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Abstract

In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a
complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is
well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven
timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of
thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the
stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we
synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron
based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of
cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex.
By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information
transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in
response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings
indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on
thalamic synchronization.
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Introduction

Sensory systems serve the purpose of allowing us to extract

perceptually relevant features from the environment. Although

there are certainly examples of sensory features whose coding

originates in the sensory periphery (e.g. auditory frequency, visual

color, etc.), the more intriguing and less well understood phenom-

ena involve the emergence of feature selectivity in more central

brain structures that do not just inherit the selectivity from the

periphery. Perhaps the most well studied of these phenomena is that

of orientation selectivity in primary visual cortex (V1), where many

if not most neurons in the mammalian primary visual cortex exhibit

differential firing activity for visual stimuli at different orientations,

despite the fact that the neurons projecting from the lateral

geniculate nucleus (LGN) serving as input to V1 exhibit little to no

orientation preference on their own [1] (see [2] for a review). This

implies that the thalamocortical link is a transformative location for

representation of stimuli as collections of particular features rather

than samples (i.e. it does far more than simply relay luminance

values to the cortex). This transformation can serve as a general

model for how sensory systems convey increasing feature selectivity

as the information moves to higher-order brain areas. How do these

convergent thalamic structures drive cortical feature selectivity, and

in what way do populations drive this selectivity?

The mechanistic origin of orientation tuning in V1 has been

vigorously explored in the literature [1–5]. In their seminal work,

Hubel and Wiesel outlined a conceptual model that involved the

projection of LGN neurons along a particular axis of orientation to

a common cortical target [1], the core connectivity of which was

subsequently confirmed in recordings from connected pairs of

neurons in LGN and V1 [6–8]. Although the relative roles of this

feedforward architecture versus cortico-cortico connectivity in

sharpening and refining orientation selectivity in such phenomena

as contrast-invariance and cross-orientation suppression has been

intensely debated [2,9], the thalamic basis for the origin of the

basic selectivity is not in dispute, and by its nature implies a role

for the timing of thalamic inputs to the cortical target. That is, the

several decade old proposal by Hubel and Wiesel conceptually

suggests that an edge activating the subset of thalamic neurons

projecting to a common cortical target at the same time would

naturally drive the cortical neuron more so than when the

thalamic inputs are activated at different times, establishing the

orientation tuning for the cortical neuron. However, the precise

role of timing of thalamic inputs in the downstream cortical

orientation selectivity is not known. In the context of the natural

visual environment, it has been shown that LGN neurons

(individually and across pairs) are temporally precise to a time

scale of 10–20 ms, a level that is matched to what is necessary to
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capture the timescale of changes exhibited in natural scenes [10–

12]. Further it has been demonstrated that neurons in the primary

visual cortex are extremely sensitive to short intervals between

incoming thalamic spikes also on the time scale of approximately

10 ms [13–22] and that common cortical convergence is most

probable when receptive fields overlap [7,13]. All of these findings

collectively suggest that feature selectivity is likely to arise from the

modulation of precise timing among overlapping populations of

neurons in LGN and that this modulation drives the coactivation

of neurons within the populations. Finally, we have recently shown

that considering just the coactivation between pairs of electro-

physiologically recorded thalamic neurons reveals in many cases

extremely sharp orientation tuning even when the receptive fields

are highly overlapped [23].

Here, to explore the role of the precise timing of thalamic

spiking in the orientation tuning of the downstream cortical

neurons to which the thalamus projects, we utilized experimental

population recordings of single units from the LGN region of the

visual thalamus in concert with a large-scale thalamocortical

model. Specifically, based on anatomical and physiological

evidence concerning the convergence of thalamic input to cortical

layer 4, we constructed thalamic sub-populations from experi-

mentally recorded thalamic spiking in response to oriented visual

stimuli, and systematically controlled the precise timing across the

sub-population and its direct impact on the downstream orienta-

tion tuning. We found that the conventionally measured tuning

sharpness was remarkably invariant over a wide range of peak

LGN timing precisions, but the trial-to-trial variability in cortical

response was strongly influenced by the timing precision of the

LGN inputs. From a decoding perspective of an ideal observer of

the cortical response, this complex relationship led to a decreasing

error in estimation of orientation with increasing thalamic

precision, and a corresponding increase in the information rate,

both saturating for peak thalamic precisions of 10–20 ms, a finding

which was invariant to the overall width of cortical orientation

tuning. Taken together, the results here provide a compelling

picture for the role of stimulus-driven thalamic synchrony in the

emergence of cortical feature selectivity.

Results

Spatial Distribution of LGN Populations
Neurons in layer 4 of primary visual cortex are driven by sub-

populations of projecting LGN neurons with receptive fields that

are highly overlapped, thus representing a relatively limited area of

visual space [24]. Although individual LGN neurons are relatively

insensitive to the orientation of drifting sinusoidal gratings, the

synchrony across neuron sub-populations is often highly sensitive

to the orientation, a product of the relative spatial geometry of the

receptive fields and the underlying temporal dynamics of

component neurons [23]. LGN populations which share a

convergent cortical neuron are both large (approximately 30

neurons [8]) and highly overlapped. Since it is not currently

possible to record from such dense and numerous clusters in the

LGN, we implemented a population-filling method to quantify the

synchronization properties of the sub-population. Specifically, in

the population-filling method we utilized simultaneous recordings

of spiking activity of small sub-populations of LGN neurons whose

receptive fields span a small area of visual space (see Methods).

Single unit activity was collected in response to spatiotemporal

white noise, and receptive fields (RFs) were mapped using

standard spike-triggered averaging (see Methods). The RFs of a

pool of simultaneously recorded LGN neurons are shown in

Figure 1A, where the RF for each neuron is represented as the

20% contour. Note that in this recording, 5 neurons were recorded

simultaneously, where each of these neurons is represented as a

different color in the figure. We have previously provided

experimental measures of the distribution of receptive field

spacing of pairs of LGN neurons monosynaptically connected to

a single cortical cell [8] and populations of LGN neurons to a

single cortical orientation column [24], as shown with the dashed

gray curve in Figure 1B. Specifically, this measure provides a

probability distribution of the distances between receptive fields, as

measured by the distance between the RF centers normalized by

the diameter of the larger of the two RFs, referred to here in units

of receptive field center diameter (RFCD) - see [24].

From experimental data in [24], the distribution of separations

was modeled as 3:5 � exp({2:5x), where x is the separation in

units of RFCD, which is described only for the range of 0.4 to 2.0.

Using the neurons in Figure 1A as templates and the relationship

in Figure 1B (dashed line) as a rule, we filled out the assumed

remainder of the population by translating the receptive fields in

visual space, creating a dense and accurate convergent LGN

population, as shown in Figure 1C. The receptive field centers

were randomly shifted such that the amount of visual space

covered did not change relative to the visual space covered by the

original simultaneously recorded population. This method resulted

in a distribution of RF separations consistent with previous

experimental findings (simulated distribution shown with solid

black circles, Figure 1B). Note that because the original population

was itself elongated in the horizontal axis, the resultant shifts for

this population were also mostly horizontal although some

receptive field locations also moved vertically. The resultant

cluster of receptive fields would be typical for a population that has

a major and minor axis as opposed to being more circularly

arranged. The resulting aspect ratio of the cluster of RFs in

Figure 1A is approximately 2.4:1, when measured as the ratio of

the longer dimension to the shorter dimension of the area covered

by the RF contours. It is important to note that this aspect ratio is

lower than the majority of existing models [1,3–5], where aspect

ratios range from 3 to 4 (but see [5] for a much smaller aspect

ratio).

Spiking activity was also collected in response to drifting

sinusoidal gratings (0.5 cycles/degree, 5 Hz, 100% contrast - see

Methods). The individual LGN neurons had mean firing rates that

ranged from 16 to 28 Hz which were relatively insensitive to the

stimulus orientation. To generate the population activity in

response to the drifting gratings, we utilized the spatially translated

RFs as described above, and imposed temporal shifts in the spiking

activity based solely on the geometry related to the RF centers, as

Author Summary

While the visual system is selective for a wide range of
different inputs, orientation selectivity has been consid-
ered the preeminent property of the mammalian visual
cortex. Existing models of this selectivity rely on varying
relative importance of feedforward thalamic input and
intracortical influence. Recently, we have shown that
pairwise timing relationships between single thalamic
neurons can be predictive of a high degree of orientation
selectivity. Here we have constructed a computational
model that predicts cortical orientation tuning from
thalamic populations. We show that this arrangement,
relying on precise timing differences between thalamic
responses, accurately predicts tuning properties as well as
demonstrates that certain timing relationships are optimal
for transmitting information about the stimulus to cortex.

Thalamic Synchrony Modulates Cortical Tuning
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illustrated in Figure 1D. Specifically, a spatial translation of the RF

by x degrees horizontally and y degrees vertically imposes a

latency shift of the neural response by an amount proportional to

the component of the vector connecting the centers of the two RFs

orthogonal to the edge of the drifting grating, scaled by the speed

of the drift (see Methods). For the collected datasets, spiking

activity was collected at each of eight drifting directions with

sinusoidal gratings. For each stimulus condition, each randomly

placed neuron was assigned a random trial from the original

neuron from which it was derived and the shift latency value was

added to all spike times in the chosen trial. In this spirit, we view

the trial to trial variability in spiking activity for a single neuron as

representative of the across neuron variability on a single trial. The

resulting population response at each orientation is shown in

Figure 1E. For most orientations, spike times within the population

uniformly distributed across the entire trial timespan. However, at

90 and 270 degrees, the spike times line up rather precisely

between all neurons in the population, reflecting a high degree of

synchrony at these orientations.

Physiological Timing Jitter
The degree of synchrony across this population of neurons is a

function of the orientation of the drifting gratings, as well as the

variability in spiking timing across neurons within the population.

To quantify the synchrony, we used a timing jitter metric, which

utilizes the width of the spike-time auto-correlation computed

from all spikes in the population (roughly equivalent to the PSTH

width). A brief overview of how the auto-correlation is calculated is

Figure 1. Filling in population from recorded neuron receptive fields. A. The original simultaneously recorded receptive fields of 5 neurons.
B,C. The original receptive fields were duplicated and randomly shifted so that the resulting population (C) matched the previously measured
distribution of RFCD values (B) Solid circles indicate RFCD measures from the population in C, while the dashed line indicates the expected
distribution (see Methods). D. The spatial shift in each receptive field describes a particular distance perpendicular to the stimulus orientation that
each receptive field shifts; using the spatial and temporal frequencies of the stimulus this can be translated into a timing shift. E. Once spike times are
appropriately shifted for each neuron in the population, rastergrams reveal spiking alignment only for 90 and 270 degree stimulus orientations.
doi:10.1371/journal.pcbi.1003418.g001

Thalamic Synchrony Modulates Cortical Tuning
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demonstrated in 2A. The collection of spike times across the input

population is collapsed into a single spike train, which represents

all the projecting thalamic input on the cortical target neuron.

This spike train is then used to calculate all of the pair-wise timing

differences between every input spike in the population, the

histogram of which forms the auto-correlation estimate. There are

two values of interest: the population PSTH (with a width of sJ )

and the ‘‘response timescale’’ of the auto-correlation function

(given by tR). These related values provide us with an

approximation for the synchronization within the neural popula-

tion. When synchrony is high, the spike time auto-correlation has a

narrow width and thus there is little jitter. Alternatively, when

synchrony is low, the auto-correlation has an increased width and

jitter is very high, a property that is demonstrated in Figure 2B.

From top to bottom in the figure, the level of synchrony in the

population increases, spike times become more clustered, and the

auto-correlation has a correspondingly decreasing width. Note

that each auto-correlation covers the lag range from 2400 ms to

+400 ms. Each auto-correlation function was fit with a Gaussian

between 2100 and +100 ms to eliminate any effects of periodicity

in response to the drifting sinusoidal grating. The corresponding

width of this Gaussian fit was then utilized as the measure of

timing jitter. As in [10], the timing jitter was defined as the half the

latency at which the Gaussian fit is equal to 1=e (see Methods and

Figure 2A). The timing jitter of the population is shown as a

function of the stimulus orientation in Figure 2C, where the

random sampling of single trials of the template neuron was

repeated 50 times. At the most asynchronous stimulus orientations

(in this case perpendicular to the elongated axis of the RFs of the

population), the timing jitter was approximately 100 ms. At the

preferred orientations, when synchrony was maximized, the

timing jitter was approximately 24 ms. The timing jitter as a

function of stimulus orientation was fit with a Gaussian function

(gray dashed line in Figure 2C) and exhibited a characteristic

tuning width of approximately 31 degrees (standard deviation), a

finding which was consistent for two of the three animals. In the

third animal there was an insufficient number of strongly-driven

neurons with identical polarities (ON- versus OFF-center) to allow

for a reasonable reconstruction of a population with more than 2

or 3 neurons. With so few neurons, the population displayed more

and more properties of the response of a single neuron as opposed

to a rough average of multiple neurons and the overall orientation

tuning decreased as the population approached the orientation-

agnostic response properties of a single input neuron. To

determine the generality of our findings here, we utilized other

metrics from previously published studies, with a focus on the

reliability method used in [25] which is easily adaptable to

population data. We found that qualitatively the results were

similar to our own findings; just as jitter decreases in our sample

population at 90 and 270 degrees (Figure 2C) the reliability across

all the neurons in the population is significantly higher at 90 and

270 degrees. We thus expect that the synchronization observed

across all neurons in the population is not affected by the metric

chosen to measure it.

By construction, the degree of synchrony across the population

of neurons in Figure 1D is a function of the orientation of the

drifting gratings and across neuron variability in spiking,

independent from geometry. The across neuron variability in

timing thus set the lower bound of timing jitter in Figure 2C. To

more fully explore the role of synchrony in shaping the feature

selectivity in the downstream cortical response, we effectively

replaced the across-neuron variability in spike timing with

variability under our control. Specifically, we utilized a single

trial spike-train for a template neuron and introduced the latency

associated with the translation of the receptive field as in

Figure 1D, but subsequently added variability to each spike time

in the form of a Gaussian random variable with zero mean and

variance s2
S(h). So long as the population firing rate reaches a

particular minimum mean level it does not matter which template

neuron is chosen to provide the spike train; we found that nearly

all neurons from all three animals provided consistent simulations

of cortical activity. Using a single trial has the effect of removing

the effects of variable spike count across trials for a particular

neuron in addition to providing the exact control over the timing

jitter. Of key importance is the value sS(h), which is the stimulus-

dependent component of timing jitter (see Methods for expanded

description). This value is related to but not equal to the timing

value measured from the full populations; sS(h) represents the

underlying stimulus-based modulations to synchrony that give rise

to the full timing jitter relationship shown in Figure 2C. This

timing variability quantity sS(h) was parameterized as a Gaussian

function of h and was manually tuned to reproduce the population

timing variability curve in Figure 2C. From here on out, when we

refer to ‘‘minimum timing jitter’’ we are referring to the minimum

value of sS(h) that occurs at the preferred orientation.

Cortical Orientation Tuning
To determine how different levels of input synchrony affect the

downstream cortical response and the corresponding feature

selectivity, we simulated the cortical layer 4 neuron response to the

drifting gratings at different orientations. The previously described

Figure 2. Timing jitter is defined by the spike-time auto-
correlation width. A. Spike timing auto-correlations come from the
spike times across the entire population, collapsed to a single spike
train. This can be represented by a PSTH with a particular defined width
sJ which represents timing jitter in ms. The resultant auto-correlation
also has a defined width tR and this value is the lag at which the auto-
correlation is equal to 1=e, assuming the auto-correlation is appropri-
ately normalized. By construction, tR~2sJ (see Methods). B. Example
spike time auto-correlation widths (fit to 20.1 s to 0.1 s with a
Gaussian) at non-preferred, moderately preferred, and highly preferred
orientations (top to bottom). C. The timing jitter is defined through the
width of these Gaussian fits and decreases as the stimulus orientation
nears the preferred orientation. Black circles indicate measurements
taken from recorded data and arranged as in Figure 1, and the dashed
gray line indicates a Gaussian fit. Error bars are standard deviation over
multiple simulations of the population.
doi:10.1371/journal.pcbi.1003418.g002

Thalamic Synchrony Modulates Cortical Tuning
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populations were used as input to this model, modulating the

minimum value of sS(h) to cover a range of 6 to 40 ms of

population timing jitter. To model the cortical neuron, we used a

biophysically inspired integrate and fire model — illustrated in 3A

— that generates a continuous membrane potential and corre-

sponding firing activity, similar to that in [22] and [23] - see

Methods. In brief, the model lumps all input spike times together

in a common spike train, laying down a superimposed EPSC for

each input spike (all of which thus have equal weighting). This

model is represented by the differential equation

dVm

dt
~(RmIEPSC(t){(Vm(t){Vrest))(1=tm)

with a fixed parameter set to determine the point by point

membrane potential and with a fixed time step of 0.05 ms.

Membrane potential traces show a clear stimulus-driven modula-

tion [26–28] that increases in amplitude towards the population’s

preferred orientation when averaged over 1000 trials, as shown in

Figure 3B. Single trial responses, with the exception of the

nonphysiological mechanics of the hard reset, match typical

recordings from cortical neurons using examples from Carandini

& Ferster [29] as a primary source for comparison. Further, the

tuning properties (firing rate and tuning half-width at half-height)

match reported values, as will be shown later. The reset mechanics

did not adversely affect the accuracy of the results as the spiking

statistics and tuning curves were consistent with experimental

observations. Cortical spike counts, as shown in Figure 3C

rastergrams, increased dramatically as the stimulus approached

the preferred orientation, and the underlying stimulus driven

events became very clear. Again, these spike count rastergrams are

representative of what would be expected from cortical neurons,

although this is easier to see in the cortical tuning curves.

By construction of the thalamic input, the model generated

cortical responses that exhibited orientation selectivity. Although

the original experimental data was collected only for 8 grating

orientations, the parameterized construction described in Figure 2

allowed simulation at an arbitrarily fine grain (chosen to be at 1

degree increments here). The resulting mean cortical firing rate

across all orientations for a minimum jitter of 6 ms is shown in

Figure 4A, which is stereotypical of recorded responses of neurons in

the primary visual cortex [29], with higher firing rates possible when

using different neurons for thalamic spike times. The cortical firing

rate as a function of stimulus orientation was fit with a local

Gaussian over a 180 degree span, as shown with the dashed curve.

The parametric fits for each of a range of minimum jitter cases are

shown in Figure 4B. The colors indicate decreasing levels of

synchrony with dark red representing high synchrony (6 ms of jitter)

and dark blue representing low synchrony (40 ms of jitter). The

overall magnitude of the cortical response decreased with increasing

amounts of jitter, as reflected in the overall amplitude of the tuning

curves. The sharpness of orientation tuning is quantified though the

half-width at half-height (HWHH) of the tuning curve [29,30].

Consistent with reported values for firing rate, the HWHH tuning

width for firing rate was approximately 15 to 16 degrees and was

relatively insensitive to the LGN input synchrony (Figure 4C) up

until 35 ms of input jitter at which point the tuning width increases

by approximately 1.5 degrees. These values are on the lower end of

expected tuning widths [9,29,30]. Carandini & Ferster [29] noted

that due to experimental limitations they cannot discriminate half-

widths less than 17 degrees, a value that they find for almost all

recorded neurons. On the other hand different studies [31,32] have

reported tuning widths with significant numbers of neurons with

small (10–15 degree) tuning widths. Note that the primary results of

the analysis were relatively invariant to the actual tuning width, as

we will demonstrate later.

Statistics of Orientation Tuning
The tuning curve is illustrative to see how well a particular

stimulus orientation drives a cortical neuron but by itself it does

not convey any context as to how well the cortical neuron

transmits information about the stimulus. Synchrony clearly

modulates the overall amplitude of this tuning but it is unclear

how it modulates the transmission of the underlying stimulus

information. The ability of an ideal observer of neural activity to

extract meaningful information regarding the features of a visual

stimulus depends not only on the shape of the tuning curve, but

also on the variability of the cortical response and how this

variability changes with the stimulus feature. The statistics of the

cortical response are summarized in Figure 5. In Figure 5A, the

underlying relationship between the mean and variance of the

cortical spike count for all stimulus orientations (each individual

dot) is illustrated. The relationship clearly demonstrates an

increase of spike count variance relative to spike count mean with

a slope of approximately 3, which begins to drop when the input is

relatively synchronous (6–10 ms of jitter). The variance begins to

drop at extreme levels of synchrony as the decreased amount of

added timing variance approaches the size of the integration

window of the model, and higher synchrony values effectively

make the spike count more deterministic. With respect to the

relationship between the mean and variance of the cortical

response, experimental results have been variable, exhibiting both

sub- and supra-linear variability [33–42]. So while the orientation

tuning width was relatively invariant to the level of synchrony, as

shown in Figure 4C, the increased level of synchrony was

Figure 3. Model and simulated output characteristics. A. The
model imposes simple control over input spike synchrony and uses a
leaky integrate-and-fire construction to determine membrane potential
and output spike times. B. The simulated cortical membrane potential
has an amplitude that is strongly affected by the stimulus orientation,
but also a mean value that changes with orientation due to reset
characteristics. C. Orientations which are closer to the preferred
orientation produce dramatically increased numbers of spikes.
doi:10.1371/journal.pcbi.1003418.g003

Thalamic Synchrony Modulates Cortical Tuning
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accompanied by an increased mean firing rate, and thus an

increased variance, the effects of which are not immediately

obvious from the perspective of an ideal observer. Figure 5B shows

the corresponding spike count distributions for the tuning curves in

Figure 4B, for the preferred stimulus orientation (90 degrees). The

spike count distribution changed dramatically as input synchrony

decreased, with asynchronous inputs pinning spike count distri-

butions at the origin and restricting the discriminability at adjacent

distributions, a problem not encountered for highly synchronous

inputs. From these results we might qualitatively expect that

increasing synchrony would lead to increases in information

because synchronization appears to give response distributions a

greater range over which to vary with stimulus orientation.

Results from both the mean-variance relationship and the per-

synchrony peak spike count response distributions thus lead to

conflicting expectations on what level of input population synchrony

would drive the maximum amount of information about stimulus

orientation. In order to solve this inconsistency we must implement a

metric that describes concisely how discriminable different stimulus

orientations are and determine the effect input synchrony has cortical

information transfer. Fisher information quantifies the degree to

which response distributions are discriminable, and thus, provide

unambiguous information about stimulus features captured in the

response distributions. The simplest understanding of Fisher infor-

mation in the context of the problem here is that it represents the

derivative of the tuning curve with respect to the stimulus orientation;

regardless of the underlying firing statistics, the peak Fisher

information will occur near orientations where the derivative of the

tuning curve is highest.

Maximum Information Is Modulated by Changes in Input
Population Synchrony

We use the peak amount of information across all stimulus

orientations for each level of input synchrony as the metric for the

Figure 4. Tuned output of cortical model. A. Example tuning curve (black line) at 6 ms of minimum jitter is fit very well by a Gaussian curve
(gray dashed line). Standard deviation is illustrated at 10 degree increments, revealing sometimes significant variance in output spike count. In
general this reflects the variability of the input spike counts. B. The integrate and fire cortical model outputs tuning curves that are well-described by
a Gaussian model with an amplitude that decreases with increasing minimum jitter (dark red: 6 ms, dark blue: 40 ms). C. The tuning width varies over
a small range across the entire range of minimum jitter values simulated.
doi:10.1371/journal.pcbi.1003418.g004

Figure 5. Synchrony does not affect the relationship between and mean and variance of output, but does affect discriminability. A.
Across all values of synchrony the mean and variance increase in roughly the same linear pattern; each dot is a stimulus orientation from 0 to 180. At
high synchrony values relationship is ultimately violated as the spike count variance plateaus, when the timing variance is smaller than the
integration window. Jitter values (in units of ms) are indicated next to the dots that represent the simulation results corresponding to those minimum
jitter values. B. Each curve shows the spike probability distribution at the preferred orientation. Increasing synchrony shifts the spike count
distributions away from the origin, giving more freedom to spread and making adjacent orientations more distinguishable (not shown).
doi:10.1371/journal.pcbi.1003418.g005

Thalamic Synchrony Modulates Cortical Tuning
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capacity for any particular neuron to inform estimations about the

stimulus orientation. By itself the absolute amount of information

is an unintuitive quantity. With the goal of determining how

synchrony changes the capabilities of cortical neurons to decode

specific stimulus features, it is more natural to look at properties of

the feature estimator. The inverse of Fisher information is the

Cramér-Rao lower bound, a theoretical lower bound on the

variance of a maximum-likelihood estimator; decreases in this

quantity yield estimates that are more precise and have more

confidence. Under the assumption that the stimulus orientation

estimator is unbiased, lower estimator variance guarantees lower

estimator error. Since we could directly calculate Fisher informa-

tion in our model, we could also determine what this lower bound

was, as shown in Figure 6A. The estimator standard deviation

decreased nonlinearly with increasing synchrony, covering a range

of relatively precise estimates to very imprecise estimates with a

notable saturation at around 20 ms of jitter; synchrony higher

than this does not yield rapid gains while decreases in synchrony

rapidly decrease the estimator precision. As the Fisher information

is directly related to the local slope of the tuning curve this

qualitative observation was unaffected, in a relative sense, by the

discretization of the tuning curve. The raw information decreased

approximately linearly with increasing minimum jitter as shown in

Figure 6B (error bars are 61 S.D.). However, as we will show the

degree to which this is not linear has important implications for the

efficiency of information transmission by the cortical neuron.

From these results, we naively assumed that a strategy which

absolutely increased synchrony would always be best as it would

always result in increasing stimulus information. As has been noted

in other models which bear some similarities to our own [43],

there is a metabolic cost to increasing firing rate which can affect

the efficiency of some information representations relative to

others. In this case, as shown in Figure 6C, when we normalize the

absolute amount of information by the number of cortical spikes, it

becomes clear that the peak in transmission efficiency occurred at

around 15 ms of thalamic jitter, and a quadratic fit had a peak at

16 ms with a clear decrease in information efficiency away from

this peak. In previous studies [10–12] we identified that pairwise

LGN synchrony in response to natural scenes tends to be from 10

to 20 ms as measured by our scale. As noted, this result was

consistent across all simultaneously recorded neurons when these

neurons were used as sources for single-trial spike times. A few

neurons maintained this quadratic relationship between informa-

tion transmission efficiency and input synchronization at a peak

efficiency closer to 25 ms of timing jitter, slightly lower than

expected. These results indicate that populations in the LGN are

uniquely arranged to be effectively synchronized by a preferred

orientation. This synchronization allows information transmission

to be more efficient without sacrificing precision in estimating

orientation.

Tuning Width Invariance
The results presented so far have demonstrated that information

efficiency saturates at levels of minimum timing jitter between 10

and 20 ms, without addressing the effect of tuning width. It is clear

from existing literature that there is a wide range of tuning widths

that are typically measured in neurons in visual cortex [9,29–32]

and these changes are reflected in the width of sS(h) and thus the

width of the tuning curve. To investigate the effect of changes in just

tuning width we modulated both the minimum timing jitter as well

as the tuning width, with the results shown in Figure 7. From 4.1 to

30.8 degrees (HWHH; maroon to light blue dots in Figure 7), which

covers the rough range one could expect tuning width to vary, it is

clear that the normalized information per spike (IPS) has

approximately the same pattern regardless of tuning width. We

show normalized information per spike because Fisher information

is directly related to the slope of the curve, higher slopes

monotonically lead to higher absolute levels of information and as

such 4.2 degree and 30.8 degree tuning widths have an order of

magnitude difference in their absolute amount of information. The

relationship between tuning width and information efficiency is

made clearer in the breakouts in Figure 7B for each individual

tuning width; with the exception of extremely narrow tuning widths,

as the tuning width increases the optimal level of minimum jitter

increases but still stays in the range of 10–20 ms. Narrow tuning

curves fail to saturate information per spike because very narrow

tuning curves effectively contain information about a very small

range of orientations and the amount of information is directly

related to the diference between baseline and peak firing rates. As an

example consider a tuning curve that goes from baseline firing rate

to peak firing rate in the span of 2 or 3 degrees (a very narrow tuning

curve). In this case higher peak firing rates have a very pronounced

affect on the overall amount of information. Since lower jitter

always provides higher peak firing rates, narrower tuning curves are

always most efficacious at extremely low amounts of jitter. We thus

see that the results are valid for a range of primary visual cortex

neurons so long as they have tuning widths that are within

physiologically measured ranges.

Figure 6. Information efficiency peaks as synchrony increases. A. Estimator standard deviation monotonically decreases as the minimum
jitter of the input decreases. B. The absolute amount of information decreases approximately linearly with increasing minimum jitter. Error bars of 61
S.D. are shown to illustrate deviations from linearity are not strictly due to random chance. C. When weighted by the total output spike count,
information efficiency peaks at 15 ms of jitter and then decreases for inputs with smaller amounts of jitter.
doi:10.1371/journal.pcbi.1003418.g006
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Discussion

In this work we investigated the role of stimulus-driven

synchrony in thalamic populations in the emergence of feature

selectivity in primary visual cortex. The complete understanding of

this role requires observation of entire thalamic sub-populations

which are convergent onto single cortical neurons. Since these

populations are too large to record electrophysiologically using

current experimental methodologies, we synthesized representa-

tive populations from experimental data by randomly choosing

recorded trials of neurons from which we could record, when

obeying anatomical rules of thalamocortical connectivity [24] (also

see below). These populations had an amount of stimulus-driven

synchronization that was a direct function of the orientation of a

drifting grating stimulus. These synthesized populations allowed us

to systematically modulate the underlying spike timing synchrony

to investigate the way in which different levels of synchronization

affect information transmission. Through a biophysically inspired

integrate and fire model that simulates cortical responses, we

estimated the resultant cortical orientation selectivity and the

corresponding information conveyed about visual stimulus orien-

tation by the cortical response. Ultimately we found that the level

of synchronization of the input population had a nonlinear effect

on the resulting information contained in the cortical response;

higher levels of synchrony led to higher levels of information, but

at the expense of a nonlinear increase in firing rate. When taking

into account the potential cost of increased firing rate, we found

that the most efficient transmission of information was at a level of

thalamic synchrony in the range of 10 to 20 ms.

It is important to note that the synchronization of neurons has

been widely studied in a number of different contexts. Notably,

synchronization of neurons across cortical columns has been

previously reported in the visual cortex, proposed as a means to

form relationships across regions of the visual field [44].

Additionally, in the context of convergence and divergence of

retinal afferents projecting to the LGN, precise correlations have

been observed across geniculate neurons that were present in the

absence of stimulus driven correlations, and were attributed to the

projections of common retinal ganglion cell inputs [13]. In

contrast, the current study (and previous studies from our group

[11,23]) specifically examines the role of stimulus driven synchro-

nization/correlation of neuronal firing in the visual thalamus. Our

previous investigations have shown that many neurons in the LGN

do not exhibit appreciable noise correlations [11]. The focus here

is thus on the relationship between the visual input and the

resultant synchronization of firing activity across geniculate

ensembles, a requisite for robust activation of the downstream

cortical neurons to which they project. In the most general case,

however, as described in Gray et al. [44], the propagation of

neuronal signals would involve a combination or interaction

between the synchronization due to ongoing spontaneous activity

and the stimulus-driven synchronization due to coordinated

activation of neurons sharing the same topology and feature

selectivity. Such a ‘‘from-any-source’’ view of synchronization

carries with it the possibility that neurons with receptive fields from

disparate regions of the visual field could be synchronized by

spatially correlated stimuli. For example two very spatially distant

LGN neurons could be simultaneously activated by either two

unrelated objects or one very long bar of light; synchronization

due to these origins are not considered in this model. It is

important to note that we explicitly consider only recordings from

spatially localized populations, as widely-spaced LGN units do not

converge at the same cortical target.

The emergence of orientation selectivity in primary visual

cortex is perhaps the most well-studied example of cortical

computation to date. As a result, there have been a large number

of modeling studies seeking to capture the mechanistic explanation

for the primary observation of orientation selectivity, and also to

capture a number of related, and more complex functional

properties (e.g. contrast invariant orientation tuning, cross-

orientation suppression, etc.). Given that there is little if any

dispute as to the role of direct feed-forward geniculate input to

cortical layer 4 in establishing the basic orientation preference for

cortical neurons, models of orientation selectivity have invariably

been constructed around a backbone of thalamic input. Although

the model from Ringach introduced structured synaptic weight-

ings and connectivity probabilities of thalamic inputs to cortex as a

key model element [5], the majority of other models assume

relatively simple feedforward excitation structure and differ

primarily in the relative strengths of the feedforward or

intracortical inhibition [3,4,26–28,45,46]. A specific limitation of

most of these previous models is that they explicitly do not directly

involve electrophysiological data as thalamic input. For example,

one class of models use simulations of thalamic or retinal responses

based on the stereotypical difference-of-Gaussians representation

of center-surround receptive fields [3–5,45,46], while others rely

on assumed or derived cortical conductances or membrane

Figure 7. Quadratic efficiency is relatively invariant to tuning width. A. When taking the mean (normalized) efficiency curve across the
spectrum of reasonable spike count tuning widths (HWHH, degrees), the arragement of optimal efficiencies does not appear to be patterened in any
particular way. B. When broken out into individual efficiency curves we see that for each tuning width a quadratic polynomial still remains the best fit
for most tuning widths. At pathologically narrow tuning curves, we see that higher synchronization is indeed absolutely preferable. We also note that
the sigmoid fit to mean data arises, in part, because the peak of the polynomials are distributed over a range and the mean of them produces a
roughly constant function below 25 ms of timing jitter.
doi:10.1371/journal.pcbi.1003418.g007
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potential but not on actual thalamic input [26–28]. The large

majority of previously published models also assume that

sinusoidal inputs (i.e. drifting gratings) elicit sinusoidal thalamic

responses and that the cortical membrane potential itself is

perfectly sinusoidally modulated (as in [9] or [26,45]). Dating back

to the early 1980s there was the observation that drifting sinusoidal

gratings produced asymmetric LGN response PSTHs (i.e. a sharp

peak at the onset of the stimulus followed by a long tail of decaying

response) [47–49] and more recently we have directly analyzed the

effects of this synchrony in the context of cortical orientation and

direction selectivity [23]. We assert that the precise timing and

stimulus-driven synchronization of thalamic inputs serves a

prominent role in the thalamocortical circuit and in the emergence

of cortical feature selectivity.

It is important to note that most, if not all, existing models

designed to capture the mechanism behind cortical orientation

selectivity rely on spatial arrangements of projecting thalamic

inputs that in some cases exceed those observed experimentally

[24]. More specifically, the relevant measure for thalamic input is

the aspect ratio of the scatter of thalamic receptive fields that form

the input to a single cortical layer 4 neuron. Recently, Jin et al.

experimentally observed thalamic clusters and showed that the

thalamic input to cortical orientation columns has receptive fields

that are highly overlapped [24]. Because the scatter of the

thalamic receptive fields covers 2.5 receptive field centers in visual

space, the average layer 4 cortical neuron should have a maximum

aspect ratio of 2.5:1. The thalamocortical model from Somers et

al. was built on an aspect ratio of 3:1 [3], whereas the model from

McLaughlin et al. was built on an aspect ratio of 4:1 [4]. Similarly

large aspect ratios are apparent from the Kayser et. al. model and

Finn et. al. models, with ratios approximately 6:1 and 2.5:1

respectively [26,46]. It is clearly the case that inhibitory

mechanisms play a significant role in the shaping of the cortical

feature selectivity [2], and would only serve to further refine the

selectivity established by the direct feedforward thalamic input

shown here. Many of the above-mentioned models differ from our

presentation here in that they include OFF-center sub-populations

in the thalamic population, most commonly offset from the ON-

center population as would be implied by the common Gabor-type

simple cell receptive field. To keep the model relatively

straightforward and simple, we have chosen to focus on just

ON-center populations.

The majority of existing models were optimized to explain

extra-classical effects of cortical receptive fields with a particular

focus on the contrast invariance of cortical tuning width and as

such constructed mechanisms specific to this issue. Specifically, it

has been widely observed that although peak cortical firing rates

are strongly dependent upon stimulus contrast, cortical orientation

tuning is largely invariant to stimulus contrast (for review, see [2]).

This observation called into question the purely feedforward

model of cortical orientation selectivity [2]. Subsequent models

augmented the feedforward thalamic input with inhibitory

feedforward connections [26] or cortico-cortico inhibition [46]

or some combination [2,3]. We have previously shown that

thalamic synchrony is largely unaffected by stimulus contrast [11],

and the cortical tuning based on thalamic synchrony is also

contrast invariant. The model we have proposed here thus

potentially demonstrates a completely feed-forward explanation

for contrast invariance. For a fixed minimum jitter amount, as the

underlying LGN firing rates across the entire population are

modulated by changes in the stimulus contrast, the peak induced

firing in the cortical neuron rises and falls. Since the changes in

LGN firing are correlated across the LGN population, the

synchrony across such a population (with particularly focus on

the relationship between stimulus orientation and the synchrony)

remains unchanged as a function of stimulus contrast. As

demonstrated in Figure 4B for the span of biophysical levels of

preferred orientation population synchrony (,5 to 20 ms), the

tuning width of the cortical neuron does not change, indicating

that changes in the degree of underlying synchrony do not change

the tuning properties. Although the results are not presented here

directly, the combination of past and present results suggest that

changes in the LGN population response (i.e. the population

becomes less active in general) lead to a decreased or increased

peak cortical response but the tuning curve widths will be invariant

to stimulus contrast.

We used Fisher information as a measure of the efficacy of

cortical neurons in representing stimulus features (orientation) in

response to changes in the synchrony of an input population.

Specifically, we used the peak Fisher information irrespective of

the orientation at which the peak occurs. Contrary to previous

investigations [50–52] in which the absolute value of the Fisher

information was used as an important measure of the performance

of neural populations, here we sought to capture the relative effects

of varying degrees of thalamic synchrony on the information

conveyed by a single recipient cortical neuron target. In this case,

we assumed that the Cramér-Rao lower bound need not be met

and that whatever bias causing deviations from the lower bound is

consistent across all simulation conditions. We ensure this by using

the same input data and model structure for all conditions so that

we can compare relative levels of information across different

synchrony conditions for a single neuron. Although this is a

simplification of the true amount of information (and indeed no

single neuron will saturate this lower bound), in either case the

absolute information was consistent with previous studies utilizing

experimental cortical data. Yarrow et. al. [52] computed Fisher

information for both real and simulated neural populations and

found an information level which was approximately consistent

with the findings presented here (see their Figure 4 as well as [51]

Figure 3, with axes in [52] helping in the conversion from SSI bits

to Fisher Information in units of deg{2). This assumption

ultimately only affects the reporting of estimator standard

deviation (as in Figure 6A) which was not the primary result of

the work.

It is also important to note that the application of Fisher

Information to cortical tuning curves has deeper roots in

estimating cortical population response information transmission.

Past work [53–57] has in general used constructions where a

collection of identical cortical neurons have preferred orientations

that uniformly span the orientation spectrum (0 to 360 degrees). In

this study we considered only a single neuron in the population.

We claim, though, that results which demonstrate information in a

single neuron at all stimulus orientations are fundamentally

identical to results which demonstrate information in a population

at a single orientation. As long as we assume every neuron in the

cortical population is conditionally independent, for the questions

we ask these two formulations are fundamentally interchangeable.

As identified in [54] under the assumption that each cortical

neuron in this population is independent, then at every stimulus

orientation the overall Fisher information is

J(h)~
XN

i~1

Ji(h)

Further, in the case that every neuron in the population is also

assumed to be identical in response properties, then we can modify

the above to read (for any choice of i)
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J(h)~
X360

k~1

Ji(hk)

It is clear though that not all cortical tuning curves are identical

and the absolute amount of information is strongly negatively

correlated with tuning width. Using this fact as inspiration, we

show in Figure 7 that the optimally efficient level of input timing

jitter is widely insensitive to the tuning width of the cortical

neuron. In this case, even if a cortical population is composed of

non-identical independent neurons, each neuron, as well as the

population as a whole, will be optimally efficient as long as the

thalamic input is synchronous to the 10–20 ms level (thus implying

we need no longer assume neurons within the population have

identical, but shifted, tuning curves). If we further consider the

effects of correlated variability, as in [55], then we can no longer

assume the units are independent. Regardless of whether the

correlated variability increases or decreases the absolute amount of

information (and neither is guaranteed), correlated variability

would raise or lower the response rate of the individual neurons in

a coordinated manner. Since again our metric is one of relative

comparisons, the results presented here are expected to be

invariant to correlated variability in the sense that the efficiency

of any single neuron may decrease, the peak efficiency will still

occur between 10–20 ms (which would still be true for all neurons

in the cortical population). Thus our findings directly translate to

cortical populations regardless of the independence and homoge-

neity of tuning properties of the component neurons.

In previous studies of timing precision of individual thalamic

neurons [10] and across thalamic pairs [11] in response to natural

scenes, we have reported characteristic timescales on the order of

10–20 ms. In these previous studies, measures were taken across

long segments of natural scene movies, representing the aggregate of

instantaneous firing events whose timing precision clearly varies on

an event-by-event basis [12,58]. The instantaneous synchronization

of firing activity across a sub-population of neurons in the context of

natural scenes is undoubtedly a complex function of the local

properties of the scene, including spatial frequency, temporal

frequency, and orientation of the local spatial structure. It is thus the

case that the 10–20 ms average timescale reflects a distribution of

synchronous events, spanning from synchrony on just a few

milliseconds to more asynchronous firing over a timescale of 10Js

of milliseconds, unlikely to drive the cortical target. Here, we report

that in the context of the modulation of thalamic synchrony through

visual stimulus orientation with drifting sinusoidal gratings, the most

efficient level of thalamic synchrony in conveying relevant

information to cortex is in the 10–20 ms range. This means that,

on average, amongst natural scenes and all their various features,

the thalamic neural response is tuned to maximize the efficiency of

information transfer to the cortex (similar to [22]). As we have

investigated only the effects of orientation changes on synchroni-

zation and feature selectivity, we expect that this result implies that

information efficiency will be similarly optimized for other visual

features such as spatial and temporal frequency. Furthermore, it is

possible that synchronization optimizes information transmission in

entirely different sensory systems, given previous findings in the

somatosensory system [59].

Materials and Methods

Ethics Statement
Surgical and experimental procedures were performed in

accordance with United States Department of Agriculture

guidelines and were approved by the Institutional Animal Care

and Use Committee at the State University of New York, State

College of Optometry.

Surgical Preparation and Electrophysiological Recordings
The experimental data collection has been previously described

[23]. Briefly, single-cell activity was recorded extracellularly in the

lateral geniculate nucleus (LGN) of anesthetized and paralyzed

male cats, with a total of three animals. As described in [60], cats

were initially anesthetized with ketamine (10 mg kg21 intramus-

cular) and acepromazine (0.2 mg/kg), followed by propofol

(3 mg kg1 before recording and 6 mg kg21 h21 during recording;

supplemented as needed). A craniotomy and duratomy were

performed to introduce recording electrodes into the LGN

(anterior, 5.5; lateral, 10.5). Animals were paralyzed with

vecuronium bromide (0.3 mg kg21 h21 intravenous) to minimize

eye movements, and were artificially ventilated. Using a seven-

electrode matrix, layer A geniculate cells were recorded extracel-

lularly. The multielectrode array was inserted into the brain to

record from iso-retinotopic lines across the depth of the LGN,

using an angle of 25–30 degrees antero-posterior, 2–5 degrees

lateral-central. To a multielectrode array (with inter-electrode

separation of 254 mm) we attached a glass guide tube with an inner

diameter of 300 mm. As the elevation axis is better represented in

LGN than the azimuth axis, some of the populations of LGN

receptive fields showed greater lateral than vertical scatter in the

visual field [61]. Layer A of LGN was physiologically identified by

performing several electrode penetrations to map the retinotopic

organization of the LGN and center the multielectrode array at

the retinotopic location selected for this study (5–10 degrees

eccentricity). While recording, the RASPUTIN software (Plexon,

Dallas, TX) was used to capture voltage signals after being

amplified and filtered. We isolated single units by independently

moving each electrode and the resulting units were spike-sorted

online and verified offline using a commercially available

algorithm (Plexon, Dallas, TX). Cells were eliminated from this

study if they did not have at least 1 Hz mean firing rates in

response to all stimulus conditions. Cells were classified as ON or

OFF according to the polarity of the receptive field estimate.

Visual Stimulation
For each cell, visual stimulation consisted of multiple repetitions

of a drifting sinusoidal grating at 0.5 cycles/degree, at either 100%

or 64% contrast. The direction of the drifting grating was varied.

The orientation of a particular drifting grating was one of eight

possible values: 0, 45, 90, 135, 180, 225, 270, 315 degrees. The

convention was that a vertically oriented grating drifting rightward

was referred to as 0 degrees, a horizontally oriented grating

drifting downward was referred to as 90, and so on. The temporal

frequency for all datasets was 5 Hz or 4 Hz. The spatial resolution

for the drifting gratings was 0.0281 degrees per pixel. All stimuli

were presented at a 120 Hz monitor refresh rate.

Generating LGN Population Activity for Model Input
Biophysiological levels of LGN population synchrony were

measured from multiple sets of simultaneous electrophysiological

recordings (between 5 and 7 neurons were recorded simulta-

neously). A cortical neuron is thought to receive approximately 30

LGN inputs [8] but these neurons are substantially more densely

arrayed than we can reasonably hope to record with penetrating

electrodes. Population response estimates were achieved by

expanding the simultaneous recorded neurons into a population

of 30 neurons by replicating the recorded responses and then

shifting to a new visual location, restricted within the visual space
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bounded by the original receptive field locations. This restriction

resulted in a population that has a receptive field center diameter

distribution that is consistent with [24] (see Figure 1D). To create

the population random shifts were allowed in both the vertical and

horizontal directions (i.e. the major and minor axes of the

population) but the restrictions placed by the original population

layout often required greater shifts along one or the other axis. For

the example in Figure 1C, the shift restrictions resulted in a visual

space coverage of approximately 5 degrees (horizontal) by 2

degrees (vertical). Shifting responses required knowledge of the

timing difference in excitation between the old and the new

location, defined as the shift latency. The replicated input spike

trains occurred in response to sinusoidal gratings and, due to the

regularity in the stimulus, the shift latency was relatively easy to

calculate. This shift latency was estimated simply by measuring the

timing latency between the maximum excitation at the centroids of

the receptive fields at both the original location and the shifted

location

Latency(h)~
cos(hR)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2zdy2

p
fs

ft

~
cos(hR)Dfs

ft

~
Dhfs

ft

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2zdy2

p
~D is the center to center separation of the

original and shifted locations, fs,ft represent the spatial (cycle/deg)

and temporal (Hz) frequencies (fixed) of the stimulus itself, and hR

is the angle between the axis connecting the two receptive fields

and a line from the shifted location perpendicular to the oriented

stimulus bar. A graphical representation of this is in Figure 1D.

Each newly created neuron is assigned a random trial from all

recorded trials of the original neuron and the shift latency value is

added to all spike times within that chosen trial. For the

representation of this process in Figure 1E each neuron received

a trial from the appropriate stimulus orientation. As the

overarching cortical model, though, expands to a much larger

set of orientations than originally recorded from, for consistency

each newly created neuron was assigned a trial from the

recordings performed with a stimulus at a 0 degree orientation.

This allows us to preserve the baseline across-neuron timing

changes, while capturing the stimulus-driven timing modulations

with our sS(h) parameter, discussed below.

The model was constructed such that all input synapses to the

cortical neuron have equal strength and no particular synaptic

location (i.e. along the dendrite or at the soma), and accordingly

the source of the spikes from within the LGN population has no

effect on the actual model output. Since this is the case, we can

estimate the input population auto-correlation by collapsing all

LGN spike times into a single vector. The auto-correlation is then

calculated by subtracting each spike time from all other spike times

and calculating the histogram of these pair-wise interspike

intervals. Synchronous populations will have a much higher

proportion of small intervals (neglecting stimulus periodicity) than

asynchronous populations. The auto-correlations are also appro-

priately normalized to be between 0 and 1. To smooth the auto-

correlation and eliminate correlations caused by the periodicity of

the input, a Gaussian was fit to the central 200 ms lags in the

correlation. We use timing jitter as a metric of synchrony, which is

determined by normalizing the Gaussian fit and locating the lag at

which this curve is equal to 1=e. To relate this number to the

PSTH timing jitter (i.e. combined population timing jitter) we

must divide by two (see Supplemental in [10] for a complete

description). In brief, we define a value tR which is the ‘‘response

timescale’’. This value is equal to the latency at which the auto-

correlation equals 1=e. By construction this has the relationship

that tR~2sJ , where sJ is the timing jitter in the PSTH, our value

of interest. This process was performed for all stimulus orientations

(in order to maintain phase and timing differences that arise from

differences in neuron properties and not just spatial relationships)

to describe timing jitter as a function of stimulus orientation. This

function was calculated multiple times for different randomly

generated populations to estimate the variance that is created by

choosing either different visual locations for the component

neurons or choosing different recorded trials to represent the

neurons in the population.

The observed timing variability in spike times across the

population is composed of two aspects; intrinsic neural variability

and variability caused by the interaction between the stimulus and

the population organization. Our model captured the intrinsic

variability by using spike times that were recorded in vivo. On the

other hand, while the grating stimulus always evokes firing in the

thalamic neurons the timing differences in spike times from neuron

to neuron will vary according to orientation of these gratings and

the arrangement of the population itself. We capture this stimulus-

evoked timing variability in a parameter sS(h). This parameter, as

a function of stimulus orientation, was manually calibrated such

that when used with recorded data we could reconstruct the exact

plot shown in Figure 2C. This procedure allows us to capture both

the intrinsic and stimulus-evoked sources of spike timing variability

even at orientations for which we were not able to collect data.

Integrate and Fire Model of Direct Synaptic Input to a
Cortical Layer 4 Neuron

All simulations and computations were performed in the Matlab

programming language (Mathworks, Inc., Natick, MA) using a 64-

node grid computer. The integrate and fire model [62], illustrated

in Figure 3A, takes spiking activity from the simulated LGN

population as input and outputs cortical membrane potential and

the associated cortical spike times. It was assumed that each

synapse has equal strength. To create the synaptic input current,

an exponentially decaying EPSC of defined amplitude

(AEPSC~0:05nA) and time constant (tEPSC~2ms) was generated

for all spike times in the input LGN population. The EPSCs were

summed linearly across all LGN inputs to create a single current

input at every simulation time point. The cortical membrane

potential was modeled with the following first-order differential

equation:

dVm

dt
~(RmIEPSC(t){(Vm(t){Vrest))(1=tm)

where Vm is the membrane potential, IEPSC is the total synaptic

current, Rm is the membrane resistance (100MV), Vrest is the

resting potential (270 mV), and tm is the membrane time constant

(2 ms). The integration was performed using the forward euler

method with a step size of 0.05 ms; since the step size is

significantly smaller than any other temporal dynamics or spike

timing precision use of a simple euler method is sufficient. When

Vm exceeds the threshold membrane potential (Vthresh~{55mV ),

a cortical spike is generated by setting the instantaneous potential

to 0 mV followed by a 3 ms refractory period at the reset potential

of 265 mV. These values are similar to those we have used

previously for similar models [22,23]. An analysis was performed

to determine the approximate sensitivity of the model to each of

the above indicated parameters. In general the model is sensitive

to parameters which modulate the strength (or efficacy) of input

spikes relative to the generated EPSC. Thus the model is sensitive

to the EPSC amplitude (AEPSC ; effective values 0.05 to 0.1 nA

within acceptable ranges) and the EPSC decay (tEPSC ; effective
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values 2 to 5 ms) while being robust to changes in threshold and

reset potentials (Vreset,Vth). Sensitivity manifests itself as a change

between one of three states; impoverished cortical firing, sufficient

cortical firing, and strong cortical firing. Impoverished firing

results in a peak information per spike (see Figure 6C) at very low

jitter values (as this maximizes the chance to get any spikes) and

strong firing demonstrates no discernible peak information per

spike for any particular jitter value (as it results in very wide tuning

curves).

Fisher Information
Taking the perspective of an ideal observer, we approximated

the capability of the observer to discriminate between visual

stimulus orientations based on cortical activity alone. More

specifically, the Fisher information J(h) [54–57] at each orienta-

tion h captures the discriminability between h, hzdh

J(h)~E
d

dh
log(P(rDh))2

� �

where the expectation is taken with respect to P(rDh). In the case

that the probability is zero, we set log(0)~0. We calculated the

derivative numerically using increments of 1 degree which was the

resolution at which the simulations were performed. To reduce the

results of this calculation to a single descriptive value, we report the

estimator minimum standard deviation, which is related to the

Fisher information through the Cramér-Rao lower bound

(assuming the estimator is unbiased):

s2
estimator(h)~

1

max(J(h))
:

As a metric of efficiency with which the cortical output conveys

information about the stimulus, we divide the peak output

information by the peak spike count with the goal of identifying

how much each individual spike contributes to the overall

information; higher values indicate each spike is more efficient

at conveying information about stimulus features. This established

a penalty for higher firing rates, realizing that there is a metabolic

cost to generating action potentials.

Estimating Response Distribution
Response distributions of the cortical firing rate were estimated

based on the simulated data, in order to calculate the Fisher

Information. The firing rate varied as a function of h and the

distributions are given by P(rDh). The data were explicitly fit to a

Poisson distribution, consistent with previous findings [33–42] as

well as explicitly verified for appropriate fitting against our own

data:

P(rDh)~
l(h)r exp({l(h))

r!

To generate an accurate estimation of the response distributions at

a minimum 250 simulation trials were run, with more trials

providing no significant change in the estimated distributions.

Note that the distributions change as a function of stimulus

orientation, as indicated by l(h). Further, in order to create a

smooth description of Fisher information it was necessary that the

response distributions be smooth functions of h, as even minor

fluctuations in the l parameter get magnified by differentiation

and squaring. To alleviate this, l(h) was smoothed with a Gaussian

fit which was empirically verified to describe l(h) well.
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