
Text S1
Perturbation analysis of the mechanistic model

We show how our new model equations (Eqs.(6)-(7)) are obtained as an
approximation of the mechanistic model.

First, the kinetic equations describing the cascade are written using the
law of mass action (the resulting system is what we call the mechanistic
model). According to the scheme in Eqs. (1), the dynamics of the ith cycle
in a cascade of n cycles is governed by the conservation equations YiT =
[Yi] + [Y ∗

i ] + [Ci] + [C ′
i] + [Ci+1] and E′

iT = [E′
i] + [C ′

i] and by the following
differential equations:

d[Y ∗
i ]

dt
= ki[Ci]− a′i[Y

∗
i ][E′

i] + d′i[C
′
i]− ai+1[Yi+1][Y ∗

i ]

+(ki+1 + di+1)[Ci+1]
d[Ci]
dt

= ai[Yi][Y ∗
i−1]− (ki + di)[Ci] (9)

d[C ′
i]

dt
= a′i[Y

∗
i ][E′

i]− (k′i + d′i)[C
′
i]

with i = 1, · · · , n, with the convention that [Y ∗
0 ] is related to the input

stimulus, whereas [Yn+1] = [Cn+1] = 0.
As described in the main text, we define the parameters: εi = E′

iT /YiT ,
ηi = Yi−1,T /YiT and µi = ki/k′i. We assume that the set of time-scales
{ε1k′1, ε2k′2, · · · , εnk′n} are of the same order and we denote εk′ to be a typical
time scale representing this set. We then define a dimensionless time t̃ = εk′ t
and the time-derivative with respect to t̃ is denoted by a dot, i.e. ẋ =
dx/dt̃. We define also the new variable [Xi] = [Y ∗

i ] + [Ci+1]. This definition
will let us have, for particular relationships between the parameters of the
system, slow and fast variables, respectively. The variables are turned into
dimensionless ones in the following way:

xi =
[Xi]
YiT

, yi =
[Yi]
YiT

, ci =
[Ci]

Yi−1,T
, c′i =

[C ′
i]

E′
iT

, e′i =
[E′

i]
E′

iT

. (10)

The system of ODEs can be then written as:

ẋi =
εik

′
i

εk′

(
µiηi

εi
ci − a′iYiT

k′i
(xi − ci+1)e′i +

d′i
k′i

c′i

)

ε ċi =
aiYiT

k′
(yi(xi−1 − ci)−Kici) (11)

ε ċ′i =
a′iYiT

k′
(
(xi − ci+1)e′i −K ′

ic
′
i

)

with i = 1, · · · , n, with again the convention that in these equations cn+1 =
0, and x0 = S denotes the input stimulus (e.g. some available active enzyme)
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normalized by η1Y1T . In fact η1 could be defined in several ways. As we
have chosen to perform numerical simulations with homogeneous ηi = η,
(i = 2, · · · , n), here we choose also η1 = η. Finally, here the conservation
laws look like xi + yi + ηici + εic

′
i = 1 and c′i + e′i = 1.

Now, in the limit where all εi → 0, but where µiηi/εi are kept of order
O(1), we get a fast dynamics for the complexes ci and c′i but not for xi,
so that the quasi-steady state approximation can be applied. By imposing
that ċi = ċ′i = 0, a little calculation gives:

ci = xi−1
yi

Ki + yi
, c′i =

(xi − ci+1)
K ′

i + (xi − ci+1)
. (12)

In the second equation above (the one for c′i), ci+1 can be replaced using the
first equation, i.e., as a function of xi and yi+1, giving:

c′i =
xi

K ′
i(1 + yi+1/Ki+1) + xi

.

Finally, the substitution of these expressions in Eqs. (11) gives the new
model Eq. (6), with Vi = (k′iµiηi)/(εk′) and V ′

i = (εik
′
i)/(εk′).

Let us notice that the conservation equation can then be written to the
first order in εi as:

xi + yi + ηixi−1
yi

Ki + yi
+ εi

xi

K ′
i(1 + yi+1/Ki+1) + xi

= 1 (13)

where i = 1, · · · , n and, as usual, x0 = S and yn+1 = 0. In principle,
the term O(εi) could be neglected since it is neglected in the differential
equations. In the numerical simulations, however, we have noticed that
an easy but significative improvement of the plain truncation of O(εi) is
achieved by this first order correction.

The model Eq. (6) was derived assuming that the set of time-scales
{ε1k′1, ε2k′2, · · · , εnk′n} are of the same order and choosing εk′ to be a typical
time-scale representing this set. If this situation does not hold, i.e. if those
time-scales are not of the same order, but the fastest time-scale is slower than
those of the complexes, it is still possible to derive a reduced mechanistic
model based on the quasi-steady state approximation. εk′ has to be chosen
as the minimum among the values {ε1k′1, ε2k

′
2, · · · , εnk′n}, and then each right

hand side has to be multiplied by a factor (εik
′
i)/(εk′), being Vi = µiηi/εi

and V ′
i = 1. These results were used in the section in the main text that

applies the newly derived model to the MAPK pathway.
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