNAP with a rate d  (Fig. 2(b)). We denote the other 
rates, bk , uk , O  and E  as before, whereas Ω  is the probability that promoter is 
occluded by a non-productive complex. As before η  and θ  is respectively the 

probability that the promoter is occupied by closed and open complex. Steady state 
equations for occupancy of the promoter are now:  
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These are solved to give probabilities for the promoter to be occupied by respectively a 
productive open complex (θ ), a non-productive complex (Ω ), or a closed complex (η ):  
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The promoter strength is thenQEθ , or  
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For 1Q =  this corresponds to the activity of a promoter without any dead-end complex 

(the term containing d  disappears). Also when the rate of removing dead-end 
complexes is very high, d →∞ , the main effect of their presence is a reduction of the 
effective firing rate from open complexes from E  to the lower value QE .  
When the self occlusion is negligible and bk  is large compared to other non-equilibrium 

rates, we get  
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Here, ( ) ( )O E dead d E O EOβ τ τ τ ′ ′= + / = + /  is the ratio of the time needed for successful 

firing and the time to remove a dead-end complex.  

3. Distribution of time intervals between firings 

In figure 1bc and figure 3be, we showed the distributions ( )P tΔ  of the time interval 
between firings, tΔ . We present the equations for ( )P tΔ  for our model. We consider 
the case where the bk  and uk  are large enough that the binding and the unbinding of 

closed complexes are considered to be in equilibrium and the process is dominated by 
two steps, the formation of the open complex with a rate 1 (1 )O O Kτ/ = / +  and the 
formation of the elongating complex with a rate 1 E Eτ/ = .  

The distribution for the standard model are eqs.(1) and (2) in the main text, and the 
calculation is given in Materials and Methods.  
In the case with supercoiling assisted recruitment with probability q , the distribution 



is simply sum of the distribution for unassisted initiation (eq. (1) in the main text) with 
a weight (1 )q−  and the distribution for the single supercoiling assisted step from open 
complex to elongating complex with a weight q , which is given by  
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In the case E Oτ τ<< , this is approximated as  
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Similarly, in the case of the dead-end model, the distribution is approximately the sum 
of the distribution for successful initiation with a weight Q  and the distribution of the 
silenced periods caused by the dead-end complex with a weight (1 )Q−  and average 

dead Qτ / , or 
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This estimation does not take into account the time needed to form a dead-end complex, 
but this effect is negligible when removing the dead-end complex is the rate limiting 
step, i.e. dead O Eτ τ τ>> + .  

4. Distribution of successive firings due to recruitment 

The distribution of nΔ  in the supercoiling assisted recruitment model is determined by 
the probability to have 1nΔ −  successive recruitments under the condition that the 
first firing occurred1. Because the probability of recruitment is q , the probability to 
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have nΔ  is given by  
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The average number of events is given by  
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5. On-time distribution and average for the recruitment model 

Here we calculate the probability for the on-time to be ont , considering that the on-time 

is the duration when a transcription event occurs and then possibly supercoiling 
assisted recruitment into open complexes occurs successively. First, we calculate on 
period times for the case when the duration to transcribe one message, Δ , is zero, 
which means that on-time is given by the sum of the intervals between successive 
transcription events. (Thus events of 1nΔ =  do not contribute.) The duration between 
events obeys the exponential distribution exp( )E Et τ τ− / / .  
The probability to have n  ( 2≥ ) successive events giving ont  is proportional to:  
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The integral means the volume defined by 
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Finally we get  

                                                                                                                                                  
probability that the duration between successive firing with recruitment being longer 
than the threshold cτ  is not zero. However, this probability is so small in the present 
parameter regime that the difference does not matter in practice. 
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Thus, the probability to have on-time ont  is  
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for 0 ont≤ < ∞ 2. Here the δ  function takes into account that a single event is counted 
with duration 0ont = , and with probability 1 q−  (given that we already started with 

this single event).  

Using 1 1q n= − / Δ  one for 0ont >  get the on-time distribution  
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The average on-time is given by ( 1)E nτ Δ − , which is the duration of the firing from 

the open complex multiplied by the average number of the successive recruitment 
events.  

1. On-time distribution and average with contribution from events with 1nΔ = . 

Now we simply assume that one event gives a fixed on-time Δ . This gives an offset of 
Δ  for the on-time, thus we have  
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The average is given by  

 ( (1 ) ) (1 )on Et q q qτ= / − + Δ + − Δ  

 (1 )Eq qτ= / − + Δ  

 ( 1) En τ= Δ − + Δ.  (31) 

 

 

2. Determination of the parameters. 

In the experiments by Golding et al., they obtained the average number of 

transcriptions per burst, 2 2nΔ = . , the average on-time 6ont =  [min] and the 

average off-time 37offt =  [min]. They also mention that the duration of transcribing 

1 message is 2 5Δ = .  [min].  

The value of q  is determined from nΔ  using eq. (22) as 1 1q n= − / Δ . The 

duration from open complex to the elongation complex Eτ  is determined by eq. (31) 

using the average on-time ont . The average off-time offt . is given by E Oτ τ+ −Δ , 

which fixes the time to form the open complex, Oτ .  

It should be noted that the on-time distribution given in (30) has a sharp peak at Δ . In 
the simulation data, the frequency are calculated using the bin with width 5[min] as in 
the experiment by Golding et al., which makes this peak low.  

1. The on-time and off-time distribution in the dead-end complex model 

The distribution of nΔ  and the on-time distribution ( )onP t  in the dead-end model 

(Fig. 2(b)) are given by similar calculations as the recruitment model: During an 
on-time the RNAPs take the standard 3-step firing pathway, which takes the time 

O Eτ τ+  per firing, and the probability to take this pathway is Q . In particular, if the 

distribution of tΔ  for the full 3-step firing is a single exponential as in the Class 1 case 
of the standard model, we can simply get ( )onP t  in the dead-end model by replacing 
the probability of the recruitment q  with the probability to take the firing pathway Q  
and Eτ  with O Eτ τ+ .  

As a result, we get the following distribution for the number of transcripts per on-time  
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The average number of events is  
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The distribution of the on-time is given by  
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To get the distribution of the off-time, we also need a similar calculation, since if several 
RNAPs end up in a dead-end complex in a row it makes the off-time longer. When we 
consider the time spent occupied by a dead-end complex as the off-time, the calculation 
is parallel to the on-time distribution calculation without Δ  in the recruitment model, 
replacing q  with (1 )Q−  and Eτ  with deadτ . The only difference is that the first 
dead-end event also gives the off-time deadτ .  
As a result, the probability to have dead-end complexes n  times in a row is given by  

 1(1 )n
np Q Q −= − ,  (35) 

which gives the average number of the dead-end complexes in a row as 1 Q/ . The 

off-time distribution is given by a single exponential distribution  
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Note that the off-time measured from the experiment can be slightly longer than this, 
because the calculation here does not include either the duration from the last firing to 
the first formation of the dead-end complex or the duration from the moment of removal 
of the last dead-end complex to the next initiation.  

2. Calculation of the Fano factor 

When mRNAs are degraded with a rateγ , the number of mRNAs reaches a steady state. 

We calculate the Fano factor for the number of mRNAs by using the Fokker-Plank (FP) 
equations for both the recruitment model and the dead-end model. We again ignore the 
effect of occlusion of promoters by an elongating complex.  



1. The recruitment model 

In the recruitment model, the promoter can take the following 3 states:  
• No RNAP at the promoter,  
• Closed complex at the promoter,  
• Open complex at the promoter.  

When the RNAP starts elongation, the promoter goes from state 3 to state 1, with one 
more mRNA in the system when no recruitment occurs, while the promoter goes back to 
the state 3 with one more mRNA in the system when the recruitment occurs.  
We define the probability ( ; )if n t  with 1 2 3i = , ,  as the probability to have n  mRNAs 
in the system and that the promoter takes the state i  at time t . The FP equations for 

( ; )if n t  are given as follows:  
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The probability is normalized so that 
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respectively, and the Fano factor is given by 2N Nν δ= / .  

In order to calculate them using FP equations, we define the generating functions  
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Multiplying eqs.(37)-(39) by nz  and taking summation of n  from zero to infinity, we 
get the equations for the generating function ( ; )iF z t . Using the derivatives of the 
equations and the normalization condition (43) in the steady state (i.e. ( ; ) 0d

idt f z t = ), 

we can calculate the moments. As a result, we get  
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If equilibrium binding and unbinding are fast enough, i.e, b uk k O E γ, >> , , , we get  
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where we used the aspect ration O Eα ′= / . Equation (49) is shown in figure 4(a). In 
case qα <<  and 1 qα << − , we get  
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and the recruitment model gives larger fluctuations than a simple Poisson process.  

2. The dead-end model 

The promoter in the dead-end model can take the following 4 states:  
• No RNAP at the promoter,  



• Closed complex at the promoter,  
• Open complex at the promoter.  
• Dead-end complex at the promoter,  

We define the probability ( ; )if n t  with 1 2 3 4i = , , ,  as the probability to have n  
mRNAs in the system AND the that promoter takes the state i  at time t . The FP 
equations for ( ; )if n t  are given as follows:  
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The probability is normalized so that 4
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and the normalization conditions in the steady state, we get  
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If equilibrium binding and unbinding are fast enough, i.e, b uk k O E γ, >> , , , we get  
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with ( ) (1 1 ) ( )[( 1) ]O E dead d O E d Eβ τ τ τ α α′= + / = / + / = / + / . Equation (60) is shown in 

figure 4(b). 
 
 
 
 


