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Abstract

Speed-accuracy tradeoff (SAT) is an adaptive process balancing urgency and caution when making decisions.
Computational cognitive theories, known as ‘‘evidence accumulation models’’, have explained SATs via a manipulation
of the amount of evidence necessary to trigger response selection. New light has been shed on these processes by single-
cell recordings from monkeys who were adjusting their SAT settings. Those data have been interpreted as inconsistent with
existing evidence accumulation theories, prompting the addition of new mechanisms to the models. We show that this
interpretation was wrong, by demonstrating that the neural spiking data, and the behavioural data are consistent with
existing evidence accumulation theories, without positing additional mechanisms. Our approach succeeds by using the
neural data to provide constraints on the cognitive model. Open questions remain about the locus of the link between
certain elements of the cognitive models and the neurophysiology, and about the relationship between activity in cortical
neurons identified with decision-making vs. activity in downstream areas more closely linked with motor effectors.

Citation: Cassey P, Heathcote A, Brown SD (2014) Brain and Behavior in Decision-Making. PLoS Comput Biol 10(7): e1003700. doi:10.1371/journal.pcbi.1003700

Editor: Olaf Sporns, Indiana University, United States of America

Received October 30, 2013; Accepted May 16, 2014; Published July 3, 2014

Copyright: � 2014 Cassey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Australian Research Council grants: FT120100244-SDB. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: peter.cassey@newcastle.edu.au

Introduction

The speed-accuracy tradeoff (SAT) is an important element of

day-to-day functioning for humans, managing the balance

between making decisions correctly while not wasting time. This

balance of caution with urgency has been studied for decades in

humans (e.g., [1]) and has been observed in the behavior of many

other animals, from rats to bees and even slime mould [2–5].

The dominant cognitive theoretical framework for explaining

the SAT is ‘‘sequential sampling’’, also known as ‘‘evidence

accumulation’’. Accumulator theories explain many aspects of

decision-making behavior by assuming that decisions are made by

gradually accumulating evidence from the environment in favour

of each possible choice. The first choice to accumulate a threshold

amount of evidence is selected. Accumulator theories most

naturally explain the SAT in terms of changes in the evidence

threshold. When a high threshold is set, a lot of evidence must be

collected before a decision is made, leading to slow but careful

decisions. Conversely, when a low threshold is set decisions are

made quickly, but are more often wrong because they are based on

too little evidence. Using this conventional parameterization,

accumulator models have a long and successful history of

providing detailed, quantitative accounts of many different aspects

of decision-making, including the SAT [6–10]. In addition,

accumulator models now underpin hundreds of applied studies,

where the decision-making theory is used as a tool to understand

important problems including clinical disorders [11], alcohol

intoxication [12], and sleep deprivation [13].

More recently, neurophysiological research has provided

insights into the neural underpinnings of decision-making. For

example, Glimcher [14] reviewed a broad range of research using

saccadic decision making as a way to understand the neural bases

of decision making in primates, from historical beginnings,

through seminal studies, to current theories. Shadlen and Kiani

[15] explore the neural bases of perceptual decision making and

draw links with other categories of decision making. At a more

theoretical level, links have been developed between neurophys-

iological structures and cognitive models of decision-making [16–

21]. According to Schall’s [22] comprehensive overview, ‘‘move-

ment’’ neurons in the frontal eye fields (FEF) of monkeys are

identified with the process of evidence accumulation: those

neurons accumulate evidence towards a threshold, and a

behavioural response follows soon after. ‘‘Visually responsive’’

neurons in the FEF represent the evidence that is being

accumulated – the strength of evidence in favour of each choice,

which is sometimes called the ‘‘drift rate’’ [23]. There are,

however, alternative accounts – see, for example, [24].

These links between neurophysiology and cognitive models

allow the possibility of testing cognitive models on their ability to

simultaneously account for both behavioral and neural data.

Simultaneously addressing both data streams is a difficult statistical

problem, and the most appropriate and coherent method for

doing so is a topic of current research [25]. Recently, in comparing

cognitive model predictions for behavioral and neural data, Heitz

and Schall [26] identified an apparent discrepancy between neural

mechanisms of the speed-accuracy tradeoff and the account given

by evidence accumulation models. Heitz and Schall undertook the

first neural investigation of the SAT. Two monkeys made repeated

perceptual decisions, sometimes under pressure to be careful, and

other times under pressure to be fast. Emphasis on accuracy vs.

speed was indicated by a colored cue before each decision, and

enforced by rewards and time-outs for responding too quickly or

too slowly. The activity of neurons in the monkeys’ FEFs was

recorded during decisions.

The most striking finding reported by Heitz and Schall was a

disconnect between cognitive accounts of the SAT and the neural
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data. When they applied an accumulator model to the behavioral

data alone (response time and accuracy), the model yielded the

conventional account of the SAT: emphasis on accuracy over

speed was mediated by an increased evidence threshold. The

neural data showed something quite different, with decreased

thresholds for accuracy emphasis, and large changes in the speed

of evidence accumulation across conditions. This evidence suggests

that the standard accumulator theories – which have successfully

explained perceptual decision-making data for nearly 50 years –

do not map cleanly onto neural data. Building on this conclusion,

Heitz and Schall developed a new accumulator model (their

integrated accumulator model, or ‘‘iA’’) with two changes: less

strict constraint on the way parameters change between speed and

accuracy emphasis conditions, and an additional, nonlinear

accumulation phase added following the regular evidence accu-

mulation process. These two assumptions allowed the iA model to

capture the activity recorded from cortical neurons identified with

decision-making, as well as some pre-existing knowledge about the

behaviour of downstream neurons, related to response effectors.

However, the new iA accumulator model has some important

disadvantages over conventional models, including greater com-

plexity, and a lack of practical and tractable estimation proce-

dures. These disadvantages must be carefully weighed against the

model’s advantages, as the computational tractability of evidence

accumulation models has been one of their great strengths,

supporting application and aiding understanding in a wide range

of applied fields.

We studied this problem by investigating whether a standard

accumulator model, without any changes to the underlying process

of evidence accumulation or its tractability, might be made to fit

both the behavioral and neural data recorded by Heitz and Schall.

This resolves the apparent disconnect between conventional

accumulator models and Heitz and Schall’s neural data, although

it leaves open some questions about activity in brainstem neurons.

Our modelling procedure corrects some problems in the

procedures used by Heitz and Schall, and also uses the neural

data to enforce strong constraints (quantitative constraints, where

possible) on the cognitive model. This results in a model which

simultaneously fits the behavioral data and is consistent with the

neural data, without making new assumptions about the dynamics

of the evidence accumulation process.

Results

How did the monkeys interpret speed vs. accuracy
instructions?

Figure 1 shows the histograms of response times for the two

monkeys, separated into data from the speed-, neutral- and

accuracy-emphasis conditions. It is apparent from these data that

the monkeys naturally favour speeded responding. For example,

data from the neutral condition (in which monkeys could choose

their own level of speed emphasis) are quite similar to data from

the speed-emphasis condition, but very different to data from the

accuracy-emphasis condition. Data from the speed-emphasis and

neutral-emphasis conditions exhibit the typical shape for response

time distributions that has been observed in thousands of studies

(see [27]), with a sharply increasing left tail and a slowly decreasing

right tail. Data from the accuracy-emphasis condition, in contrast,

show a very unusual broadening of the left tail. The data

responsible for this broadening correspond with the response time

distributions observed for the speed-emphasis condition, which

suggests an explanation for these unusual results: on some

decisions when the monkeys were given an accuracy-emphasis

cue they instead reverted to behavior more consistent with speed

emphasis. Rather than trying to separate decisions for which the

monkeys neglected the accuracy-emphasis cue, we directly

modeled the process of cue neglect and estimated the proportion

of decisions on which it occurred.

The neural recordings reported by Heitz and Schall [26] also

revealed an interesting effect of the speed-accuracy tradeoff

manipulation. There was more activity from visually responsive

neurons under speed-emphasis than accuracy emphasis (see their

Figure 2). In response to a speed-emphasis cue, visually responsive

neurons increased the baseline activity exhibited in the absence of

visual stimulation. They also showed increased activity in response

to visual stimuli, whether that stimulus was a target or not. These

effects are important because visually responsive neurons from the

FEF are assumed to correspond to the evidence that is to be

accumulated. If the linking assumptions that Heitz and Schall have

made between accumulator models and the neurophysiology are

right, the neural data suggest that the two monkeys did not adjust

their speed-accuracy settings in the conventional manner. Rather,

the neural data suggest that the monkeys increased their rate of

evidence accumulation in the speed-emphasis condition.

Models

A conventional accumulator model accounts for the data
Following Heitz and Schall [26], we used the linear ballistic

accumulator (LBA) model, which is a well-validated and exten-

sively tested theory of simple decision-making [6]. The LBA

represents a two-choice decision as a race between two accumu-

lators, with a response triggered by whichever accumulator

reaches threshold first. The model’s parameters include: the

threshold amount of evidence required to trigger a response (b);

the amount of evidence or bias toward a particular response prior

to evidence accumulation (A); the rate of evidence accumulation,

also known as ‘‘drift rate’’ (v); and the time taken by perceptual

and motor processes (t0). We included one extra parameter in our

model, to measure the tendency for monkeys to sometimes

disregard accuracy-emphasis cues. This was instantiated by

modelling performance in the accuracy-emphasis condition as a

mixture between the speed-emphasis and accuracy-emphasis

Author Summary

In everyday life we constantly balance urgency against
caution when making decisions – known as the speed-
accuracy tradeoff. Traditionally, computational cognitive
theories called ‘‘evidence accumulation models’’ have
explained the speed accuracy tradeoff as changes in the
amount of evidence necessary to trigger the selection of a
response. Recent work recording firing rates from the
neurons of monkeys while they made decisions revealed
an apparent discrepancy between the firing rates and the
way evidence accumulation models explain the speed-
accuracy tradeoff. This discrepancy was interpreted as
showing that traditional parameter settings were wrong,
and that the fundamental dynamic structure of the
evidence accumulation model required an addition. This
result is important because it calls into question nearly half
a century of cognitive science. We show instead that only
the parameter settings need be adjusted, not the basic
model structure, in order to account for the behavioural
data and the recorded neural data. Underlying our results
was an integrated approach to the neural and behavioral
data, allowing both streams to inform the theoretical
development.
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settings, with mixing proportion denoted by p. To keep things

simple, we forced the model to make identical predictions for the

speed-emphasis and neutral-emphasis conditions, reflecting the

much smaller apparent differences between data from those two

conditions vs. data from the accuracy-emphasis condition. This

simplifying constraint could be relaxed if greater detail was

required from the model predictions. In one final simplification,

we set the start point variability parameter to a fixed small value

(A~0:2).

We used the neurophysiological data recorded by Heitz and

Schall to provide strong constraints on our behavioral model.

Firstly, we forced the model to estimate different drift rate

parameters between the speed-emphasis and accuracy-emphasis

settings. This was inspired by the neural recordings reported in

Heitz and Schall’s Figure 2C, and the link between visually

responsive neurons and drift rates. In particular, we hypothesized

that speed emphasis would lead to larger mean drift rates for both

racing accumulators, and also greater variance in drift rates than

accuracy emphasis. Our assumption that the monkeys might have

implemented a speed-accuracy tradeoff partly via changing drift

rates is not just consistent with the neural data, it also has some

precedence in behavioral experiments, especially when there are

very large changes in performance between speed-emphasis and

accuracy-emphasis conditions [28–31]. A second, even more

precise, constraint was imposed on the behavioral model. Heitz

and Schall’s neural recordings exhibited a 20% increase in the

firing rate threshold between speed-emphasis and accuracy-

emphasis conditions. To force the cognitive model to be consistent

with the neural data, we constrained the parameters for the

decision threshold to have exactly this difference.

With these assumptions, our LBA model had fewer free

parameters than the iA model of Heitz and Schall. Putting aside

parameters used by Heitz and Schall [26] to model the neutral-

emphasis condition, and by us to model cue neglect, our LBA

model had seven free parameters and the iA model had nine. We

used Bayesian methods to estimate the parameters of the LBA

model from the data, via Markov Chain Monte Carlo integration

with proposals generated by a differential evolution algorithm

[32,33]. More details of the sampling method, as well as marginal

posterior distributions for all parameter estimates for both

monkeys, are given in Text S1 and Figures S1 and S2.

Table 1 shows the mean of the marginal posterior distribution

for each parameter. The monkeys disregarded the accuracy-

emphasis cues on around 10% of trials. When they did attend to

the cue, the distribution of drift rates under speed emphasis was

larger and more variable (parameter s) than under accuracy

Figure 1. Response time histograms, plotted separately for speed, neutral and accuracy conditions, for Monkeys Q and S. The
neutral-emphasis condition uses wider histogram bins because there were many fewer data from that condition. Histograms are collapsed over
correct and incorrect responses, but see Figure 2 for more information.
doi:10.1371/journal.pcbi.1003700.g001
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emphasis. This difference is consistent with both the neural data

and with the parameter estimates from Heitz and Schall’s iA

model. Under speed emphasis mean drift rate was higher both for

the accumulator representing a neuron with a target in its

receptive field (vt) and and for the accumulator representing a

neuron with a distractor in its receptive field (vd ).

Note that parameter s was fixed arbitrarily at 1.0 in the speed-

emphasis condition, to satisfy a mathematical scaling property of

the model [34]. In other applications, an alternative constraint is

sometimes applied instead to satisfy the same scaling property

(namely, vtzvd~1). Heitz and Schall actually applied both these

constraints simultaneously, which seriously impacts the model’s

ability to fit data. To illustrate, when we enforced the double

constraint on our model, the resulting model fit was very poor

indeed (see Text S2 and Figure S3). It is likely that this over-

constraint similarly reduced the ability of the LBA models

analysed by Heitz and Schall to fit the data adequately, which

may have undermined their conclusions.

Even though our LBA model was tightly constrained by

assumptions drawn from Heitz and Schall’s neural data, the

LBA model fit the behavioral data quite well. Figure 2 shows the

goodness-of-fit displayed using probability density functions for

each monkey, conditioned on correct vs. incorrect responses, and

drawn separately for speed-, neutral- and accuracy-emphasis. The

data are shown by histograms, and the LBA model predictions are

shown by smooth lines. Model predictions were generated by

generating data from the model using parameter settings sampled

randomly from the posterior distribution. The model predictions

align closely with the data for both monkeys, except where the

model predicts, for Monkey Q, slightly too-high response accuracy

for the neutral-emphasis condition and too-low response accuracy

and speed- and accuracy-emphasis conditions. Most importantly,

when compared with Heitz and Schall’s Figure 6C, the qualitative

fit of the LBA model is at least as good as that of the iA model

which was developed in part to fit this data set. Quantitative

comparisons of goodness-of-fit might be even more illuminating

here, but are not available for the iA model due to its

computational intractability.

A strength of Heitz and Schall’s [26] iA model was that its

predicted evidence accumulation trajectories were qualitatively

similar to the observed firing rate trajectories of movement

neurons from the FEF. This was also true of our LBA model.

Figure 3 shows the evidence accumulation trajectories predicted

by the LBA model, for monkey Q (trajectories for monkey S are

shown in Figure S4). Whether the sample trajectories from the

LBA model are aligned on stimulus onset (left panel) or on

response (right panel), the qualitative patterns are broadly

consistent with with the neural data and those predicted by Heitz

and Schall’s iA model (their Figure 6B). However, one important

discrepancy between the LBA model’s predicted sample paths and

the neural trajectories regards the time taken for stimulus

registration (i.e., perception). Heitz and Schall’s Figure 2C shows

Figure 2. Joint probability distribution functions over response time and choice. Observed data are shown by coloured histograms. Lightly
shaded histrograms represent correct responses with superimposed darker histograms representing incorrect responses. Model posterior predictive
distributions are overlaid as lines.
doi:10.1371/journal.pcbi.1003700.g002
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that neural firing rates begin to discriminate between target and

distractor stimuli around 150 msec. after stimulus onset, but that

the precise timing of this discrimination differs between the speed,

neutral and accuracy emphasis conditions (by about 19 msec.).

Our LBA model as described so far does not include any

mechanism to account for these differences. However, it could

easily do so in the same manner as Heitz and Schall’s iA model;

that is, by allowing the flexibility to estimate different parameters

for the non-decision time (t0) in the three conditions.

Discussion

Limitations and future directions
Heitz and Schall [26] (see also [35]) concluded that there was

a disconnect between cognitive and neural accounts of evidence

accumulation. This conclusion was based on showing that a

particular standard cognitive evidence accumulation model fit

the behavioral data, but not the neural data. Instead, we have

shown that a standard cognitive model can fit both the

behavioral and neural data recorded by Heitz and Schall. This

is not to suggest that the model we have used is the best or most

complete account of the data. Both the behavioral and neural

data could certainly be modelled in greater detail. For example,

the monkeys’ task was not a two-choice decision, as assumed by

by Heitz and Schall (an assumption we also adopted to make

our modelling efforts comparable). The task was really a choice

between eight options, which should more accurately be

modelled by a race between eight accumulators. Such a race

is not equivalent, under any parameter settings, to a race

between two accumulators.

Another aspect of the data that deserve further attention is the

nature of responding in the accuracy-emphasis condition. We

Table 1. LBA parameter estimates.

Monkey: Q S

Condition: Accuracy Speed Accuracy Speed

Non-decision time (t0) 0.10 0.09

Mixture (p) 0.08 0.12

Threshold (b) 0.24 0.29 0.42 0.50

*Mean Drift Rate, RF with: Target (vt) 0.66 2.30 1.16 2.78

Distractor (vd) 0.40 1.41 0.81 2.11

Drift Rate Std. Dev. (s) 0.10 (1) 0.28 (1)

LBA parameter estimates for both monkeys. Parameter s was fixed arbitrarily at 1.0 in the speed-emphasis condition, to satisfy a mathematical scaling property of the
model. Parameter b for the speed condition was fixed at a factor of 1.2 of b for the accuracy condition. Measurement units: b in arbitrary units of evidence; t0 in seconds;
p dimensionless; other parameters in evidence units per second. ‘‘RF’’ = receptive field.
doi:10.1371/journal.pcbi.1003700.t001

Figure 3. Sample accumulation trajectories, for monkey Q, for the accumulator corresponding to a neuron with a target in its
receptive field. To correspond with neural data, only trajectories corresponding to correct decisions are displayed. Mean trajectories overlaid as
heavy lines. Left panel displays paths aligned on stimulus onset. Right panel displays paths aligned on response. Only speed and accuracy emphasis
conditions plotted due to high similarity between neutral and speed emphasis.
doi:10.1371/journal.pcbi.1003700.g003
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made the simple assumption that those responses were a mixture

of careful decisions along with some decisions that were identical

to responses made under speed emphasis. This assumption is

probably too simple, and deserves further investigation. Very fine-

grained analysis of the response time distributions (see Figure S5)

highlights the extra detail that might be modelled in these data.

There are some signs in Figure S5 that the monkeys might not

have been treating the accuracy-emphasis condition as a regular

choice task at all. Rather – and in agreement with the reward

procedures imposed on the monkeys – they might have been

treating this condition as a ‘‘response signal’’ task, withholding

their responses for some time after making a decision, in order to

maximise their rewards. Most telling, the response time distribu-

tions in the accuracy condition are close to symmetric and almost

Gaussian across a substantial range (see Gaussian curves on Figure

S5). Gaussian distributions are never observed for response times

from regular decision-making experiments, but they are observed

in response signal experiments [36]. Further, Heitz and Schall’s

Figure 4C suggests that neural activity might not have been the

same in those trials from the accuracy-emphasis condition where

the monkeys neglected the cue as in some trials from the speed-

emphasis condition. This suggests that our simple assumption that

cue-neglect trials were identical to regular speed-emphasis trials

might be too simple. Perhaps cue neglect trials resulted in a speed-

accuracy setting somewhere between speed-emphasis and accura-

cy-emphasis conditions. These questions are beyond the scope of

the current paper, but deserve further investigation, ideally with a

complete model that is simultaneously applied to the behavioral

and neural data [25].

An important advantage of Heitz and Schall’s iA model is its

ability to account for neural data downstream from the cortical

recordings. Heitz and Schall’s cortical recordings were from the

frontal eye fields, using neurons previously identified as instanti-

ating the process of evidence accumulation. These neurons

subsequently influence neurons in the brain stem which are

closely tied to response execution (generating eye movements, in

this experiment). Different from the cortical neurons, these brain

stem neurons have very constant firing rate thresholds between

speed-emphasis and accuracy-emphasis conditions. If the leaky

integrator component of Heitz and Schall’s iA model is identified

with these brain stem neurons, and if the decision threshold is

assumed to occur in the brain stem, not the cortex, then the iA

model neatly accounts for the constant (across emphasis condi-

tions) firing rate thresholds observed in the brain stem as well as

the varying firing rate thresholds observed in the cortex. This

account remains to be carefully tested, however. For example, an

assumption that the decision threshold resides in the brain stem,

and that the threshold never changes, makes the strong prediction

that all speed-accuracy tradeoffs must be accomplished by

parameter settings similar to those observed here: higher

thresholds and drift rates for speed than accuracy conditions.

This is certainly not the case in many analyses of behavioral data.

Further, if the decision threshold really does reside in brain stem

neurons related to eye movements, this leaves open many

questions about the effect of changing modality. For example, if

the decisions were made without any reference to the visual system

(such as finger-button responses to audio stimuli) would the eye-

movement neurons still control the decision threshold? Such

questions require further investigation.

Summary

Heitz and Schall [26] report important new data – direct

recordings from neurons implicated in decision making in

monkeys, while the monkeys adjust their speed-accuracy trade-

off. When Heitz and Schall fit an overly-restricted version of a

conventional decision-making model to the behavioral data

alone, ignoring the neural constraints, the predictions of the

behavioral model were inconsistent with the neural data. This

prompted the addition of a new mechanism to the decision-

making model with more complicated dynamics for the

accumulation of evidence. The development of a new theory

for simple perceptual decision-making is no small thing. In the

interests of cumulative science, new theories are evaluated

against many benchmarks that have been uncovered by the half-

century of behavioral investigations of decision-making

[9,37,38]. The new iA model developed by Heitz and Schall

has not been subjected to these tests. In addition, the iA model

does not permit practical mathematical solutions, which limits its

application.

In contrast, we have shown that a conventional and well-

validated decision-making model is able to account for the key

patterns in both the behavioral and neural data recorded by Heitz

and Schall. The detailed structure of our model’s parameter

settings was inspired by the neural activity, and also agrees with

the parameter constraints used for Heitz and Schall’s new iA

model. The parameter estimates from our model accurately reflect

important patterns in the neural activity data, and the predictions

from our model match the fine-grained behavioral data, including

full response-time distributions.

Conclusions

Our conventional accumulator model accommodated both

the behavioral and neural data reported by Heitz and Schall

[26]. This calls into question the justification for rejecting a

simple link between conventional cognitive and neural accounts

of decision-making. The reason our LBA-based analysis

reached this integrative conclusion while Heitz and Schall’s

did not is due to differences in the underlying logic. Heitz and

Schall did not allow their initial LBA model analyses to be

informed by the neural data at all. Rather, they analysed the

behavioral data in isolation and then compared the resulting

model predictions to the neural data. This strict approach does

not align with the scientific goal of identifying models which are

able to simultaneously account for both neural and behavioral

data.

Heitz and Schall’s detailed recordings from individual neurons

engaged in decision making could never be obtained from

human participants. Our analyses showed that a cognitive theory

which standardly accounts for human data can also account for

these data from monkeys, confirming again that primate

experiments are valuable for understanding human cognition.

However, our analyses also suggest that care needs to be

exercised in extrapolating between species, and also across the

different experimental procedures used for monkeys and people.

For example, the monkeys in Heitz and Schall’s experiments

appeared to have default speed-accuracy settings that strongly

emphasised speed over accuracy: data from the ‘‘neutral’’

condition, in which monkeys were free to choose their own

speed-accuracy setting, were quite similar to data from the

speed-emphasis condition, but very different from the accuracy-

emphasis condition. This default setting is the opposite of that

generally observed in humans, where behavior in a neutral

condition is usually very similar to behavior under accuracy

emphasis [17,39]. It is an open question whether humans might

behave similarly to monkeys when tested under identical

procedures.
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Supporting Information

Figure S1 Markov chain Monte Carlo sampling chains for each

parameter, for monkey Q and S. Only burnt in samples are

displayed (10000–15000 iterations).

(TIF)

Figure S2 Marginal posterior distributions over each parameter

for monkey Q and S.

(TIF)

Figure S3 Resultant fit for an over–constrained version of the

model variant in the main text. Probability distribution functions

over response time and choice. Observed data, plotted as coloured

histograms. Model posterior prediction distributions are overlaid

as lines.

(TIF)

Figure S4 Sample accumulation trajectories, for monkey S, for

the accumulator corresponding to a neuron with a target in its

receptive field. To correspond with neural data, only trajectories

corresponding to correct decisions are displayed. Mean trajectories

overlaid as heavy lines. Left panel displays paths aligned on

stimulus onset. Right panel displays paths aligned on response.

(TIF)

Figure S5 Fine grain structure of response time distributions

displyed in Figure 1. Lines overlaid on the accuracy RT

distributions represent Gaussian curves.

(TIF)

Text S1 Details of the sampling method via Markov Chain

Monte Carlo integration with proposals generated via differential

evolution.

(PDF)

Text S2 Details of over-constrained version of the model variant

in the main text.

(PDF)
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