
RESEARCH ARTICLE

Neuromechanistic Model of Auditory
Bistability
James Rankin1*, Elyse Sussman2,3, John Rinzel1,4

1Center for Neural Science, New York University, New York, New York, United States of America,
2Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York,
United States of America, 3Department of Otorhinolaryngology-HNS, Albert Einstein College of Medicine,
Bronx, New York, United States of America, 4 Courant Institute of Mathematical Sciences, New York
University, New York, New York, United States of America

* james.rankin@nyu.edu

Abstract
Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet

pattern are widely used to study auditory streaming. One may experience either an inte-

grated percept, a single ABA-ABA- stream, or a segregated percept, separate but simulta-

neous streams A-A-A-A- and -B—B–. During minutes-long presentations, subjects may

report irregular alternations between these interpretations. We combine neuromechanistic

modeling and psychoacoustic experiments to study these persistent alternations and to

characterize the effects of manipulating stimulus parameters. Unlike many phenomenologi-

cal models with abstract, percept-specific competition and fixed inputs, our network model

comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-

like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for per-

cept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition,

adaptation and noise are implemented. We include slow NDMA recurrent excitation for

local temporal memory that enables linkage across sound gaps from one triplet to the next.

Percepts in our model are identified in the firing patterns of the neuronal units. We predict

with the model that manipulations of the frequency difference between tones A and B

should affect the dominance durations of the stronger percept, the one dominant a larger

fraction of time, more than those of the weaker percept—a property that has been previ-

ously established and generalized across several visual bistable paradigms. We confirm

the qualitative prediction with our psychoacoustic experiments and use the behavioral data

to further constrain and improve the model, achieving quantitative agreement between

experimental and modeling results. Our work and model provide a platform that can be

extended to consider other stimulus conditions, including the effects of context and volition.

Author Summary

Humans have an astonishing ability to separate out different sound sources in a busy
room: think of how we can hear individual voices in a bustling coffee shop. Rather than
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voices, we use sound stimuli in the lab: repeating patterns of high and low tones. The tone
sequences are ambiguous and can be interpreted in different ways—either grouped into a
single stream, or separated out into different streams. When listening for a long time,
one’s perception switches every few seconds, a phenomenon called auditory bistability.
Based on knowledge of the organization of brain areas involved in separating out different
sound sources and how neurons in these areas respond to the ambiguous sequences, we
developed a computational model of auditory bistabilty. Our model is less abstract than
existing models and shows how groups of neurons may compete in order to dictate what
you perceive. We predict how the difference between the two tone sequences affects what
you hear over time and we performed an experiment with human listeners to confirm our
prediction. The model provides groundwork to further explore the way the brain deals
with the busy and often ambiguous world of sound.

Introduction
Auditory scene analysis involves segregating a complex scene into individual objects or streams
[1]. A common stimulus used to study streaming in psychoacoustic experiments involves alter-
nating tone sequences organized in repeating ABA- triplets [2]. The sequence can be perceived
integrated in to one, or segregated into two streams, see Fig 1A and 1B. A key point of compari-
son in studies of streaming has been the van Noorden diagram, which describes the predomi-
nance of different interpretations across ranges of two stimulus parameters: the difference (Δf)
in frequency between the A and the B tones and the tone presentation rate (PR). The diagram
describes parameter regions where integrated is predominant (smaller Δf), where segregated is
predominant (larger Δf), or where perception is ambiguous between the two (an intermediate
range, also dependent on PR). Over a large range of stimulus parameter values the initial per-
cept is integrated, but as time proceeds a perceptual switch to the segregated interpretation
becomes more likely, a phenomenon called the build up of stream segregation [1, 3, 4]. At
intermediate values of Δf the build up to segregation takes a few to ten seconds, but can take
extend to tens of seconds at small Δf and occur almost instantaneously at large Δf. Behavioral
studies have also looked at the effects of attention [5–7] and context [8–10] for build up.

Several computational models have focused on the early phase of auditory streaming, repro-
ducing some characteristic features of build up [11–13], of the van Noorden diagram [14–16]
or of both [17]. Various modelling approaches have been employed to reach these goals,
including a coupled oscillator networks with frequency and time dimensions [15], a neural
field description with a continuous representation of tonotopy [16] and a statistical model
treating build up as an alternating renewal process [13]. The models are typically quite abstract,
although some include a hybrid of auditory pathway qualitative features and signal processing
[11, 14, 17]. However, these models were not neuromechanistic in nature; they did not account
for neuronal dynamics based on explicit neurophysiological mechanisms nor did they study
dynamics beyond a first perceptual switch and the build up phase.

During long stimulus presentations, on the order of several minutes, the initial switch to
segregated is typically followed by further switches back and forth between segregation and
integration [18–21], as illustrated by a subject’s reporting of current percept in Fig 1C. Imaging
studies have shown activation of a thalamocortical network [22] and the cerebellum [23]
around the time of perceptual switches and an MEG study [18] localised to auditory cortex
implicates non-primary auditory areas in maintaining perceptual streams. Psychoacoustic
studies have shown that the initial perceptual phase is typically longer than the subsequent
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percept durations [21] and that mean percept durations remain stable from the second percep-
tual phase onward [19]. The phenomenological CHAINSmodel presented in [24] is an imple-
mentation of the two stage proposal outlined in [25], addressing algorithmically the formation
of the different perceptual patterns that enter into competition and capturing the later compe-
tition between these organizations. Aside from the CHAINSmodel [24], the available auditory
modelling literature has not addressed the persistent perceptual alternations following the
build up phase for the auditory streaming paradigm. The persistent, irregular alternations after
the first perceptual switch will be the focus of this study.

Numerous neurophysiology studies using short stimulus presentations (say, less than 20 s)
are of particular relevance to our modeling approach. Trial averaged recordings show a depen-
dence on Δf and PR in the primary auditory cortex (A1) of awake monkeys [26–28], in the fore-
brain of songbirds [29] and in the cochlear nucleus of anaesthetized guinea pigs [30]. A1
responses were interpreted in a statistical model using neurometric functions that mimic the
time course of build up in [28, 30]. In other studies data have been interpreted according to a
conceptual model [26, 29] based on the tonotopic organization in auditory cortex. When the A
and B tones are far enough apart in frequency, cortical activity is sufficiently separated in tono-
topic space to drive segregated representations of the high and low tone sequences. However,
when the A and B tones are closer, there is enough receptive field overlap for both tones to
drive a common, intermediate population that could encode the integrated percept. There is
no evidence (nor do the authors conclude) that the neural substrate for the first perceptual
switch is to be found in A1 and further experiments in the behaving songbird suggest stimulus
features, but not perceptual choice, are encoded in A1 [31].

In this study we develop a neuromechanistic model of auditory streaming that focuses on
accurately reproducing the dynamics of the alternations after the build up phase (i.e. after the
first perceptual switch). Our formulation is directly motivated from physiological studies of
auditory streaming [26, 28] and general models of perceptual bistability [32–34]. A reduction
from a continuous feature representation to percept based inputs and competition was

Fig 1. Stimulus paradigm and two possible percepts. A: Repeating ABA- triplet sequences (two triplets shown) consist of higher frequency pure tones A
interleaved with lower frequency pure tones B of duration TD separated by a frequency difference Δf. The time between tone onsets (dashed vertical lines) is
inverse of the presentation rate 1/PR (the “-” in “ABA-” represents a silence of duration 1/PR). Throughout this paper tone duration will be set to TD = 1/PR
such that offset of an A tone abuts the onset of the next B tone.B: The stimulus is perceived as either integrated into a single stream ABA-ABA- or as two
separate streams A-A-A-A- and -B—B–. C: Subject reports of integrated and segregated from a single 4-minute trial (480 triplets) at Δf = 5 st and PR = 8 Hz.

doi:10.1371/journal.pcbi.1004555.g001
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proposed in [32], and this approach has become relatively standard in general models of per-
ceptual rivalry. By contrast, input in our model directly represents the dynamics of sensory fea-
tures and incorporates neuronal responses of pre-competition stages. It features a tonotopic
organization with three units assumed to be downstream and receive input from A1. Two
peripheral units receive input from regions of A1 centred at locations with best frequencies A
or B, and a third unit receives input from tonotopically intermediate A1 locations, say centred
at (A + B)/2. The perceptual interpretations are classified through criteria on the firing pat-
terns, for example, dominance of the central unit, receiving input via A1 from both the A and
the B tones, corresponds to integrated [26]. A dynamical systems framework is used with firing
rate based neuronal competition mediated by mutual inhibition, adaptation and noise [32, 34];
this combination of neural mechanisms has proved successful in accounting for many of the
characteristic behaviors of perceptual bistability. Our model incorporates in its inputs the
onset and transient dynamics of A1 responses with gaps between triplets. The inclusion of
recurrent NMDA-like excitation allows for some neuronal memory that links each tone and
each triplet to the next.

A starting hypothesis is that the perceptual organization known from [2] for initial domi-
nance phases extends to long presentations; this allows for the tonotopic distribution of input
and lateral connectivity to be constrained. As explained in more detail in theDiscussion, compar-
isons with van Noorden’s experimental findings are frequently made in experiments and models
that do not take into account time-varying stimuli, attention and the termination of trials at the
first perceptual switch. Accordingly, the starting assumption with regards to the van Noorden
organization is re-evaluated based our own experimental findings. A further point of comparison
from the empirical literature will be the log-normal- or gamma-like distribution of dominance
durations characteristic of perceptual bistability [35]. Two existing auditory studies have reported
durations resembling the characteristic distributions [19, 24]. Here, we will use the dominance
duration distributions from our own experiments outlined below to constrain model parameters.

In parallel and interacting with the model development we have established in psychoacous-
tic experiments how parameter manipulations (here Δf) affect the dominance of competing
percepts. Importantly, we have confirmed that a generalization about parameter manipulations
from visual bistability extends to the auditory case. Levelt’s Proposition II (LPII) described the
specific way that asymmetric contrast manipulations in binocular rivalry can shift the propor-
tion of dominance from one perceptual interpretation to another [36, 37]. In [38], LPII was
generalized for three bistable visual stimuli varying parameters either side of equidominance.
Equidominance coincides with a choice of stimulus parameters where each of the two interpre-
tations are dominant for an equal proportion of time. It was shown that as a parameter is var-
ied, the durations of the stronger percept (dominant for a larger proportion of time) are
affected more than the durations of the weaker percept. Although some existing studies
recorded perceptual durations for a similar stimulus paradigm (with minutes-long trials), data
was not been presented so as to allow for a comparison with gLPII. For example, [21] consid-
ered measures that did not separate the two percept types and [24] did not separate the first
phase from subsequent phases in their analysis. Our experiment also provides a means to test
model predictions, to constrain its parameters and to evaluate its underlying assumptions.
Indeed, the model was developed concurrently with the design and execution of the experi-
ments, a process that has allowed us to develop a deeper understanding as one discipline feeds
into and informs the other. The results in this paper are organized to reflect this process. The
model is described in detail in Neuromechanistic model of auditory bistability, initial predic-
tions are described in Parametric dependence of perceptual dominance: model, experimental
results are in Parametric dependence of perceptual dominance: experiment, and a comparison
with the model is presented in and Refined model better captures experimental results.
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Results

Neuromechanistic model of auditory bistability
The neuronal circuits for competition and perceptual encoding are assumed to be downstream
and taking inputs from A1 (see the Discussion, specificallyModel of neuronal competition
beyond A1, for comments on the possible cortical location of our model). The periodic inputs
mimic the A1-responses to ABA- sequences reported in [28]. A firing rate description is used
where competitive interactions emerge through a combination of excitatory and inhibitory
connections, a slow fatigue process and intrinsic noise. We provide a brief outline of the mod-
el’s architecture, mechanisms and inputs here; the full model equations and further details are
given inModel equations and details.

The schematic in Fig 2A shows units rA, rB and rAB that respectively pool inputs from
regions of A1 centred at locations with best frequencies A, B and somewhere between, say (A
+ B)/2. The frequency difference between A and B is Δf. The associated variables rk represent
the mean firing rate of a population of neurons centred at the corresponding tonotopic location
k (k = {A, AB, B}). The inputs IA and IB, described in more detail below, are distributed between
the units (arrows) with less of the input IB (IA) reaching rAB and rA (rB) with increasing Δf as
controlled by w(Δf) (plotted in panel C). The amount of mutual inhibition (circular-terminated
vertices) between the units also depends on Δf as controlled by Ci(Δf) (plotted in panel C for
local ilcl and global igbl inhibition cases, see below). For each unit rk the intrinsic dynamics are
illustrated in panel B and decribed by a differential equation like the following,

tr _rAB ¼ �rAB þ FðbedABeAB

�Cið0ÞrAB � CiðDf =2ÞðrA þ rBÞ � gaAB þ wðDf =2ÞðIA þ IBÞ þ wABÞ:
ð1Þ

By way of an example, we describe this equation for rAB in detail; the equations for rA and rB
take the same general form. The dynamics evolve on a cortical timescale τr with a decay term
and a sigmoidal function F that transforms all local and lateral inputs to a firing rate, see Fig
2D. Recurrent excitation has strength βe and the excitation variable eAB evolves on a timescale
τe, slower than the cortical dynamics. The inclusion of slow NMDA-like excitation was neces-
sary in order to maintain activity during the silent phases between successive inputs. The recur-
rent excitation term also features slow synaptic depression dAB operating on a timescale τd. The
function Ci(Δf) controls the strength of local inhibition at Δf = 0 and lateral inhibition from rA
and rB, a distance

Df
2
away. Net local excitation is ensured by setting βe > Ci(0) = βi. A simplifi-

cation, that inhibition is instantaneous τi � 0, removes the need for an explicit inhibition vari-
able ik and inhibition is proportional to the cortical variables rk. Simulations were run (not
shown) to verify that this simplification did not have a significant effect on the model’s dynam-
ics. Intrinsic spike frequency adaptation has strength g and the adaptation variable aAB evolves
on a slow timescale τa. Intrinsic additive noise χAB is an independent Ornstien-Uhlenbeck pro-
cess for each rk.

Inputs to the model are illustrated in Fig 3. The onset-plateau shape of A1 responses to a
single tone mimic [28] and are shown in panel A for an isolated 125 ms A tone at locations A,
AB and B with Δf = 4 st. The inputs are illustrated here for a presentation rate (inverse of the
tone durations) of PR = 8 Hz (= 1/125); no gaps are assumed between the tones (TD = 1/PR)
and tone durations are assumed vary with PR accordingly. The input spread across tonotopy is
mediated by w(Δf) as plotted in Fig 2C. The overall input for an ABA- triplet at the three loca-
tions is illustrated in panel B. The same curves are plotted for two triplets distributed across the
tonotopic axis in panel C. Note that there is a full response to the A tone at the location A, an
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intermediate responses to both tones at the location AB and a full response to the B tones at
the location B.

In the first part of the modeling results the slow synaptic depression variable dAB is frozen at
1 and inhibition is localized in Δf (see corresponding Ci(Δf) curve ilcl in Fig 2C). The symbols
efix and ilcl are used to make these mechanistic distinctions. In the second part of the modeling
results there is a dynamic slow decay dAB on the excitation and inhibition is global in Δf (see
corresponding Ci(Δf) curve igbl in Fig 2C). The symbols edyn and igbl are used to make these

Fig 2. Model architecture. A: The tone frequency difference between A and B is Δf. The spread of inputs IA and IB across A1 is governed by the decaying
input gain functionw(Δf). Example A1 response patterns to the ABA- stimulus are shown (see Fig 3 and associated text for more details); these form the
inputs to three neuronal populations rA, rB and rAB at the competition stage. Lateral inhibition strength can depend on Δf (ilcl case) or be independent of Δf (igbl
case) as governed by Ci(Δf). B: Each population has a slow adaptation ak on a timescale τa with strength g, recurrent excitation ek on an intermediate
timescale τe with strength βe and an independent noise source χk with strength γ. Slow synaptic depression dk on the recurrent excitation ek is not shown.
Recurrent inhibition ik with strengthCi(0) is instantaneous allowing for the simplification ik = rk. See Eq (1) for an illustrative single-unit equation andModel
equations and details for the full model (Eq (4)). C: The Δf-dependent profiles for the input spreadw(Δf) (exponential decay (Eq (7))) and lateral inhibition
Ci(Δf) (Gaussian decay (Eq (6)) for ilcl or constant βi for igbl). D: Sigmoidal firing rate function F(u) (Eq (5)) with maximal slope kF/4 at the threshold θF.

doi:10.1371/journal.pcbi.1004555.g002
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mechanistic distinctions. A comparison between the cases with (efix, ilcl) and (edyn, igbl) is made
in Refined model better captures experimental results.

The full set of fifteen model equations (three principal equations like Eq (1) and twelve sim-
ple equations for the ek-, ak-, dk- and χk-variables) are given inModel equations and details
along with the full expressions for F, w(Δf), Ci(Δf), IA and IB. All model parameter values are
given in Table 1.

Encoding of percepts and dynamics of alternations: model
We first discuss the output from individual simulations of the model and illustrate how the
model’s firing rate variables can encode the competing percepts for comparison with experi-
mental data. Fig 4 shows time histories for a model simulation, panels A–D represent the first
20 s of a 240 s simulation at Δf = 5 st and PR = 8. These stimulus parameters correspond to the
ambiguous region where perception is bistable and regular alternations take place [19]. Panel

Fig 3. Model inputs. A: Input time courses are represented by double alpha functions (seeModel equations and details and Eq (8)) that capture the onset
and plateau characteristics of A1-responses from [28]. For a single 125 ms tone of frequency A less input will arrive at locations AB and B than at A as
described by Eq (7) and plotted here for Δf = 4 [26]. B: Inputs (see legend in C) to the respective populations rA, rB and rAB for an ABA- triplet of 0.5 s (tone
duration and post-triplet silence “-” of 125 ms, i.e. PR = 8 Hz). Tone onsets: black circle for A-tone, gray diamond for B-tone. C: As B with curves distributed
across the model’s tonotopy. The A-tone input is full amplitude at the A location, less at the AB location and further less at the B location, correspondingly for
the B-tone input.

doi:10.1371/journal.pcbi.1004555.g003
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A shows the primary population’s variables evolving on the cortical timescale τr. When central
unit rAB is active (e.g. during the first 3 s), the peripheral units rA and rB are suppressed. During
this time the adaptation aAB builds up until the peripheral units become active, see panel C.
Conversely, when either or both of the peripheral units rA and rB are active, the central unit rAB
is suppressed. When rAB is suppressed, typically one of rA or rB will be more active, reflecting
the fact that either the A tones or the B tones are in the foreground during the segregated per-
cept. The possibility of considering perception as tristable or multistable is discussed further in
the discussion. The NMDA-like excitation variables, evolving on a slower timescale τe than the
cortical timescale τr, shown in panel B are effectively a temporal smoothing of the cortical vari-
ables in panel A. Note that the response transients for individual inputs seen in panel A (look
at the sub-threshold activity) are integrated across several inputs in panel B (seen most clearly
around 10 s). In our model, activation of the peripheral units encodes the segregated percept,
while activation of the central unit encodes the integrated percept. This classification of inte-
grated relies on an implicit assumption of a stimulus featuring a combination of A and B tones
where activation of the central unit reflects a linking of the two sequences. An AND-like compu-
tation (e.g. classify integrated as when As and Bs are present AND central unit is active) could
be implemented to distinguish between an ABA- stimulus and an unambiguous sequence
CCC- where C = (A + B)/2. Moreover, the CCC- input should not be confused with integration
since the central unit would suppress the peripheral units indefinitley and no alternations
would take place.

From a practical point of view, our criteria for classifying the integrated and segregated per-
cepts are based, as follows, on the time courses of the model output plotted in Fig 4. Vertical

Table 1. Model parameters as defined inNeuromechanistic model of auditory bistability and forming part of the general model equations given in
Eq (4).

Parameter Description Model (efix, ilcl) Model (edyn, igbl)

Firing rate:

θF Sigmoid threshold 0.2 unchanged

kF Sigmoid slope 12 unchanged

Input:

Λ2 Input plateau fraction 1/6 unchanged

α1 Input impulse rise time 15 ms unchanged

α2 Input plateau stay time 82.5 ms unchanged

Ip Input amplitude 0.525 0.47

σp Lateral input decay 8 st 8.5 st

Intrinsic:

g Adaptation strength 0.065 unchanged

γ Noise strength 0.075 unchanged

βi Inhibition strength 0.3 unchanged

σi Inhibition decay constant 10 st σi ! 1 (global)

βe Recurrent excitation strength 0.7 0.85

κ Excitation decay strength 0 0.25

Timescales:

τr Cortical timescale 10 ms unchanged

τa Adaptation timescale 1.4 s unchanged

τe NMDA excitation timescale 70 ms unchanged

τX Noise timescale 100 ms unchanged

τd Excitation decay timescale N/A 3 s

doi:10.1371/journal.pcbi.1004555.t001
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Fig 4. Time courses of model responses (A–C), predicted percepts (D–E), and an example of perceptual reports from our psychoacoustic
experiments (F). A: Population firing rate time courses with Δf = 5 st and PR = 8 Hz. The firing rate function threshold θF is a horizontal dashed black line.

Neuromechanistic Model of Auditory Bistability
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black lines in panels A–C indicate switches in dominance between the central unit rAB and the
peripheral units rA and rB. These switches can be computed algorithmically in the following
way. First the output variables rAB, rA and rB are processed with a temporal moving average filter
with 50 ms width to obtain smoothed readoutsfrAB , erA and erB , these look similar to the excitation
variable traces shown in panel B. The output is encoded as integrated when frAB > ðerA þ erBÞ=2
and segregated otherwise. The mutual inhibition between the populations gives rise to sharp
well defined crossovers with steep gradient at points wherefrAB ¼ ðerA þ erBÞ=2. In this way the
model output is encoded as integrated when rAB is dominant and segregated when rA and rB are
dominant, as plotted in panel D (first 20 s) and panel E (full 240 s). This allows for a direct com-
parison between the model simulations and perceptual reports from experiment, an example of
which is shown in panel F; the experiment will be discussed in Parametric dependence of percep-
tual dominance: experiment and a full comparison with the model made in Refined model better
captures experimental results.

Statistics of dominance durations: model
Percept durations for perceptually bistable stimuli have been shown to be fit well by gamma or
log-normal distributions, for example, see [39–41]. As has become standard in the analysis of
percept durations for bistable stimuli, the switching times are normalized by the mean for each
percept type (integrated or segregated) [40]. The coefficient of variation (CV), which is the
ratio of the standard deviation s with the mean �x (CV ¼ s

�x
), is used as a measure of variability

in the percept durations, where smaller values indicate more adaptation-driven alternations,
and larger values more noise-driven alternations [34]. During the design of the model some
pilot data was used to constrain the model, but informality in its collection preclude its publica-
tion. Nevertheless, we do make a comparison with data from the final experiment as reported
in detail Parametric dependence of perceptual dominance: experiment, which were collected
after the development and tuning of model parameters.

In order to look at the distribution of perceptual durations in the model, 1000 durations were
randomly sampled from 2225 durations computed from a total of 50 4-minute simulations at
Δf = 5 st and PR = 8 Hz. Model parameters controlling the balance between adaptation and
noise were constrained to match pilot data collected from 6 subjects at Δf = 5 and PR� 8, which
showed a mean duration of 4.3 s, a CV of 0.73 and a fit to a log-normal distribution (but not a
gamma distribution). After parameter tuning, the model produced a mean duration of 5.1 s and
the distribution has a CV of 0.72. These model results were consistent with our pilot data (the
mean duration is longer but matching the CV was considered more important, given that dura-
tions are normalized for most of the analysis in this paper). Furthermore, model data showed a
fit to a log-normal, but not a gamma distribution, see Fig 5A (details of the statistical tests for
fits to standard distribution are given in Comparison to standard statistical distributions).

We make a comparison with the distributions from subsequent experiments (reported in full
in Parametric dependence of perceptual dominance: experiment) where, similarly, 1000 durations
were randomly sampled from 1575 durations collected across a total of 45 4-minute trials (3 rep-
etitions with N = 15 subjects) at Δf = 5 st and PR = 8 Hz. The mean duration in the experiment
was 7.7s and the distribution has a CV of 0.83. The data is best fit by a log-normal distribution,
but not by a gamma distribution, see Fig 5B. A similar CV and fit to log-normal but not gamma

Abrupt perceptual switches are seen when AB firing decreases/increases drastically (vertical black lines); see text for the exact criterion for a switch.B: As in
A, here for the synaptic excitation variables. C: As in A for the adaptation variables.D: Percept as encoded from A, see text. E: Encoded percept for the full
240 s simulation; panels A–D show only first 20 s. F: Time course of continuous percept reporting in psychoacoustic experimental for a 240 s trial at Δf = 5 st.

doi:10.1371/journal.pcbi.1004555.g004
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was obtained for the other Δf conditions. A two-way KS test comparing the normalized distribu-
tions for the model and experiment (plotted in Fig 5A and 5B) showed that the data could be
drawn from the same underlying distribution (P = 0.19). Although there is a difference of 0.11 in
CV values, this statistical test shows that the model has captured the dynamics of alternations in
the experiment accurately. In the literature, mean durations across subjects ranging from� 4 s
to� 9 s were reported in [19] with equivalent stimulus parameters. To our knowledge, there are
no existing studies reporting the coefficient of variation in auditory bistabilty, but in the literature
on bistable visual perception values for CV have been reported ranging from 0.48 to 0.67 across
several paradigms [42] (N = 5–11 subjects) and from = 0.55 to 0.70 in binocular rivalry [40]
(N = 3 subjects). The large CV value (> 0.7) in our auditory bistability experiment suggests that
alternations, although driven by a combination of adaptation and noise, are more noise driven
than the visual paradigms for which the CV has been reported [40, 42].

Perceptual organization for stimulus parameters: model
The experiments in [2] used wide ranges of presentation rate PR and frequency difference Δf to
investigate how the predominance of the different interpretations can change. Three qualitative
regions were mapped out in van Noorden’s experiments: at low Δf integration is dominant, at
large Δf segregation is dominant and at intermediate Δf perception is ambiguous. Fig 6A is a
cartoon of the organization based upon [2]. Note that there is a further dependence of the
boundaries between the regions on PR. The experiments in [2] focused only on the first transi-
tion and involved either dynamically varying stimuli or the deployment of the subject’s atten-
tion. The model we present specifically captures the dynamics of regular alternations after the
initial transition, has a fixed stimulus and does not account for attention. Nevertheless, as a
starting assumption, the same qualitative organization in terms of Δf and PR is assumed for the
model. Model parameters controlling the spread of input and lateral inhibitory connections,
defined by the functions plotted in Fig 2C, were tuned to obtain the appropriate organization.
In particular, it was necessary to include lateral inhibition Ci(Δf) that decays with Δf as indi-
cated by ilcl.

In order to define regions that are predominantly integrated, segregated or ambiguous we
look at the total proportion of time segregated averaged over twelve 4-minute simulations at

Fig 5. Statistics of dominance durations. A: Histogram of 1000 durations frommodel simulations at Δf = 5 combined across perceptual type after
normalising by the mean, see text. Curves show best-fit by gamma and log-normal distributions, P-values from one-way KS test are shown (in gray if the
distribution can be rejected at the 0.05 significant level). B: As in A, here for the experimental condition Δf = 5; normalized data combined across subjects.

doi:10.1371/journal.pcbi.1004555.g005
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points on a 21 × 21 grid with PR 2 [5, 20] and Δf 2 [1, 22]. The proportion of time integrated
Uint is defined by

Uint ¼
V int

V seg þ V int
; ð2Þ

where Vint is the total time that integrated is dominant (similarly Vseg for segregated) across the
twelve simulations at given (PR, Δf)-values.

Fig 6B shows a grayscale map of Uint across the (PR, Δf)-plane. We specify the integrated
region by Uint > 0.95, the ambiguous region by 0.05< Uint < 0.95 and the segregated region by
Uint < 0.05. The 0.05 and 0.95 contours are plotted in Fig 6B. The model produces the correct
organization with a predominance of integrated for small Δf, segregated for large Δf and ambig-
uous at intermediate ranges. Furthermore, the ambiguous region’s Δf-range contracts at larger
presentation rates, consistent with [2].

Fig 6. Perceptual organization for stimulus parameters. A: Schematic diagram of the perceptual regions
in terms of presentation rate and frequency difference, redrawn after [2]. B: Grayscale map of proportion (of
time) integrated Uint (see Eq (2)), segregated region is above red contour at Uint = 0.05, integrated region is
below blue contour at Uint = 0.95, ambiguous region lies in between with equidominance at Uint = 0.5 along
the dashed green contour. Vertical dashed line at PR = 8 corresponds to the frequency difference sweep
used later in Figs 8 and 9.

doi:10.1371/journal.pcbi.1004555.g006
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Parametric dependence of perceptual dominance: model
Before presenting the model’s predicted behavior for the dependence of percept durations
varying a stimulus parameter Δf, we consider two different scenarios for a general experiment
on bistable perception. The mean durations of two competing percepts are T1 and T2. Suppose
that S is a parameter affecting the proportion of time P1 that percept 1 is dominant, and that P1
is close to 1 when S is small and decreases monotonically through 0.5 as S is increased. In Fig 7
panels A and D show this general relationship between P1 and S. When S = Seq the percepts are
dominant for an equal proportion of time (P1 = 0.5). We call Seq the equidominance point,
where T1 = T2. Panels B and E illustrate two different ways that T1 and T2 can vary to obtain
this general relationship for P1. In the upper panels, the stimulus affects the weaker percept
more, that is, either side of Seq the percept with shorter duration (the weaker percept) changes
more with S. For decreasing S< Seq, T2 decreases more than T1 increases and for increasing S
> Seq, T1 decreases more than T2 increases. In the lower panels, the stimulus affects the stron-
ger percept more, that is, for decreasing S< Seq, T1 increases more than T2 decreases and for
increasing S> Seq, T2 increases more than T1 decreases.

We further distinguish between these three cases by defining η as the normalized total dura-
tion above equidominance

ZðSÞ ¼ T1ðSÞ þ T2ðSÞ � 2Teq

Teq

: ð3Þ

This measure is negative when the weaker percept duration is affected more and positive when
the stronger percept duration is affected more; see Fig 7C and 7F. Equivalently, one could show
that the overall rate of alternation 1/η is minimal at equidominance when the weaker is affected
more or maximal at equidominance when the stronger is affected more. The latter case was
shown to be consistent with three visual bistable paradigms in [38].

We now make a comparison between the model and the scenarios proposed above. In par-
ticular, we are interested to see if the model predicts behavior that is consistent with gLPII,
where the stronger percept is affected more than the weaker either side of equidominance. We
recall that the model was set up and constrained to match pilot data for the distribution of per-
cept durations and the van Noorden organization, as discussed in the preceding sections. The
model’s ability to account for the available data provides confidence in its predictive power.
Here we vary Δf, a parameter that affects the proportion of time integrated in a way consistent
with the examples from Fig 7, see Fig 8A. Fig 8B shows the normalized mean durations as a
function of Δf, where the durations for integrated are longer at small Δf and the durations for
segregated are longer for large Δf, with equidominance reached at Δf = 5. The normalization of
durations, analogous to that used for the experimental data presented later, is explained in
Computation of normalized durations. On each side of equidominance the upper branches
increase more than the lower branches decrease, which is consistent with Fig 7E and Δf affect-
ing the stronger percept more than the weaker. This is further illustrated in Fig 7F, where η is
positive either side of equidominance. We also note an asymmetry, with a sharper increase of
the integrated durations for Δf< 5 than in the segregated durations for Δf> 5. The predicted
behavior from the model is consistent with gLPII [38].

Parametric dependence of perceptual dominance: experiment
We carried out behavioral experiments to characterize the effect of varying Δf on the balance
between the durations of the integrated and segregated percepts, allowing for a comparison
with the model prediction and gLPII. As explained below we consider the durations of percepts
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following the first switch and the durations are normalized for each subject. In Fig 9A–9C solid
curves with error bars show the three measures described and illustrated in Fig 7 for the audi-
tory streaming experiment over the eight Δf-values indicated on the x-axis. Fig 9A shows that
for increasing Δf the proportion of time integrated decreases monotonically; a one-way
repeated measure ANOVA shows a significant effect (F(7, 77) = 24.656, P< 0.001, Green-
house-Geisser corrected P-values are reported where appropriate, see Repeated measures ANO-
VAs for further details). Our data show that Δf shifts the balance from integrated at low Δf to
segregated at large Δf. Therefore, this experiment varying Δf is suitable for a comparison with
our qualitative modeling predictions and gLPII. Fig 9B shows that with increasing Δfmean
duration integrated �T int decreases and mean duration segregated �T seg increases with a crossover
occurring between Δf = 3 and Δf = 5; a two-way repeated measure ANOVA shows a significant
interaction between percept type and Δf (F(7, 77) = 16.225, P< 0.001). In the analysis that fol-
lows we take the case Δf = 5 as the equidominance point for the data, where integrated and seg-
regated have approximately equal durations. Visual inspection indicates that either side of
Δf = 5 the upper branches of this X-shaped diagram increase more than the lower branches
decrease. The measure η defined in Eq (3) tests this qualitative description. Fig 9C shows that η
is positive either side of Δf = 5 and shows that Δf affects the stronger percept (percept dominant
for larger proportion of time) more than the weaker either side of equidominance, compare

Fig 7. Scenarios for parametric dependence of perceptual dominance. Schematic diagrams illustrate how the mean percept durations may change as a
stimulus parameter S is varied and dominance shifts gradually from percept 1 to percept 2. The upper row illustrates the weaker percept being affected more
and the lower row the stronger percept being affected more. A,D: Proportion of time when percept 1 is dominant decreases monotonically through
equidominance (0.5) (dashed lines) in both scenarios. When S < Seq percept 1 is stronger, when S > Seq percept 2 is stronger.B,E: Percept durations are
equal (T1 = T2 = Teq) at equidominance (S = Seq) in both scenarios. When the weaker percept is affected more the lower branches decrease more on either
side of equidominance (B). When the stronger percept is affected more the upper branches increase more on either side of equidominance (E). C,F: The
measure η (defined by Eq (3)) is zero at equidominance (S = Seq) for both scenarios. It decreases on either side of equidominance when the weaker percept
is affected more (C) and increases on either side of equidominance when the stronger percept is affected more (F).

doi:10.1371/journal.pcbi.1004555.g007
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Fig 9A–9C with Fig 7D–7F. A one-way repeated measures ANOVA on η with Δf as factor does
not reach significance (F(7, 77) = 0.878, P = 0.463). Further details and ANOVA tables reported
in Repeated measures ANOVAs.

We found a substantial variation across individuals in their mean durations. For each sub-
ject a global mean duration Tglob was computed across all trials and conditions (for summary
statistics of Tglob, see First durations and normalization). One clear outlier, with Tglob = 51.4 s
(consistently longer than the group across all conditions) is excluded from further analysis.
The remaining 15 subject’s Tglob-values span the range 2.6–14.8 s, which shows that some sub-
jects switch much more rapidly than others. In the analysis that follows each subject’s durations
are normalized by their Tglob. Furthermore, to avoid biasing the results towards the faster
switchers who record more durations, each subject contributes a single mean integrated
�T intðDf Þ and mean segregated �T segðDf Þ score at each value of Δf. The mean for each subject at
each Δf is taken across all durations from three repetitions. Refer to Computation of normalized
durations for further details. We note that, before normalization the mean durations integrated
and segregated at Δf = 5 are respectively 7.86 s and 7.65 s, which is within the range reported in
[19] where similar stimuli and procedure were used.

Existing studies of bistable (or multistable) auditory perception with long presentations (on
the order of minutes) have established that first durations are typically longer than subsequent

Fig 8. Parametric dependence of perceptual dominance: model prediction with (efix, ilcl). A: Proportion integrated computed across 50 simulations of
240 s at each of 15 values of Δf 2 [1, 15] with fixed PR = 8 (this parameter range corresponds to the dashed vertical black line in Fig 6A). There is a shift from
integrated being stronger to segregated being stronger with equidominance (indicated by dashed lines) at Δf� 5. B: Normalized durations integrated and
durations segregated with a crossover at Δf� 5 where Tint = Tseg. C: The measure η given by Eq (3), which equals 0 at equidominance. The results are
consistent with Δf affecting the stronger percept more (Fig 7D–7F).

doi:10.1371/journal.pcbi.1004555.g008

Neuromechanistic Model of Auditory Bistability

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004555 November 12, 2015 15 / 34



durations and should be treated separately [19, 21, 24]. In line with existing studies, across the
range of Δf values tested, we found the first durations to be consistently longer than subsequent
durations, with the difference being largest for small Δf and decreasing with Δf, for further
details see First durations and normalization. In the analysis presented, we study only the sub-
sequent percept durations.

Fig 9. Parametric dependence of perceptual dominance: experiment. Comparison of experimental and computational results.A–C: Proportion
integrated, durations integrated and segregated, and the measure η plotted against Δf. Experimental data are solid curves with data points at the Δf-values
indicated on the x-axis, error bars show standard error of the mean withN = 15 subjects except at Δf = 1 (N = 13) and Δf = 15 (N = 14). Model data with
dynamic recurrent excitation and global inhibition (edyn, igbl) plotted for comparison. D–F: Model data with (edyn, igbl) plotted with model data for fixed recurrent
excitation and spatially localized inhibition (efix, ilcl) for comparison.

doi:10.1371/journal.pcbi.1004555.g009
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Refined model better captures experimental results
The experimental data plotted in Fig 9A–9C agrees with the following qualitative predictions
from the model that were illustrated in Fig 8A–8C (replotted in Fig 9D–9F as dotted curves,
(efix, ilcl) in the figure legend). Proportion integrated decreases monotonically with Δf. Normal-
ized durations integrated �T int and segregated �T seg form an X diagram with crossover at equido-
minance Δf = 5 with the stronger percept (upper branches) increasing more than the weaker
percept (lower branches) decrease either side of Δf = 5. Accordingly the measure η is zero at
Δf = 5 and increases either side of Δf = 5.

There are quantitative differences between the experiment and the model predictions from
Fig 8A–8C. The model predicted a larger range of variation of proportion integrated than the
experiment. The model predicted larger increases in duration for the stronger percept either
side of equidominance and also larger decreases in the duration of the weaker percept either
side of equidominance. Overall this results in the model predicting a stronger effect on η than
was observed in the experiments.

Two mechanistic changes were made to the model that dramatically improve the quantita-
tive fit between model and experiments, but do not alter the basic qualitative predictions. The
first mechanistic change is a shift from localized inhibition that decays with Δf to global inhibi-
tion independent of Δf (compare ilcl and igbl curves in Fig 2C). This change along with a reduc-
tion in input amplitude Ip from 0.525 to 0.425 improved the agreement between the upper
branches in Fig 9B. The second mechanistic change introduces a minimum timescale for per-
ceptual dominance immediately following a switch, which improves the agreement between
the lower branches in Fig 9B. This is achieved by an increase in the strength of recurrent excita-
tion whilst also introducing a slow synaptic depression. For further details of this extension to
the model, seeModel equations and details. We refer to this updated version of the model with
dynamic recurrent excitation and global inhibition as (edyn, igbl). A direct comparison is made
with the experimental data in Fig 9A–9C and with the earlier version of the model (efix, ilcl) in
Fig 9D–9F.

We note that the attained level of agreement between the model and experiment is not con-
tingent on the normalization of percept durations. The normalization served to remove vari-
ability within subjects. To better see the effect of the normalization compare Fig 9B with non-
normalized durations as given in Computation of normalized durations.

Further predictions for constrained model
After introducing modifications that allow the model to account for our experimental data, we
can reevaluate the perceptual dominance assumption based on the van Noorden diagram. For
the model with (edyn, igbl), Fig 10A shows a grayscale map of proportion integrated over a
range of PR and Δf-values. Solid curves show 95% boundary (bottom right corner), outside
which integrated is considered as dominant and the 5% boundary (top right corner), outside
which integrated is considered as dominant. In the model with (edyn, igbl), the qualitative orga-
nization is the same as for the model with (efix, ilcl), but the regions of perceptual dominance
are much smaller; compare Fig 10A with Fig 6B. The model with (edyn, igbl) (i.e. constrained by
our experimental data) produces alternations over a much broader range of Δf and PR than
could be expected with the van Noorden perceptual dominance assumption.

The model predicts a stronger effect of gLPII at higher presentation rates. Fig 10B and 10C
show durations integrated and segregated plotted over a range of Δf- and PR-values. This
model data has not been normalized, which will allow for future quantitative comparison with
the predicted behavior. Dashed curves correspond to PR = 8 Hz, as plotted previously in Fig 9,
and solid curves at larger PR = 15 Hz. The results show a modest increase in durations at
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equidominance and a slight upward shift in Δf of the equidominance point with increasing PR.
The weaker percept durations (see lower branches in panel C) are relatively unaffected by an
increase in PR. The bias towards affecting the stronger percept durations (see upper branches
in panel C) increases further at larger PR-values.

The most relevant comparison with published experiments could be with [24]. Results sepa-
rating first and subsequent post build up durations showed a dramatic increase in mean dura-
tion (combined across percept types) for large Δf and PR, and our model predicts similar
behavior [24]. Values of Δf below 4 st were not tested in [24] to see if a similar trend predict per-
sists for large PR and small Δf. Where integrated and segregated durations are reported sepa-
rately in [24], no distinction is made between first and subsequent durations, precluding a direct
comparison. Another study [21] with minutes-long presentations and a wide ranges of Δf and
PR tested did not distinguish between percept types, thus also precluding a direct comparison.

Discussion
We developed and presented a neuromechanistic model of bistable auditory perception for the
streaming paradigm of ABA- triplet stimuli. Our firing rate model accounts for the dynamics of
alternations after the build up of streaming, matching the statistics from our psyshoacoustic

Fig 10. Perceptual organization for stimulus parameters in model (edyn, igbl). A: Proportion integratedUint varying Δf and PR plotted as a grayscale map.
Solid are contours at Uint = 0.05 (red) andUint = 0.95 (blue) demarcating regions where segregated and integrated are considered dominant, respectively. A
dashed green contour in the ambiguous region indicates equidominance Uint = 0.5. Vertical dashed line at PR = 8 corresponds to the frequency difference
sweep used in Figs 8 and 9. B: Surface plots of mean duration integrated and mean duration segregated (not normalized) across the same range as A. Black
curve is the intersection of the two surfaces (equidominance). Dashed and solid curves indicate the cross sections plotted in C at PR = 5 and PR = 15,
respectively. C: Durations integrated and segregated varying Δf for fixed PR as indicated; in each case the equidominance point is a black dot.

doi:10.1371/journal.pcbi.1004555.g010
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experiments. The model’s architecture incorporates the tonotopic organization of auditory cor-
tex. We suppose that the neuronal computation and our model’s units reside downstream from
primary auditory cortex (A1); inputs mimic the tonotopic spread of activity in A1 and incorpo-
rate the transient (onset prominent) firing patterns known from physiological experiments [26,
28]. Alternations arise through the interplay of mutual inhibition, noise, and slow adaptation.
This combination captures the characteristics of exclusivity, randomness, and inevitability as
described by [35] and demonstrated for auditory bistability in [19]. Our model has some novel
features: It incorporates NMDA-like recurrent excitation that supports some neuronal memory,
enabling carry-over tone-to-tone within a triplet and across the tone gaps between triplets; per-
cepts and dominance emerge naturally from the tonotopic architecture rather than having per-
cepts pre-assigned to units that compete for dominance as in many previous models for
perceptual bistability [33, 34]. With modeling and experiments we have confirmed that the
auditory streaming paradigm conforms to a generalization of Levelt’s proposition II (gLPII):
with tone frequency difference, Δf, as a control parameter we find that on either side of equido-
minance the stronger percept durations are affected more than the weaker percept durations, in
agreement with related experiments in bistable visual perception [38].

Model of neuronal competition beyond A1
The neuronal circuits for competition and perceptual encoding are assumed to be located in
downstream and to receive inputs from A1. Feature dependent activity and temporal forward
masking can account for several aspects of auditory streaming build up as demonstrated in
recordings from pre-attentive areas across a range of species, for example, studies of primate
A1 [26–28], European starling forebrain [29] and guinea pig cochlear nucleus [30]. Spiking
patterns in the European starling forebrain (assumed homologous to A1) have been shown to
reflect stimulus characteristics but not perceptual decision [31]. Another study in ferrets has
also demonstrated a disconnect between perceptual behavior in humans and the encoding of
stimulus features in ferret A1 [43]. Recent fMRI studies (human subjects) provide evidence
that links activation in both A1 and sub-cortical areas to perceptual reversals for streaming
experiments [22, 44], however, the associated low temporal resolution cannot preclude this
activation being a result of top-down modulation from higher auditory centers or other mixed/
non-auditory areas. Behavioral and MEG studies (human subjects) with long stimulus presen-
tations of streaming stimuli [18] and an informational masking paradigm [45] provide evi-
dence that the auditory core encodes stimuli features independent of perceptual awareness,
whilst perception is represented in longer latency responses associated with later stages of pro-
cessing in non-primary auditory cortex [45]. Studies with human fMRI have shown that tono-
topic organization extends beyond core regions (including A1) to some secondary auditory
areas, see [46, 47] and [48] for a review. In our study we explored two possibilities, that the lat-
eral inhibition in our competition stage depends on Δf (i.e. tonotopic distance between the
units), or that the inhibition is global and independent of Δf (consistent with there being no
tonotopy in the competition stage’s recurrent connections). Based on the available literature
we are not able to pinpoint a more specific location for our model. We have proposed a mini-
mal description of the competition involved in auditory bistability, which likely involves multi-
ple brain areas beyond A1.

Model formulation and fitting of parameters
The reduction of a continuous representation of a feature space to individual units encoding
different percepts was first proposed in [32] and simplified models where the competing per-
cepts are assumed have become relatively standard in modeling studies of perceptual bistability
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(see, for example, [33, 34, 42, 49]). In these models inputs are percept specific rather than
incorporating a realistic feature dependence. In our model, the competing percepts arise from
the tonotopic stimulus feature dependence without assuming that abstracted populations
encode each percept. This, along with the periodic nature of the inputs distinguishes our work
from typical competition models. Most existing computational models of auditory streaming
focused on the build up phase and, although some include a hybrid of auditory pathway physi-
ological detail and electrical signal processing [14, 17], they are typically abstract in construc-
tion [11, 12, 15, 16]. Both build up and subsequent alternations were modelled in [24] with
competition taking place between abstracted units representing patterns formed in the build
up phase. The focus on alternations after the build up phase, the neuromechanistic formulation
that we propose and the emergence of competing percepts within the tonotopic organization
distinguish our work from existing auditory models.

Model parameters controlling the balance between adaptation and noise were tuned to
match the statistics of perceptual durations in terms of mean durations, fit to a log-normal dis-
tribution and coefficient of variation. The level of agreement obtained demonstrates that the
dynamics of auditory bistability were accurately captured by the model. Model parameters con-
trolling the spread of input and range of inhibitory connections in tonotopic space were con-
strained based on a starting hypothesis that van Noorden’s proposed regions of perceptual
dominance [2] are also applicable to the perceptual bistability we study here. In order to obtain
the van Noorden organization a tonotopic dependence of lateral inhibition within our model’s
competition stage was included. The assumption of a tonotopic dependence, beyond that
inherited from A1 through its inputs, in the lateral recurrent connections in the competition
stage is linked to the hypothesis for the van Noorden organization. Below we discuss this
assumption in light of our own data whilst highlighting a number of differences between van
Noorden’s experimental paradigm and the situation considered here. Nevertheless, the repro-
duction of the correct perceptual organization suggests that stimulus features have been accu-
rately captured along with the dynamics of alternations. On this basis the model was used to
predict the relationship between frequency difference Δf and the relative durations for the inte-
grated and segregated percepts. Data from experiments designed to test the model prediction
were later used as a more concrete means to constrain the model.

Experiment to test Levelt’s II in auditory bistability
We asked whether gLPII extends to auditory bistability. We chose Δf as a control parameter
since it affects the proportion of dominance between the percepts [21, 24]. Indeed, our model
satisfies gLPII (compare Fig 8 with schematics in Fig 7D–7F), which cannot be generically
expected given differences in mechanisms and architecture with the models that show gLPII-
like behavior for visual bistability [32, 38, 50]. Satisfaction of gLPII for auditory bistability was
a joint prediction from our model and the literature on bistable perception.

Results from our psychophysical experiments also satisfied gLPII (Fig 9A–9C), supporting
the predictive power of our basic model. Repeated measures ANOVAs demonstrated a signifi-
cant effect of varying Δf on proportion of time integrated, a significant interaction between per-
cept type and Δf, but no significant effect of varying Δf on η. Given that η was positive away
from equidominance, we can conclude that auditory bistability conforms to gLPII, however, the
bias towards affecting the stronger percept is modest. A recent study [24] reported durations of
integrated and segregated percepts over a range of Δf-values, but not a sufficient number of con-
ditions were tested at a fixed presentation rate to allow for a direct comparison with gLPII.

In order to improve the quantitative agreement between the model and experiment, we
made two mechanistic changes and minor parameter adjustments in the model. Firstly, by
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relaxing the hypothesis of conforming to the qualitative van Noorden organization and shifting
to global inhibition the overestimation was reduced for durations of the stronger percept, see
Fig 9E. The implication is that tonotopic dependence of inhibition is not required at the level
where percepts are encoded although localization of inhibition and excitation are present in A1
for conveying stimulus features and dependence on Δf. We searched many different parameter
combinations testing the relative balance between the Δf-footprints of inhibition and input but
did not identify another means, within the scope of the model’s features, to account for the
experimental data. In the conception of our model, we assumed that the competition in our
model takes place at a stage with tonotopy-dependent inhibition between units (plausible for
non-primary auditory areas). However, given that our model better accounts for our experi-
mental findings with (tonotopy independent) global inhibition, it is also plausible that the com-
petition take place in a non-tonotopically organised area of auditory cortex or a non-auditory
area downstream of A1 (for example, intraparietal sulcus (IPS) as implicated in an fMRI study
of auditory streaming [51]). Although tonotopy is still inherited through the inputs to our
competition stage, it does not necessarily play a role in the recurrent synaptic inhibition. Sec-
ondly, we increased the strength of recurrent excitation whilst introducing a slow synaptic
depression that could prolong a dominance duration beyond a minimum value. The modifica-
tion of the recurrent excitation mechanism effectively prevents immediate switches away for a
unit that has recently become active. This change reduced the underestimation of durations for
the weaker percept, see Fig 9E. Self excitation also played a role in reducing the probability of
short durations in [24].

van Noorden organization
Regions of temporal coherence (dominance of integrated), fission (dominance of segregated)
and ambiguity over ranges of Δf and PR were established in [2] and the resulting van Noorden
diagram has become a key point of comparison in much of the research that has followed.
However, comparisons to the van Noorden diagram are often made in experiments and models
where several features particular to van Noorden’s experiments are not take into account. The
procedure used by van Noorden included a slowly increasing or decreasing frequency differ-
ence, and subjects were instructed to attend to (“hold”) a specific interpretation during presen-
tation. Trials were terminated after the first perceptual switch. Although the van Noorden
diagram has provided a rough, qualitative overview of perceptual organization, a full compari-
son with these experiments will await the development and application of a model that can
treat early and later phases of streaming, time varying stimulus parameters and that includes
some mechanism for attention.

We used the organization of perceptual dominance and ambiguity as described/established
by van Noorden [2] as a qualitative guide in the initial determination of our model’s parameter
values, particularly those that control tonotopic spread of input (from A1) and the tonotopic
footprint for the strength of inhibition. The data from our subsequent psychoacoustics experi-
ments (to investigate gLPII) provided a more concrete means to constrain the model. Once
constrained by our experimental data, the model predicted that alternations occur over a much
broader range of Δf and PR than expected from the original van Noorden diagram. The
hypothesis that the post build-up phase of streaming conforms to the van Noorden organiza-
tion was not satisfied in a qualitative way. Our results support recent experiments that found
alternations taking place over the entire range of Δf and PR typically tested in streaming experi-
ments [21]. A further testable model prediction, which should be the subject of future experi-
ments, is that the bias towards affecting the stronger percept durations either side of
equidominance increases with presentation rate.
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Attention
Could attention be thought of as a top-down modulation of the effective input to neuronal
groups whose dominance corresponds to the attended percept? Attention can significantly
affect the proportion of dominance during alternations between the competing percepts [19].
Interestingly, although the proportion increased for the attended percept the effect was
achieved by decreased mean durations of the weaker (unattended) percept; results were
reported only for an equidominance condition (Δf = 5 st). If there is a parallel it would be with
the hypothetical case of Fig 7A–7C, where the weaker percept is affected more than the stron-
ger percept. In contrast, our study has shown that stimulus manipulations affected the stronger
percept more than the weaker percept on either side of equidominance (Fig 9)—consistent
with gLPII (Fig 7D–7F). Our observations suggest an opposite effect in auditory bistability for
attention and Δf-manipulations. We conclude that in order to model effects of attention we
should consider more than static manipulations of stimulus parameters. Simply increasing the
stimulus strength to favor the attended percept will be inadequate. Rather, we suggest that
inputs should be dynamic and depend on perceptual state. An exploration of the neural mecha-
nisms underlying attention effects in auditory streaming will be the focus of future work.

Toward a more general modeling framework
In most studies with the ABA- paradigm, subjects report integrated and segregated percepts,
but some psychoacoustic studies have documented other interpretations [21, 52–54]. Our
model’s dynamic responses were categorized with a simple criterion to be either integrated or
segregated. The categorization could be extended to include the possibility of the A or B tones
being in the foreground within the segregated percept as was considered in recent psycho-
acoustic experiments [53]. The extension of phenomenological, percept-based, competition
models to tristable perception was considered in [49] for visual motion plaids, and a similar
extension for auditory stimuli would be of interest. We did not formulate a neuromechanistic
description for distinguishing a wider variety of patterns (as reported in experimentally [54]),
which remains an outstanding challenge for modeling auditory perception (see [24] for a pro-
posed algorithmic approach).

The temporal coherence in the relative onsets of the A and B tones in the streaming para-
digm can have a significant effect on perception [55]. As has been demonstrated for short stim-
ulus presentations, there is a bias towards grouping of stimulus elements with a common onset
even when they separated by large frequency differences [43] (see [56] for an example with har-
monicity-based ambiguity where this is not the case). We think our framework could be
extended to consider coherence by including another feature dimension for, say, assessing tem-
poral coincidence.

Recent imaging studies have shown changes in activation around the time of auditory per-
ceptual switches not only in auditory areas, but in non-auditory areas such as IPS [51] and cer-
ebellum [23], and in subcortical regions such as the medial geniculate body [23] and inferior
colliculus [44]. Although it is likely that subcortical areas play an important role in early stimu-
lus adaptation and build up, their exact role in auditory bistability is still far from clear. The
extension of our model to incorporate a hierarchical structure with descending feedback and
further subcortical detail would allow for an exploration of whether activity in subcortical areas
is a driving force in perceptual alternations or the result of modulation through descending
connections.

The present model has been specifically designed around a stimulus involving two sets of
tones at a fixed frequency separation. It is formulated with discrete neuronal units that are
tuned to tone frequencies A, B or the intermediate (A + B)/2. The amount of input going to
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each unit and the inhibition between the units was defined through continuous functions. This
description could be directly extended to a continuous representation of tonotopic space that
would allow for an arbitrary number of inputs and for inputs with Δf varying over time. Such a
representation was used in the modelling study [16] to look at build up and at rising/falling
tone sequences perceived as crossing or bouncing as reported in experiments [2]; elsewhere, the
choice of a continuous feature has proved effective in capturing the dynamics of multistable
motion perception [57]. A model with a continuous tonotopic representation would provide a
basis to look more closely at the experiments of van Noorden involving Δf-time-varying stimuli
and bridge the gap with the fixed stimuli considered here.

Conclusion
Our study’s foremost contribution is a physiologically-based model of auditory bistability that
captures key features of the perceptual alternation dynamics for the ABA- streaming paradigm.
Our formulation explicitly incorporates sound-evoked A1 responses as input to a competition
network. Perceptual states are identified in the neuronal dynamics rather than pre-assigned to
phenomenological units. The inclusion of NMDA-like synaptic dynamics enables temporal
binding from one triplet to the next in order to deal with gaps in the periodic sound input. We
applied the model to predict the dependence of mean dominance durations on the tone fre-
quency difference Δf and carried out psychoacoustic experiments for comparison. Based on
our findings we refined the model to include slow depression of the NMDA excitation and a
broadened footprint for inhibition. The quantitative agreement between the model and experi-
ments across several important signatures, including the steady state statistics of percept dura-
tions, demonstrates the model’s success in capturing the dynamics of auditory bistability.

In parallel with the model development we established in our experiments that generalized
Levelt’s Proposition II holds for the alternations in auditory bistability that follow the first per-
ceptual switch. We showed that varying Δf away from equidominance increases the duration of
the stronger (dominant a larger fraction of time) percept rather than that of the weaker. These
findings further establish a further commonality between auditory and visual bistable dynamics
[38]. Although the measured effect in favor of increasing the stronger percept duration was
small, it was opposite to that of attention as shown in [19] (strongly in favor of decreasing the
weaker percept’s duration). Our model provides a platform to further investigate these con-
trasting effects and to explore the mechanisms of attention in auditory streaming.

Materials andmethods

Ethics statement
The psychoacoustics experiments were approved by the University Committee on Activities
Involving Human Subjects at New York University (IRB #12-8810).

Model equations and details
We consider a three population network—a discrete idealization of a tonotopically organized
array. Two populations pool inputs from regions of A1 centred at locations with best freque-
nices A and B, whilst a third population pools input centred at a tonotopically intermediate
location, say (A + B)/2; see Fig 2.

The firing rate variables rk are indexed by k = {A, AB, B} for each population shown in Fig
2A with the associated adaptation ak and recurrent excitation ek variables (note that, through-
out the paper, the symbol “e” is used exclusively for excitation variables and associated con-
stants whilst the symbol “exp()” is used for the exponential function). The system of first order
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differential equations is as follows:

tr _rAB ¼ �rAB þ FðbedABeAB � Cið0ÞrAB � CiðDf =2ÞðrA þ rBÞ
�gaAB þ wðDf =2ÞðIA þ IBÞ þ wABÞ;

tr _rA ¼ �rA þ FðbedAeA � Cið0ÞrA � CiðDf =2ÞrAB � CiðDf ÞrB
�gaA þ IA þ wðDf ÞIB þ wAÞ;

tr _rB ¼ �rB þ FðbedBeB � Cið0ÞrB � CiðDf =2ÞrAB � CiðDf ÞrA
�gaB þ IB þ wðDf ÞIA þ wBÞ;

ta _aAB ¼ �aAB þ rAB;

ta _aA ¼ �aA þ rA;

ta _aB ¼ �aB þ rB;

te _eAB ¼ �eAB þ rAB;

te _eA ¼ �eA þ rA;

te _eB ¼ �eB þ rB;

td _dAB ¼ �dAB þ ð1� k rABÞ;
td _dA ¼ �dA þ ð1� k rAÞ;
td _dB ¼ �dB þ ð1� k rBÞ;

ð4Þ

with time constants τr (cortical), τa (spike frequency adaptation), τe (NMDA-excitation) and τd
(slow depression of excitation). Each population shares a common firing rate function F is
given by

FðuÞ ¼ 1

1þ exp ðkFð�uþ yFÞÞ
; ð5Þ

where θF is a threshold parameter and kF is a slope parameter, see Fig 2D. The strength of adap-
tation is g.

Inhibition is assumed to be instantaneous (τi = 0 in ti_ik ¼ �ik þ rk for each k) such that the
inhibitory terms in Eq (4) appear as proportional to the r-variables (ik = rk). Simulations were
run (not shown) to verify that this simplification did not have a significant effects on the mod-
el’s dynamics. In the first phase of model simulations the strength of lateral inhibition is
assumed to have Gaussian decay with Δf

CiðDf Þ ¼ bi exp �Df 2

2s2
i

� �
; ð6Þ

where the inhibition strength is βi with decay constant σi; the symbol ilcl is used to refer to this
case. In the second phase of the model simulations inhibition is assumed to be global such that
Ci(Δf) = βi (equivalently σi!1 in Eq (6)); the symbol igbl is used to refer to this case.

Recurrent excitation is assumed to occur on an intermediate timescale τe (representative of
NMDA synapses) between τr and τa. Excitation is assumed to be local only with strength βe >
βi such that there is net local excitation for each unit. In the first phase of the modeling results
the variables dk are frozen at dk = 1 (κ = 0) in (4); the symbol efix is used to refer to this case. In
the second phase of the modeling results the strength of the recurrent excitation is increased
from βe = 0.7 to βe = 0.85 and a slow (τd = 3 s) synaptic depression with strength κ = 0.25 is
turned on; the symbol edyn is used to refer to this case. The effect of increased excitation
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strength coupled with a slow synaptic depression is to introduce a minimum active phase (i.e. a
minimum percept duration) once a given rk becomes dominant.

The spread of input is defined via the weighting function

wðDf Þ ¼ Ip exp
�Df
sp

 !
ð7Þ

where σp is a spatial decay parameter and Ip is the pulse amplitude. The input terms IA and IB
appearing in Eq (4) are defined by Eq (8). The particular form of the periodic inputs are
based on recorded responses from A1 with such ABA- stimuli [28]; see Fig 3. We capture the
basic form of these responses with a pair of onset response functions, one with larger ampli-
tude and early rise that captures the initial onset and a second with smaller amplitude and
late rise that captures the plateau:

IðtÞ ¼ HðtÞ exp ð2Þ
a21

t2 exp
2t
a1

� �
þ L2

exp ð2Þ
a22

t2 exp
2t
a2

� �� �
; ð8Þ

with plateau amplitude fraction Λ2 and rise times α1 < α2; see Fig 3 (thick black curve). The

constant term
exp ð2Þ
af1;2g normalises the amplitude at t = α{1,2} of the individual onset functions

to 1. A standard Heaviside function H ensures no response before an input tone at t = 0. Rise
times of α1 = 15 ms and α2 = 82.5 ms and an amplitude Λ2 = 1/6 were chosen to approxi-
mately match the rise time and relative onset-to-plateau ratio observed in [28].

Additive noise is introduced with independent stochastic processes χA, χB and χAB added to
the inputs of each population as in [34] and [58]. Input noise is modeled as an Ornstien-Uhlen-
beck process:

_wk ¼ � wk

td
þ g

ffiffiffiffiffi
2

tX

s
xkðtÞ; ð9Þ

where τX = 100 ms (a standard choice [34, 58]) is the timescale, γ the strength and ξ(t) a white
noise process with zero mean. Note these terms appear inside the firing rate function F such
that firing rates rk remain positive and do not exceed 1.

All model parameters defined throughout this section are given in Table 1. The values of θF
and kF are standard for neuronal competition models [34, 58]. The input shape parameters Λ2,
α1 and α2 are estimated from [28]. In the first modeling phase (efix, ilcl), the Δf-dependent func-
tions controlling the spread of input (Eq (7)) and decay of lateral inhibition (Eq (6)) were empiri-
cally chosen to produce a van-Noorden like organization for the stimulus parameters Δf and PR
as shown in Fig 6. The parameters Ip, σp and σi were chosen accordingly. In the second phase of
the modeling (edyn, igbl), these were readjusted and a slow synaptic depression introduced (with
parameters κ and τd) to better account for our experimental data. The strength parameters for
adaptation g, noise γ, inhibition βi and excitation βe were set to provide a balance between adap-
tation and noise [34], to produce the correct mean durations and switching statistics to match
our pilot data, see Fig 5. The cortical timescale (τr = 10 ms) and the spike frequency adaptation
timescale (τa = 1,400 ms) fall within typical ranges [59]; similar values have been used in compe-
tition models [34, 58]. The NMDA-like timescale (τe = 70 ms) for excitation is motivated from
[60, 61] and similar values have been used in working memory and decision making models [62,
63]. In the second phase of the modeling results, excitation is assumed to decay through slow
synaptic depression on a timescale τd = 3,000 ms, see below. Slow depression on the order several
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seconds has been reported in primary visual cortex [64] and several slow timescales for adapta-
tion, also on the order of several seconds, have been reported in auditory cortex responses [65].

Stimuli and procedure for psychoacoustic experiments
The stimuli consist of repeating 125 ms pure tone ABA- triplets where the ‘-’ indicates a silence
also lasting 125 ms; each ABA- sequence is 0.5 s in duration (similarly, 125 ms tones were used
in [28] and 120 ms tones were used in [19]). The higher frequency A tones are a variable Δf
semitones above the lower frequency B tones. Cosine squared ramps are used with 5 ms rise
and fall times. During 4 minute trials the tone sequence is played binaurally through etymotic
headphones at 65 dB SPL. Eight Δf conditions are used Δf 2 {1, 2, 3, 5, 7, 9, 11, 15}, with each
8-trial block consisting of a single presentation of each condition. The frequencies used for the
A and B tones are taken to be semitone intervals between 392 Hz and 932 Hz, a range spanning
15 semitones. Within a trial block a total of 16 frequencies are used, two for each Δf condition,
such that no frequency appears twice within the block; see Table 2. In this way, irrespective of
the order of presentation of the 8 conditions, no specific frequency is repeated from one pre-
sentation to the next so as to avoid any residual effects of adaptation between trials. Further-
more, a minimum 30 s interval between trials (and 180 s after the fourth trial) was used after
which subjects could the next trial when ready. The increments of Δf have been chosen to give
a good coverage of the range of responses based on trial data.

Sixteen subjects (9 female) with a mean age 24 years took part in the experiment for modest
reimbursement. Procedures were in compliance with guidelines for research with human subjects
and approved by the University Committee on Activities Involving Human Subjects at New York
University. All subjects provided written informed consent. Each subject completed three eight-
trial blocks giving a total of 24 trials per subject. An 8 × 8 latin square design was used to deter-
mine the order of conditions for each subject and block repetition. Six randomized and unique
grids were generated (two blocks of 8 subjects and three repetitions). The blocks were run across
two sessions on different days, one block in the first session, two blocks in the second session.

Subjects sat in an acoustically shielded chamber and indicated their perceptual responses
with button presses on a keyboard. In a 2AFC task subjects were instructed to report the inte-
grated percept when they heard the A and the B tones together in an alternating or galloping
rhythm and the segregated percept when they heard two separate streams, one with only A
tones and one only B tones. The percepts were explained to the subjects with auditory and
visual illustrations to ensure that the subjects understood the two interpretations and could
clearly distinguish between them. Subjects were instructed to passively report their percepts
without attempting to hear one perceptual organization over another. Subjects reported their

Table 2. Frequency conditions used.

Δf (st) A (Hz) B (Hz)

1 622.3 587.3

2 640.5 570.6

3 659.3 554.4

5 698.5 523.3

7 740.0 493.9

9 784.0 466.2

11 830.6 440.0

15 932.3 392.0

doi:10.1371/journal.pcbi.1004555.t002
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percepts by holding specific keys associated with of the percepts. The state of the two response
buttons was recorded with a sampling rate of 100 Hz.

In this paper we considered bistability between integrated and segregated percepts for
ABA- triplets, using a 2AFC task in our experiments. In studies where response keys are pro-
vided for integrated and segregated and subjects are instructed to press neither key when
their responses are “indeterminate” such responses are recorded for a very small fraction of
presentation time [19, 24]. Here the task was 2AFC and no instruction for “indeterminate”
responses was provided. We chose to use a simplified task given the wide range of Δf-values
tested. Furthermore, in order to make a direct comparison with gLPII, it was necessary to
impose categorization between only two competing interpretations as done in the three visual
paradigms considered in [38].

Durations shorter than 0.5 s (one triplet) were excluded from the analysis. Across all condi-
tions neither key was depressed for 1.4% of total presentation time (including the time immedi-
ately after stimulus onset before any key is pressed) and both keys were depressed 0.9% of total
presentation time. Times with neither or both keys depressed were at the transitions between
the two percepts (any trials where neither or both keys were depressed for more than 10 s were
inspected visually). Given the 2AFC task, each percept duration was computed from the button
press onset associated with one percept type up to the button press onset of the opposite per-
cept type. The final (incomplete) duration was discarded for each trial.

First durations and normalization
In an initial phase of our analysis, we establish that first durations are longer than subsequent
durations across the range of Δf-values tested. At each condition we look at, separated our into
first and subsequent, the mean duration taken across both percept types (integrated of segre-
gated), N = 16 subjects and 3 repetitions. For the first percept this gives 48 first durations at
each condition and for subsequent percepts there is a variable number of durations at each con-
dition (mean 224 individual durations). The results are plotted in Fig 11A where, consistent
with the literature, first duration curve is well separated from the subsequent durations curve
across all conditions, the different being largest for small Δf and decreasing with Δf. In all the
analysis that follows the first duration is excluded.

We next look at how subjects responses are distributed in terms of their global mean percept
duration Tglob, grouping data across all conditions, see (10). This information can be used to
identify any outliers and will be used to normalize responses across subjects. For each of 16
subjects we take the mean percept duration taken across both percept types, all repetitions and
all Δf conditions. We plot summary statistics of the subject distribution of Tglob-values in Fig
11B. One clear outlier, with Tglob = 51.4 s (consistently longer than the group across all condi-
tions) is excluded from further analysis. The remaining 15 subject’s Tglob-values spans the
range 2.6–14.8 s. The result is that many more durations are recorded from subjects with small
Tglob (fast switchers) than large Tglob (slow switchers). In further analysis, if we were to com-
bine data across subjects including all durations, any results would be skewed towards fast
switchers who contribute more durations. To account for this, in the analysis that follows, each
subject contributes a mean integrated and a mean segregated duration averaged across all dura-
tions for the three repetitions at each condition. Other measures such as proportion of time
integrated are computed in a similar fashion. Furthermore, due to the large range of Tglob-val-
ues, representing a near-order-of-magnitude difference from smallest to largest, we also scale
each subject’s durations by Tglob before combining across subjects. Further details of the nor-
malization are given in Computation of normalized durations.
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Computation of normalized durations
The normalization of percept durations, as described below, was used to remove some of the
subject variability in experiments. For reference, the percept durations for the experiment and
model with (edyn, igbl) are plotted without normalization in Fig 12. To see the effect of the nor-
malization compare Fig 9B and 9C with Fig 12A and 12B.

Fig 11. First and subsequent durations, summary statistics of the subject’s grandmean durations. A:
Mean first percept duration and mean subsequent percept duration for all durations combined across both
percept types, N = 16 subjects and R = 3 repetitions. Error bars show standard error of the mean.B: Standard
Tukey box plot of Tglob for N = 16 subjects (box shows quartiles, whiskers are most extreme data points within
1.5 × iqr of the upper and lower quartiles, “+” are individual outliers).

doi:10.1371/journal.pcbi.1004555.g011

Fig 12. Non-normalized percept durations. Durations integrated and segregated without normalization
plotted against Δf for experiment and model with (edyn, igbl), as Fig 9B.

doi:10.1371/journal.pcbi.1004555.g012
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For the experiment, we index N subjects by n = 1, . . ., N, R = 3 repetitions by r = 1, . . ., R
and C = 8 conditions by c = 1, . . ., C. For each of the N × R × C trials the we index all D dura-
tions (integrated and segregated) recorded in that trial by d = 1. . .D or separately the Dint inte-
grated durations by dint = 1, . . ., Dint and the Dseg segregated durations by dseg = 1, . . ., Dseg

where D = Dint + Dseg. The first duration and (incomplete) last duration are excluded. On a
given trial all durations Tn, r, c, d can be indexed by d or indexed separated into durations inte-
grated T int

n;r;c;dint
and durations segregated T seg

n;r;c;dseg
.

For a given subject k the global mean percept duration is taken across R repetitions, C condi-
tions and D durations

Tglob
k ¼ 1

RCD

XR
r¼1

XC
c¼1

XD
d¼1

Tk;r;c;d

� �
: ð10Þ

Summary statistics of Tglob are plotted in Fig 11B for N = 16 subjects.
For a given subject k and condition j the normalized mean duration integrated across R rep-

etitions is

�T int
k ðjÞ ¼ 1

RDint

XR
r¼1

XDint

dint¼1

T int
k;r;j;dint

Tglob
k

 !
; ð11Þ

and, similarly, the noramlized mean duration segregated is

�T seg
k ðjÞ ¼ 1

RDseg

XR
r¼1

XDseg

dseg¼1

T seg
k;r;j;dseg

Tglob
k

 !
: ð12Þ

For a given condition j the the normalized mean duration integrated across subjects is

�T intðjÞ ¼ 1

N

XN
k¼1

�T int
k ðjÞ; ð13Þ

and the standard error of the mean is the standard deviation of �T int
k ðjÞ divided by ffiffiffiffi

N
p

. Similarly,

�T segðjÞ ¼ 1

N

XN
k¼1

�T seg
k ðjÞ: ð14Þ

An analogous normalization was used for the model data plotted across a range of Δf-values
in Figs 8B, 9D and 9E. At each Δf-value, durations integrated and segregated were extracted
from 36 four minute simulations excluding the first and (incomplete) last duration. A global
mean percept duration Tglob was computed combining durations integrated and segregated
across all simulations at each of the 8 Δf-values used in the experiments. Durations were nor-
malized by Tglob before taking a mean to produce the normalized mean durations integrated
Tint and segregated Tseg plotted in the figures.

Comparison to standard statistical distributions
Note that the notations used to define these standard distributions are local to this section and
not used elsewhere in the paper. The probability density function (pdf) for the gamma distribu-
tion is given by

f ðxjk; yÞ ¼ 1

GðkÞyk x
k�1 exp ð�x=yÞ; ð15Þ
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where k is the shape and θ the scale parameter. The mean of the distribution is equal to k/θ and
the variance is equal to k/θ2. The pdf for the log-normal distribution is given by

f ðxjm; sÞ ¼ 1

xs
ffiffiffiffiffiffi
2p

p exp �ð ln x � mÞ2
2s2

� �
ð16Þ

where μ is the location parameter and σ the scale parameter. The mean of the distribution is
equal to exp(μ + σ2/2) and the variance is equal to (exp(σ2) − 1) exp(2μ + σ2).

In Statistics of dominance durations: model, the distributions from the model and from the
experiment shown in Fig 5A and 5B were compared with the standard distributions given by
Eqs (15) and (16) using a one-way Kolmogorov-Smirnov KS test. The null hypothesis is that
the test data are drawn from the standard distribution and a significant result (P< 0.05) indi-
cates that the test data are not drawn from the comparison distribution. In a further analysis,
the model and experimental data were also compared in a two-way KS test to see if they come
from the same distribution (without specifying what that distribution might be). The null
hypothesis is that they have the same underlying distribution and a significant result
(P< 0.05) indicates that they are drawn from different distributions.

Repeated measures ANOVAs
Three subjects that did not contribute scores at all eight conditions (two at Δf = 1 st, one at
Δf = 15 st) were excluded from the following analysis. A significance level of 0.05 is used
throughout. In the text throughout the manuscript, the Greenhouse-Geisser (GG) corrected P-
values are reported as appropriate where the data reached significant in a Mauchly sphericity
test.

A one-way repeated measures ANOVA on proportion of time integrated (see Fig 9A) was
performed with Δf = {1, 2, 3, 5, 7, 9, 11, 15} as the within subjects factor. The analysis reported
in Table 3 shows a significant effect of Δf on proportion integrated F(7, 77) = 24.656,
P< 0.001. Pairwise comparisons with Bonferroni-corrected significance levels showed that

Table 3. One-way repeatedmeasures ANOVA of proportion integrated for the factorΔf (eight conditions, see Fig 9A). Analysis shows a significant
effect of Δf on proportion integrated. Data for N = 12 subjects, see text. Mauchly test for sphericity reaches significance, Greenhouse-Geisser correct P-value
reported in the text.

Source Type III SS df MS F Sig. G-G

DF 1.129 7 0.161 24.656 < 0.001 < 0.001

Error(DF) 0.504 77 0.007

doi:10.1371/journal.pcbi.1004555.t003

Table 4. Two-way repeatedmeasures ANOVA of log noramlized durations for Percept type (integrated or segregated), Δf (eight conditions) and
their interaction, see Fig 9B. Analysis shows a significant interaction for Percept * Δf. Data for N = 12 subjects, see text. Mauchly test for sphericity reaches
significance for the Percept * Δf interaction, Greenhouse-Geisser corrected P-value reported in the text.

Source Type III SS df MS F Sig. G-G

Percept 1.451 1 1.451 3.158 0.103 0.103

Error(Percept) 5.053 11 0.459

Δf 0.795 7 0.114 1.053 0.402 0.390

Error(Δf) 8.304 77 0.108

Percept * Δf 7.603 7 1.086 16.225 < 0.001 < 0.001

Error(Percept * Δf) 5.155 77 0.067

doi:10.1371/journal.pcbi.1004555.t004
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each individual condition has significant differences with at least two (and up to 5) other
conditions.

A two-way repeated measures ANOVA on log normalized durations log ð�T int
k ðjÞÞ and

log ð�T seg
k ðjÞÞ (see Eqs (11) and (12)) was performed with Percept type (integrated or segregated)

and frequency difference Δf as within subjects factors. The use of a log transformation of the
durations is standard for this type of experiment [19, 21]. The analysis reported in Table 4
shows a highly significant interaction for Percept � Δf, F(7, 77) = 16.225, P< 0.001. As for the
individual factors, Percept does not reach significance F(1, 11) = 3.158, P = 0.103, neither does
Δf F(7, 77) = 1.053, P = 0.402. We note that, given the interaction between Percept and Δf it is
hard to interpret effects of the individual factors. Pairwise comparisons with Bonferroni-cor-
rected significance levels reveal no significant differences between individual conditions in this
two-way analysis.

A one-way repeated measures ANOVA on η with Δf as a within subjects factor does not
show a significant effect F(7, 77) = 0.878, P = 0.463, see Table 5.

Supporting Information
S1 Data. Percept durations from psychoacoustic experiments. Durations from each trial are
provided in Matlab data format in the supporting information file S1_data.zip.
(ZIP)
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