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Abstract

Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated.
On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and
affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based
learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the
gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete
framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated
spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how
this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal
difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous
time, and with continuous state and action representations. In our model, the critic learns to predict expected future
rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to
itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a
Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our
model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible
way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with
experimental evidence for dopamine-modulated spike-timing-dependent plasticity.
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Introduction

Many instances of animal behavior learning such as path

finding in foraging, or – a more artificial example – navigating the

Morris water-maze, can be interpreted as exploration and trial-

and-error learning. In both examples, the behavior eventually

learned by the animal is the one that led to high reward. These can

be appetite rewards (i.e., food) or more indirect rewards, such as

the relief of finding the platform in the water-maze.

Important progress has been made in understanding how

learning of such behaviors takes place in the mammalian brain.

On one hand, the framework of reinforcement learning [1]

provides a theory and algorithms for learning with sparse

rewarding events. A particularly attractive formulation of

reinforcement learning is temporal difference (TD) learning [2].

In the standard setting, this theory assumes that an agent moves

between states in its environment by choosing appropriate actions

in discrete time steps. Rewards are given in certain conjunctions of

states and actions, and the agent’s aim is to choose its actions so as

to maximize the amount of reward it receives. Several algorithms

have been developed to solve this standard formulation of the

problem, and some of these have been used with spiking

neural systems. These include REINFORCE [3,4] and partially

observable Markov decision processes [5,6], in case the agent has

incomplete knowledge of its state.

On the other hand, experiments show that dopamine, a

neurotransmitter associated with pleasure, is released in the brain

when reward, or a reward-predicting event, occurs [7]. Dopamine

has been shown to modulate the induction of plasticity in timing

non-specific protocols [8–11]. Dopamine has also recently been

shown to modulate spike-timing-dependent plasticity (STDP),

although the exact spike-timing and dopamine requirements for

induction of long-term potentiation (LTP) and long-term depres-

sion (LTD) are still unclear [12–14].

A crucial problem in linking biological neural networks and

reinforcement learning is that typical formulations of reinforce-

ment learning rely on discrete descriptions of states, actions and

time, while spiking neurons evolve naturally in continuous time

and biologically plausible ‘‘time-steps’’ are difficult to envision.

Earlier studies suggested that an external reset [15] or theta

oscillations [16] might be involved, but no evidence exists to

support this and it is not clear why evolution would favor slower

decision steps over a continuous decision mechanism. Indeed

biological decision making is often modeled by an integrative

process in continuous time [17], where the actual decision is

triggered when the integrated value reaches a threshold.
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In this study, we propose a way to narrow the conceptual gap

between reinforcement learning models and the family of spike-

timing-dependent synaptic learning rules by using continuous

representations of state, actions and time, and by deriving

biologically plausible synaptic learning rules. More precisely, we

use a variation of the Actor-Critic architecture [1,18] for TD

learning. Starting from the continuous TD formulation by Doya

[19], we derive reward-modulated STDP learning rules which

enable a network of model spiking neurons to efficiently solve

navigation and motor control tasks, with continuous state, action

and time representations. This can be seen as an extension of

earlier works [20,21] to continuous actions, continuous time and

spiking neurons. We show that such a system has a performance

on par with that of real animals and that it offers new insight into

synaptic plasticity under the influence of neuromodulators such as

dopamine.

Results

How do animals learn to find their way through a maze? What

kind of neural circuits underlie such learning and computation and

what synaptic plasticity rules do they rely on? We address these

questions by studying how a simulated animal (or agent) could solve

a navigation task, akin to the Morris water-maze. Our agent has to

navigate through a maze, looking for a (hidden) platform that

triggers reward delivery and the end of the trial. We assume that

our agent can rely on place cells [22] for a representation of its

current position in the maze (Figure 1).

Temporal difference learning methods provide a theory

explaining how an agent should interact with its environment to

maximize the rewards it receives. TD learning is built on the

formalism of Markov decision processes. In what follows, we

reformulate the framework of Markov decision process in

continuous time, state and action, before we turn to the actor-

critic neural network and the learning rule we used to solve the

maze task.

Let us consider a learning agent navigating through the maze.

We can describe its position at time t as x(t)[R2, corresponding to

a continuous version of the state in the standard reinforcement

learning framework. The temporal evolution of the state is

governed by the agent’s action a(t)[R2, according to

_xx(t)~f (a(t),x(t)), ð1Þ

where f describes the dynamics of the environment. Throughout

this paper we use the dot notation to designate the derivative of a

term with respect to time.

We model place cells as simple spiking processes (inhomoge-

neous Poisson, see Models) that fire only when the agent

approaches their respective center. The centers are arranged on

a grid, uniformly covering the surface of the maze.

Reward is dispensed to the agent in the form of a reward rate

r(x(t),a(t)). A localized reward R0 at a single position x0 would

correspond to the limit r(x(t),a(t))~R0
:dD(Ex(t){x0E), where dD

denotes the Dirac d-function. However, since any realistic reward

(e.g., a piece of chocolate or the hidden platform in the water-

maze) has a finite extent, we prefer to work with a temporally

extended reward. In our model, rewards are attributed based on

spatially precise events, but their delivery is temporally extended

(see Models). The agent is rewarded for reaching the goal platform

and punished (negative reward) for running into walls.

The agent follows a policy p which determines the probability

that an action a is taken in the state x

p(a(t)Dx(t),p)~p(a(t),x(t)): ð2Þ

The general aim of the agent is to find the policy p that ensures the

highest reward return in the long run.

Several algorithms have been proposed to solve the discrete

version of the reinforcement problem problem described above,

such as Q-Learning [23] or Sarsa [24]. Both of these use a

representation of the future rewards in form of Q-values for each

state-action pair. The Q-values are then used both to evaluate the

current policy (evaluation problem) and to choose the next action

(control problem). As we show in Models, Q-values lead to

difficulties when one wishes to move to a continuous representa-

tion while preserving biological plausibility. Instead, here we use

an approach dubbed ‘‘Actor-Critic’’ [1,8,21], where the agent is

separated in two parts: the control problem is solved by an actor

and the evaluation problem is solved by a critic (Figure 1).

The rest of the Results section is structured as follows. First we

have a look at the TD formalism in continuous time. Next, we

show how spiking neurons can implement a critic, to represent and

learn the expected future rewards. Third, we discuss a spiking

neuron actor, and how it can represent and learn a policy. Finally,

simulation results show that our network successfully learns the

simulated task.

Continuous TD
The goal of a reinforcement learning agent is to maximize its

future rewards. Following Doya [10], we define the continuous-

time value function Vp(x(t)) as

Vp(x(t)) :~

ð?
t

r(xp(s),ap(s))e{
(s{t)

tr ds
xp,ap

, ð3Þ

where the brackets represent the expectation over all future

trajectories xp and future action choices ap, dependent on the

policy p. The parameter tr represents the reward discount time

constant, analogous to the discount factor of discrete reinforce-

ment learning. Its effect is to make rewards in the near future more

attractive than distant ones. Typical values of tr for a task such as

Author Summary

As every dog owner knows, animals repeat behaviors that
earn them rewards. But what is the brain machinery that
underlies this reward-based learning? Experimental re-
search points to plasticity of the synaptic connections
between neurons, with an important role played by the
neuromodulator dopamine, but the exact way synaptic
activity and neuromodulation interact during learning is
not precisely understood. Here we propose a model
explaining how reward signals might interplay with
synaptic plasticity, and use the model to solve a simulated
maze navigation task. Our model extends an idea from the
theory of reinforcement learning: one group of neurons
form an ‘‘actor,’’ responsible for choosing the direction of
motion of the animal. Another group of neurons, the
‘‘critic,’’ whose role is to predict the rewards the actor will
gain, uses the mismatch between actual and expected
reward to teach the synapses feeding both groups. Our
learning agent learns to reliably navigate its maze to find
the reward. Remarkably, the synaptic learning rule that we
derive from theoretical considerations is similar to previous
rules based on experimental evidence.

Actor-Critic Learning with Spiking Neurons
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the water-maze task would be on the order of a few seconds. Eq. 3

represents the total quantity of discounted reward that an agent in

position x(t) at time t and following policy p can expect. The

policy should be chosen such that Vp(x(t)) is maximized for all

locations x. Taking the derivative of Eq. 3 with respect to time

yields the self-consistency equation [19]

_VV
p
(x(t)){

1

tr

Vp(x(t))zr(x(t),a(t))~0: ð4Þ

Calculating Vp requires knowledge of the reward function

r(x,a) and of the environment dynamics f (Eq 1). These are,

however, unknown to the agent. Typically, the best an agent can

do is to maintain a parametric estimator V (x(t)) of the ‘‘true’’

value function Vp(x(t)). This estimator being imperfect, it is not

guaranteed to satisfy Eq. 4. Instead, the temporal difference error

d(t) is defined as the mismatch in the self-consistency,

d(t) :~ _VV (x(t)){
1

tr

V (x(t))zr(x(t),a(t)): ð5Þ

This is analog to the discrete TD error [1,19]

dt :~cV (xt){V (xt{1)zR(xt,at), ð6Þ

where the reward discount factor c plays a role similar to the

reward discount time constant tr. More precisely, for short steps D,

c~1{
D

tr

^e{D
tr [19].

An estimator V can be said to be a good approximation to Vp if

the TD error d(t) is close to zero for all t. This suggests a simple

way to learn a value function estimator: by a gradient descent on

the squared TD error in the following way

_ww~{g+w
1

2
d(t)2

� �
, ð7Þ

where g is a learning rate parameter and w~(w1,w2, . . . ,wn) is the

set of parameters (synaptic weights) that control the estimator V of

the value function. This approach, dubbed residual gradient

[19,25,26], yields a learning rule that is formally correct, but in our

case suffers from a noise bias, as shown in Models.

Instead, we use a different learning rule, suggested for the

discrete case by Sutton and Barto [1]. Translated in a continuous

framework, the aim of their optimization approach is that the

value function approximation V (x(t)) should match the true value

function Vp(x(t)). This is equivalent to minimizing an objective

function

E(t)~ Vp(x(t)){V (x(t))½ �2: ð8Þ

A gradient descent learning rule on E(t) yields

_ww~g Vp(x(t)){V (x(t))½ �+wV (x(t)): ð9Þ

Of course, because Vp is unknown, this is not a particularly useful

learning rule. On the other hand, using Eq. 4, this becomes

_ww~g _VVp(x(t))zr(x(t),a(t)){
1

tr

V (x(t))

� �

+wV (x(t))&gd(t)+wV (x(t)),

ð10Þ

where we merged 1=tr into the learning rate g without loss of

generality. In the last step, we replaced the real value function

derivative with its estimate, i.e., _VV
p
(x(t))& _VV (x(t)), and then used

the definition of d(t) from Eq. 5.

The substitution of _VV
p

by _VV in Eq. 10 is an approximation, and

there is in general no guarantee that the two values are similar.

However the form of the resulting learning rule suggests it goes in

the direction of reducing the TD error d(t). For example, if d(t) is

positive at time t, updating the parameters w in the direction

suggested by Eq. 10, will increase the value of V (t), and thus

decrease d(t).

Figure 1. Navigation task and actor-critic network. From bottom to top: the simulated agent evolves in a maze environment, until it finds the
reward area (green disk), avoiding obstacles (red). Place cells maintain a representation of the position of the agent through their tuning curves. Blue
shadow: example tuning curve of one place cell (black); blue dots: tuning curves centers of other place cells. Right: a pool of critic neurons encode the
expected future reward (value map, top right) at the agent’s current position. The change in the predicted value is compared to the actual reward,
leading to the temporal difference (TD) error. The TD error signal is broadcast to the synapses as part of the learning rule. Left: a ring of actor neurons
with global inhibition and local excitation code for the direction taken by the agent. Their choices depending on the agent’s position embody a
policy map (top left).
doi:10.1371/journal.pcbi.1003024.g001

Actor-Critic Learning with Spiking Neurons
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In [19], a heuristic shortcut was used to go directly from the

residual gradient (Eq. 7) to Eq. 10. As noted by Doya [19], the

form of the learning rule in Eq. 10 is a continuous version of the

discrete TD(l) [1,27] with function approximation (here with

l~0). This has been shown to converge with probability 1

[28,29], even in the case of infinite (but countable) state space.

This must be the case also for arbitrarily small time steps (such as

the finite steps usually used in computer simulations of a

continuous system [19]), and thus it seems reasonable to expect

that the continuous version also converges under reasonable

assumptions, even though to date no proof exists.

An important problem in reinforcement learning is the concept

of temporal credit assignment, i.e., how to propagate information

about rewards back in time. In the framework of TD learning, this

means propagating the TD error at time t so that the value

function at earlier times is updated in consequence. The learning

rule Eq. 10 does not by itself offer a solution to this problem,

because the expression of d(t) explicitly refers only to V and _VV at

time t. Therefore d(t) does not convey information about other

times t’=t and minimizing d(t) does not a priori affect values

V (x(t’)) and _VV (x(t’)). This is in contrast to the discrete version of

the TD error (Eq. 6), where the expression of dt explicitly links to

Vt{1 and thus the TD error is back-propagated during subsequent

learning trials.

If, however, one assumes that the value function V (t) is

continuous and continuously differentiable, changing the values of

V (x(t)) and _VV (x(t)) implies changing the values of these functions

in a finite vicinity of t. This is in particular the case if one uses a

parametric form for V , in the form of a weighted mixture of

smooth kernels (as we do here, see next section). Therefore, the

conjunction of a function approximation of the value function in

the form of a linear combination of smooth kernels ensures that

the TD error d(t) is propagated in time in the continuous case,

allowing the temporal credit assignment problem to be solved.

Spiking Neuron Critic
We now take the above derivation a step further by assuming

that the value function estimation is performed by a spiking

neuron with firing rate r(t). A natural way of doing this is

V (x(t)) :~nr(t)zV0, ð11Þ

where V0 is the value corresponding to no spiking activity and n is

a scaling factor with units of [reward units]6s. A choice of V0v0
enables negative values V(x), despite the fact that the rate r is

always positive. We call this neuron a critic neuron, because its role is

to maintain an estimate of the value function V .

Several aspects should be discussed at this point. Firstly, since

the value function in Eq. 11 must depend on the state x(t) of the

agent, we must assume that the neuron receives some meaningful

synaptic input about the state of the agent. In the following we

make the assumption that this input is feed-forward from the place

cells to the (spiking) critic neuron.

Secondly, while the value function is in theory a function only of

the state at time t, a spiking neuron implementation (such as the

simplified model we use here, see Models) will reflect the recent

past, in a manner determined by the shape of the excitatory

postsynaptic potentials (EPSP) it receives. This is a limitation

shared by all neural circuits processing sensory input with finite

synaptic delays. In the rest of this study, we assume that the

evolution of the state of the agent is slow compared to the width of

an EPSP. In that limit, the firing rate of a critic neuron at time t
actually reflects the position of the agent at that time.

Thirdly, the firing rate r(t) of a single spike-firing neuron is itself

a vague concept and multiple definitions are possible. Let’s start

from its spike train Y (t)~
P

tf [F dD(t{tf ) (where F is the set of

the neuron’s spike times and dD is the Dirac delta, not to be

confused with the TD signal). The expectation SY (t)T is a

statistical average of the neuron’s firing over many repetitions. It is

the theoretically favored definition of the firing rate, but in practice

it is not available in single trials in a biologically plausible setting.

Instead, a common workaround is to use a temporal average, for

example by filtering the spike train with a kernel k

ri(t)~

ð?
{?

Y (s)k(t{s)ds: Y 0kð Þ(t): ð12Þ

Essentially, this amounts to a trade-off between temporal accuracy

and smoothness of the rate function, of which extreme cases are

respectively the spike train Y (extreme temporal accuracy) and a

simple spike count over a long time window with smooth borders

(no temporal information, extreme smoothness). In choosing a

kernel k, it should hold that
Ð?
{? k(s)ds~1, so that each spike is

counted once, and one often wishes the kernel to be causal

(k(s)~0,Vsv0), so that the current firing rate is fully determined

by past spike times and independent of future spikes.

Another common approximation for the firing rate of a neuron

consists in replacing the statistical average by a population

average, over many neurons encoding the same value. Provided

they are statistically independent of each other (for example if the

neurons are not directly connected), averaging their responses over

a single trial is equivalent to averaging the responses of a single

neuron over the same number of trials.

Here we combine temporal and population averaging, redefin-

ing the value function as an average firing rate of Ncritic~100
neurons

V (x(t)) :~
n

Ncritic

XNcritic

i~1

ri(t)zV0, ð13Þ

where the instantaneous firing rate of neuron i is defined by Eq.

12, using its spike train Yi and a kernel k defined by

k(t) :~
e
{t
tk {e

{t
uk

tk{uk
: ð14Þ

This kernel rises with a time constant uk~50 ms and decays to 0

with time constant tk~200 ms. One advantage of the definition of

Eq. 12 is that the derivative of the firing rate of neuron i with

respect to time is simply

_rri(t)~ Yi0 _kkð Þ(t), ð15Þ

so that computing the derivative of the firing rate is simply a

matter of filtering the spike train with the derivative _kk of the k
kernel. This way, the TD error d of Eq. 5 can be expressed as

d(t)~
n

Ncritic

XNcritic

i~1

Yi0 _kk{
k

tr

� �� �
(t){

V0

tr

zr(x(t),a(t)), ð16Þ

where, again, Yi denotes the spike train of neuron i in the pool of

critic neurons.

Actor-Critic Learning with Spiking Neurons
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Suppose that feed-forward weights wij lead from a state-

representation neuron j to neuron i in the population of critic

neurons. Can the critic neurons learn to approximate the value

function by changing the synaptic weights? An answer to this

question is obtained by combining Eq. 10 with Eqs 13 and 16,

leading to a weights update

_wwij~gd(t)
LV (x(t))

Lwij

~~ggd(t) ½Yi
:(X

t̂ti
j 0e)�0 k

tr

� �
(t), ð17Þ

where e is the time course of an EPSP and X
t̂ti
j is the spike train of

the presynaptic neuron j, restricted to the spikes posterior to the

last spike time t̂ti of postsynaptic neuron i. For simplicity, we

merged all constants into a new learning rate ~gg~
gn

NcriticDu
. A

more formal derivation can be found in Models.

Let us now have a closer look at the shape of the learning rule

suggested by Eq. 17. The effective learning rate is given by a

parameter ~gg. The rest of the learning rule consists of a product of

two terms. The first one is the TD error term d(t), which is the

same for all synapses fi,jg, and can thus be considered as a global

factor, possibly transmitted by one or more neuromodulators

(Figure 1). This neuromodulator broadcasts information about

inconsistency between the reward r(t) and the value function

encoded by the population of critic neurons to all neurons in the

network. The second term is synapse-specific and reflects the

coincidence of EPSPs caused by presynaptic spikes of neuron j
with the postsynaptic spikes of neuron i. The postsynaptic term Yi

is a consequence of the exponential non-linearity used in the

neuron model (see Models). This coincidence, ‘‘Hebbian’’ term is

in turn filtered through the k kernel which corresponds to the

effect of a postsynaptic spike on V . It reflects the responsibility of

the synapse in the recent value function. Together these two terms

form a three-factor rule, where the pre- and postsynaptic activities

combine with the global signal d(t) to modify synaptic strengths

(Figure 2A, top). Because it has, roughly, the form of ‘‘TD error

signal|Hebbian LTP’’, we call this learning rule TD-LTP.

We would like to point out the similarity of the TD-LTP

learning rule to a reward-modulated spike-timing-dependent

plasticity rule we call R-STDP [6,16,30–32]. In R-STDP, the

effects of classic STDP [33–36] are stored into an exponentially

decaying, medium term (time constant te*0:1{0:5 s), synapse-

specific memory, called an eligibility trace. This trace is only

imprinted into the actual synaptic weights when a global,

neuromodulatory success signal d(t) is sent to the synapses. In

R-STDP, the neuromodulatory signal d(t) is the reward minus a

baseline, i.e., d(t)~r(t){b. It was shown [32] that for R-STDP to

maximize reward, the baseline must precisely match the mean (or

expected) reward. In this sense, d(t) is a reward prediction error

signal; a system to compute this signal is needed. Since the TD

error is also a reward prediction error signal, it seems natural to

use d(t) instead of d(t). This turns the reward-modulated learning

rule R-STDP into a TD error-modulated TD-STDP rule

(Figure 2A, bottom). In this form, TD-STDP is very similar to

TD-LTP. The major difference between the two is the influence of

post-before-pre spike pairings on the learning rule: while these are

ignored in TD-LTP, they cause a negative contribution to the

coincidence detection in TD-STDP.

The filtering kernel k, which was introduced to filter the spike

trains into differentiable firing rates serves a role similar to the

eligibility trace in R-STDP, and also in the discrete TD(l) [1]. As

noted in the previous section, this is the consequence of the

combination of a smooth parametric function approximation of

the value function (each critic spike contributes a shape k to V )

and the form of the learning rule from Eq. 10. The filtering kernel

k is crucial to back-propagation of the TD error, and thus to the

solving of the temporal credit assignment problem.

Linear Track Simulation
Having shown how spiking neurons can represent and learn the

value function, we next test these results through simulations.

However, in the actor-critic framework, the actor and the critic

learn in collaboration, making it hard to disentangle the effects of

learning in either of the two. To isolate learning by the critic and

disregard potential problems of the actor, we temporarily sidestep

this difficulty by using a forced action setup. We transform the

water-maze into a linear track, and ‘‘clamp’’ the action choice to a

value which leads the agent straight to the reward. In other words,

the actor neurons are not simulated, see Figure 2B, and the agent

simply ‘‘runs’’ to the goal. Upon reaching it at time tr, a reward is

delivered and the trial ends.

Figure 2C shows the value function over N~20 color-coded

trials (from blue to red) as learned by a critic using the learning

rule we described above. On the first run (dark blue trace), the

critic neurons are naive about the reward and therefore represent

a (noisy version of a) zero value function. Upon reaching the goal,

the TD error (Figure 2D) matches the reward time course,

d(t)&r(t). According to the learning rule in Eq. 17, this causes

strengthening of those synapses that underwent pre-post activity

recently before the reward (with ‘‘recent’’ defined by the k kernel).

This is visible already at the second trial, when the value V (t) just

before reward becomes positive.

In the next trials, this effect repeats, until the TD error vanishes.

Suppose that, in a specific trials, reward starts at the time tr when

the agent has reached the goal. According to the definition of the

TD error, for all times tvtr the V -value is self consistent only if

V (t)~tr
_VV (t) — or equivalently V (t)!e

t{tr
tr . The gray dashed line

in Figure 2C shows the time course of the theoretical value

function; over many repetitions the colored traces, representing

the value function in the different trials, move closer and closer to

the theoretical value. The black line in Figure 2C represents the

average value function over 20 late trials, after learning has

converged: it nicely matches the theoretical value.

An interesting point that appears in Figure 2C is the clearly

visible back-propagation of information about the reward

expressed in the shape of the value function. In the first trials,

the value function V (t) rises only for a short time just prior to the

reward time. This causes, in the following trial, a TD error at

earlier times. As trials proceed, synaptic weights corresponding to

even earlier times increase. After *10 trials in Figure 2C, the

value function roughly matches the theoretical value just prior to

tr, but not earlier. In subsequent trials, the point of mismatch is

pushed back in time.

This back-propagation phenomenon is a signature of TD

learning algorithms. Two things should be noted here. Firstly, the

speed with which the back-propagation occurs is governed by the

shape of the k kernel in the Hebbian part of the learning rule. It

plays a role equivalent to the eligibility trace in reinforcement

learning: it ‘‘flags’’ a synapse after it underwent pre-before-post

activity with a decaying trace, a trace that is only consolidated into

a weight change when a global confirmation signal d(t)=0 arrives.

This ‘‘eligibility trace’’ role of k is distinct from its original role in

the d term, where it is used to smooth the spiking activity of the

critic neurons (Eq. 12). As such, one might be tempted to change

the decay time constant of the k term in the learning rule so as to

control back-propagation speed, while keeping the ‘‘other’’ k of

the d signal fixed. In separate simulations (not shown), we found
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that such an ad-hoc approach did not lead to a gain in learning

performance.

Secondly, we know by construction that this back-propagation

of the reward information is driven by the TD error signal d(t).
However, visual inspection of Figure 2D, which shows the d(t)
traces corresponding to the experiment in Figure 2C, does not

reveal any clear back-propagation of the TD error. For twtr, a

large peak mirroring the reward signal r(t) (gray dashed line) is

visible in the early traces (blue lines) and recedes quickly as the

value function correctly learns to expect the reward. For tvtr, the

d is dominated by fast noise, masking any back-propagation of the

error signal, even though the fact that the value function is learned

properly shows it is indeed present and effective. One might

speculate that if a biological system was using such a TD error

learning system with spiking neuron, and if an experimenter was to

record a handful of critic neurons he would be at great pain to

measure any significant TD error back-propagation. This is a

possible explanation for the fact that no back-propagation signal

has been observed in experiments.

We have already discussed the structural similarity of a TD-

modulated version of the R-STDP rule [6,30,31] with TD-LTP.

Simulations of the linear track experiment with the TD-STDP rule

show that it behaves similarly to our learning rule (data not

shown), i.e., the difference between the two rules (the post-before-

pre part of the coincidence detection window, see Figure 2A) does

not appear to play a crucial role in this case.

Spiking Neuron Actor
We have seen above that spiking neurons in the ‘‘critic’’

population can learn to represent the expected rewards. We next

ask how a spiking neuron agent chooses its actions so as to

maximize the reward.

In the classical description of reinforcement learning, actions,

like states and time, are discrete. While discrete actions can occur,

for example when a laboratory animal has to choose which lever to

press, most motor actions, such as hand reaching or locomotion in

space, are more naturally described by continuous variables. Even

though an animal only has a finite number of neurons, neural

Figure 2. Critic learning in a linear track task. A: Learning rule with three factors. Top: TD-LTP is the learning rule given in Eq. 17. It works by
passing the presynaptic spike train Xj (factor 1) and the postsynaptic spike train Yi (factor 2) through a coincidence window e. Spikes are counted as
coincident if the postsynaptic spike occurs within after a few ms of a presynaptic spike. The result of the pre-post coincidence measure is filtered
through a k kernel, and then multiplied by the TD error d(t) (factor 3) to yield the learning rule which controls the change _wwij of the synaptic weight.
Bottom: TD-STDP is a TD-modulated variant of R-STDP. The main difference with TD-LTP is the presence of a post-before-pre component in the
coincidence window. B: Linear track task. The linear track experiment is a simplified version of the standard maze task. The actor’s choice is forced to
the correct direction with constant velocity (left), while the critic learns to represent value (right). C: Value function learning by the critic. Each colored
trace shows the value function represented by the critic neurons activity against time in the N~20 first simulation trials (from dark blue in trial 1 to
dark red in trial 20), with t~tr corresponding to the time of the reward delivery. The black line shows an average over trials 30 to 50, after learning
converged. The gray dashed line shows the theoretical value function. D: TD signal d(t) corresponding to the simulation in C. The gray dashed line
shows the reward time course r(t).
doi:10.1371/journal.pcbi.1003024.g002
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coding schemes such as population vector coding [37] allow a discrete

number of neurons to code for a continuum of actions.

We follow the population coding approach and define the actor

as a group of Nactor~180 spiking neurons (Figure 3A), each

coding for a different direction of motion. Like the critic neurons,

these actor neurons receive connections from place cells,

representing the current position of the agent. The spike trains

generated by these neurons are filtered to produce a smooth firing

rate, which is then multiplied by each neuron’s preferred direction

(see Models for all calculation details). We finally sum these vectors

to obtain the actual agent action at that particular time. To ensure

a clear choice of actions, we use a N-winner-take-all lateral

connectivity scheme: each neuron excites the neurons with similar

tuning and inhibits all other neurons (Figure 3B). We manually

adjusted the connection strength so that there was always a single

‘‘bump’’ of neurons active. An example of the activity in the pool

of actor neurons and the corresponding action readout over a

(successful) trial is given in Figure 3C. The corresponding maze

trajectory is shown in Figure 3D.

In reinforcement learning, a successful agent has to balance

exploration of unvisited states and actions in the search for new

rewards, and exploitation of previously successful strategies. In

our network, the exploration/exploitation balance is the result

of the bump dynamics. To see this, let us consider a naive

agent, characterized by uniform connections from the place

cells to the actor neurons. For this agent, the bump first forms

at random and then drifts without preference in the action

space. This corresponds to random action choices, or full

exploration. After the agent has been rewarded for reaching

the goal, synaptic weights linking particular place cells to a

particular action will be strengthened. This will increase the

probability that the bump forms for that action the next time

over. Thus the action choice will become more deterministic,

and the agent will exploit the knowledge it has acquired over

previous trials.

Here, we propose to use the same learning rule for the actor

neurons’ synapses as for those of the critic neurons. The reason is

the following. Let us look at the case where d(t)w0: the critic is

signaling that the recent sequence of actions taken by the agent has

caused an unexpected reward. This means that the association

between the action neurons that have recently been active and the

state neurons whose input they have received should be

strengthened so that the same action is more likely to be taken

again in the next occurrence of that state. In the contrary case of a

negative reinforcement signal, the connectivity to recently active

action neurons should be weakened so that recently taken action

are less likely to be taken again, leaving the way to, hopefully,

better alternatives. This is similar to the way in which the synapses

from the state input to the critic neurons should be strengthened or

weakened, depending on their pre- and postsynaptic activities.

This suggests that the action neurons should use the same synaptic

learning rule as the one in Eq. 17, with Yi now denoting the

activity of the action neurons, but the d signal still driven by the

critic activity. This is biologically plausible and consistent with our

assumption that d is communicated by a neuromodulator, which

broadcasts information over a large fraction of the brain.

There are two critical effects of our N-winner-take-all lateral

connectivity scheme. Firstly, it ensures that only neurons coding

for similar actions can be active at the same time. Because of the

Hebbian part of the learning rule, this means that only those

which are directly responsible for the action choice are subject to

reinforcement, positive or negative. Secondly, by forcing the

activity of the action neurons to take the shape of a group of

similarly tuned neurons, it effectively causes generalization across

actions: neurons coding for actions similar to the one chosen will

also be active, and thus will also be given credit for the outcome of

the action [16]. This is similar to the way the actor learns in non-

neural actor-critic algorithms [18,19], where only actions actually

taken are credited by the learning rule. Thus, although an infinite

number of actions are possible at each position, the agent does not

Figure 3. Actor neurons. A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory, red: inhibitory) embodies the agent’s policy
(top). B: Lateral connectivity. Each neuron codes for a distinct motion direction. Neurons form excitatory synapses to similarly tuned neurons and
inhibitory synapses to other neurons. C: Activity of actor neurons during an example trial. The activity of the neurons (vertical axis) is shown as a color
map against time (horizontal axis). The lateral connectivity ensures that there is a single bump of activity at every moment in time. The black line
shows the direction of motion (right axis; arrows in panel B) chosen as a result of the neural activity. D: Maze trajectory corresponding to the trial
shown in C. The numbered position markers match the times marked in C.
doi:10.1371/journal.pcbi.1003024.g003
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have to explore every single one of them (an infinitely long task!) to

learn the right strategy.

The fact that both the actor and the critic use the same learning

rule is in contrast with the original formulation of the actor-critic

network of Barto et al. [18], where the critic learning rule is of the

form ‘‘TD error6presynaptic activity’’. As discussed above, the

‘‘TD error6Hebbian LTP’’ form of the critic learning rule Eq. 17

used here is a result of the exponential non-linearity used in the

neuron model. Using the same learning rule for the critic and the

actor has the interesting property that a single biological plasticity

mechanism has to be postulated to explain learning in both

structures.

Water-Maze Simulation
In the Morris water-maze, a rat or a mouse swims in an opaque-

water pool, in search of a submerged platform. It is assumed that

the animal is mildly inconvenienced by the water, and is actively

seeking refuge on the platform, the reaching of which it

experiences as a positive (rewarding) event. In our simulated

navigation task, the learning agent (modeling the animal) is

randomly placed at one out of four possible starting locations and

moves in the two-dimensional space representing the pool

(Figure 4A). Its goal is to reach the goal area (*1% of the total

area) which triggers the delivery of a reward signal and the end of

the trial. Because the attractor dynamics in the pool of actor

neurons make it natural for the agent to follow a straight line, we

made the problem harder by surrounding the goal with a U-

shaped obstacle so that from three out of four starting positions,

the agent has to turn at least once to reach the target. Obstacles in

the maze cause punishment (negative reward) when touched.

Similar to what is customary in animal experiments, unsuccessful

trials were interrupted (without reward delivery) when they

exceeded a maximum duration Ttimeout~50 s.

During a trial, the synapses continually update their efficacies

according to the learning rule, Eq. 17. When a trial ends, we

simulate the animal being picked up from the pool by suppressing

all place cell activity. This results in a quick fading away of all

neural activity, causing the filtered Hebbian term in the learning

rule to vanish and learning to effectively stop. After an inter-trial

interval of 3s, the agent was positioned in a new random position,

starting a new trial.

Figure 4B shows color-coded trajectories for a typical simulated

agent. The naive agent spends most of the early trials (blue traces)

learning to avoid walls and obstacles. The agent then encounters

the goal, first at random through exploration, then repeatedly

through reinforcement of the successful trajectories. Later trials

(yellow to red traces) show that the agent mostly exploits

stereotypical trajectories it has learned to reach the target.

We can get interesting insight into what was learned during the

trials shown in Figure 4B by examining the weight of the synapses

from the place cells to actor or critic neurons. Figure 4C shows the

input strength to critic neurons as a color map for every possible

position of the agent. This is in effect a ‘‘value map’’: the value the

agent attributes to each position in the maze. In the same graph,

the synaptic weights to the actor neurons are illustrated by a vector

field representing a ‘‘policy preference map’’. It is only a

preference map, not a real policy map because the input from

the place cells (represented by the arrows) compete with the lateral

dynamics of the actor network, which is history-dependent (not

represented).

The value and policy maps that were learned are experience-

dependent and unique to each agent: the agent shown in Figure 4B

and C first discovered how to reach the target from the ‘‘north’’

(N) starting position. It then discovered how to get to the N

position from starting positions E and W, and finally to get to W

from S. It has not however discovered the way from S to E. For

that reason the value it attributes to the SE quarter is lower than to

the symmetrically equivalent quarter SW. Similarly the policy in

the SE quarter is essentially undefined, whereas the policy in the

SW quarter clearly points in the correct direction.

Figure 4D shows the distribution of latency – the time it takes to

reach the goal – as a function of trials, for 100 agents. Trials of

naive agents end after an average of *40 s (trials were interrupted

after Ttimeout~50 s). This value quickly decreases for agents using

the TD-LTP learning rule (green), as they learn to reach the

reward reliably in about *20 trials.

We previously remarked that the TD-LTP rule of Eq. 17 is

similar to TD-STDP, the TD-modulated version of the R-STDP

rule [6,30,31], at least in form. To see whether they are also

similar in effect, in our context, we simulated agents using the TD-

STDP learning rule (for both critic and actor synapses). The blue

line in Figure 4D show that the performance was only slightly

worse than that of the TD-LTP rule, confirming our finding on the

linear track that both rules are functionally equivalent.

Policy gradient methods [5] follow a very different approach to

reinforcement learning to TD methods. A policy gradient method

for spiking neurons is R-max [4,6,32,38,39]. In short, R-max

works by calculating the covariance between Hebbian pre-before-

post activity and reward. Because this calculation relies on

averaging those values over many trials, R-max is an inherently

slow rule, typically learning on hundreds or thousands of trials.

One would therefore expect that it can’t match the speed of

learning of TD-LTP or TD-STDP. Another difference of R-max

with the other learning rules studied is that it does not need a critic

[32]. Therefore we simulated an agent using R-max that only had

an actor, and replaced the TD-signal by the reward, d(t):r(t).
The red line of Figure 4 show that, as expected, R-max agents

learn much slower than previously simulated agent, if at all:

learning is actually so slow, consistent with the usual timescales for

that learning rule, that it can’t be seen in the graph because this

would require much longer simulations.

One might object that using the R-max rule without a critic is

unfair, and that it might benefit from a translation into a R-max

rule with R = TD, by replacing the reward term by the d error, as

we did for R-STDP. But this overlooks two points. Firstly, such a

‘‘TD-max’’ rule could not be used to learn the critic: by

construction, it would tend to maximize the TD error, which is

the opposite of what the critic has to achieve. Secondly, even if one

were to use a different rule (e.g. TD-LTP) to learn the critic, this

would not solve the slow timescale problem. We experimented

with agents using a ‘‘TD-max’’ actor while keeping TD-LTP for

the critic, but could not find notable improvement over agents

with an R-max actor (data not shown).

Acrobot Task
Having shown that our actor-critic system could learn a

navigation task, we now address a task that requires higher

temporal accuracy and higher dimensional state spaces. We focus

on the acrobot swing-up task, a standard control task in the

reinforcement control literature. Here, the goal is to lift the

outermost tip of a double pendulum under the influence of gravity

above a certain level, using only a weak torque at the joint

(Figure 5A). The problem is similar to that of a gymnast hanging

below an horizontal bar: her hands rotate freely around the bar,

and the only way to induce motion is by twist of her hips. While a

strong athlete might be able to lift her legs above her head in a

single motion, our acrobot is too weak to manage this. Instead, the

successful strategy consists in moving the legs back and forth to
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start a swinging motion, building up energy, until the legs reach

the sufficient height.

The position of the acrobot is fully described by two angles, h1

and h2 (see Figure 5A). However, the swinging motion required to

solve the task means that even in the same angular position,

different actions (torque) might be required, depending on whether

the system is currently swinging to the left or to the right. For this

reason, the angular velocities _hh1 and _hh2 are also important

variables. Together, these four variables represent the state of the

agent, the four-dimensional equivalent of the x–y coordinates in

the navigation task. Just as in the water-maze case, place cells

firing rates were tuned to specific points in the 4-dimensional

space.

Again similar to the maze navigation, the choice of the action

(in this case the torque exerted on the pendulum joint) is encoded

by the population vector of the actor neurons. The only two

differences to the actor in the water-maze are that (i) the action is

described by a single scalar and (ii) the action neuron attractor

network is not on a closed ring anymore, but rather an open

segment, encoding torques F in the range {FmaxƒFƒFmax.

Several factors make the acrobot task harder than the water-

maze navigation task. First, the state space is larger, with four

dimensions against two. Because the number of place cells we use

to represent the state of the agent grows exponentially with the

dimension of the state space, this is a critical point. A larger

number of place cells means that each is visited less often by the

agent, making learning slower. At even higher dimensions, at some

point the place cells approach is expected to fail. However, we

want to show that it can still succeed in four dimensions.

A second difficulty arises from the faster dynamics of the

acrobot system with respect to the neural network dynamics.

Although in simulations we are in full control of the timescales of

both the navigation and acrobot dynamics, we wish to keep them

in range with what might naturally occur for animals. As such the

acrobot model requires fast control, with precision on the order of

100ms. Finally, the acrobot exhibits complex dynamics, chaotic in

the control-less case. Whereas the optimal strategy for the

navigation task consists in choosing an action (i.e., a direction)

and sticking to it, solving the acrobot task requires precisely timed

actions to successfully swing the pendulum out of its gravity well.

Figure 4. Maze navigation learning task. A: The maze consists of a square enclosure, with a circular goal area (green) in the center. A U-shaped
obstacle (red) makes the task harder by forcing turns on trajectories from three out of the four possible starting locations (crosses). B: Color-coded
trajectories of an example TD-LTP agent during the first 75 simulated trials. Early trials (blue) are spent exploring the maze and the obstacles, while
later trials (green to red) exploit stereotypical behavior. C: Value map (color map) and policy (vector field) represented by the synaptic weights of the
agent of panel B after 2000s simulated seconds. D: Goal reaching latency of agents using different learning rules. Latencies of N~100 simulated
agents per learning rule are binned by 5 trials (trials 1–5, trials 6–10, etc.). The solid lines shows the median of the latencies for each trial bin and the
shaded area represents the 25th to 75th percentiles. For the R-max rule these all fall in the Ttimeout~50s time limit after which a trial was interrupted if
the goal was not reached. The R-max agent were simulated without a critic (see main text).
doi:10.1371/journal.pcbi.1003024.g004
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In spite of these difficulties, our actor-critic network using the

TD-LTP learning rule is able to solve the acrobot task, as

Figure 5B shows. We compared the performance to a near-

optimal trajectory [40]: although our agents are typically twice as

slow to reach the goal, they still learn reasonable solutions to the

problem. Because the agents start with mildly random initial

synaptic weights (see Models) and are subject to stochasticity, their

history, and thus their performance, vary; the best agents have

performance approaching that of the optimal controller (blue trace

in Figure 5B).

Cartpole Task
We next try our spiking neuron actor-critic network on a harder

control task, the cartpole swing-up problem [19]. This is a more

difficult extension of cartpole balancing, a standard task in

machine learning [18,41]. Here, a pole is attached to a wheeled

cart, itself free to move on a rail of limited length. The pole can

swing freely around its axle (it doesn’t collide with the rail). The

goal is to swing the pole upright, and, ideally, to keep it in that

position for as long as possible. The only control that can be

exerted on the system is a force F on the cart (Figure 6A). As in the

acrobot task, four variables are needed to describe the system: the

position x of the cart, its velocity v, and the angle h and angular

velocity _hh of the pole. We define a successful trial as a trial where

the pole was kept upright (DhDvp=4) for more than 10 s, out of a

maximum trial length of Ttimeout~20 s. A trial is interrupted and

the agent is punished for either hitting the edges of the rail

(DxDw2:5) or ‘‘over-rotating’’ (DhDw5p). Agents are rewarded (or

punished) with a reward rate r(t)~50 cos(h).

The cartpole task is significantly harder than the acrobot task

and the navigation task. In the two latter ones, the agent only has

to reach a certain region of the state space (the platform in the

maze, or a certain height for the acrobot) to be rewarded and to

cause the end of the trial. In contrast, the agent controlling the

cartpole system must reach the region of the state space

corresponding to the pole being upright (an unstable manifold),

and must learn to fight adverse dynamics to stay in that position.

For this reason learning to successfully control the cartpole

system takes a large number of trials. In Figure 6B, we show the

number of successful trials as a function of trial number. It takes

the ‘‘median agent’’ (black line) on the order of 3500 trials to

achieve 100 successful trials. This is slightly worse but on the same

Figure 5. Acrobot task. A: The acrobot swing-up task figures a double pendulum, weakly actuated by a torque F at the joint. The state of the

pendulum is represented by the two angles h1 and h2 and the corresponding angular velocities _hh1 and _hh2. The goal is to lift the tip above a certain
height hgoal~1:5 above the fixed axis of the pendulum, corresponding to the length l1~l2~1 of the segments. B: Goal reaching latency of N~100
TD-LTP agents. The solid line shows the median of the latencies for each trial number and the shaded area represents the 25th to 75th percentiles of
the agents performance. The red line represents a near-optimal strategy, obtained by the direct search method (see Models). The blue line show the
trajectory of one of the best amongst the 100 agents. The dotted line shows the Ttimeout~100s limit after which a trial was interrupted if the agent did
not reach the goal. C: Example trajectory of an agent successfully reaching the goal height (green line).
doi:10.1371/journal.pcbi.1003024.g005
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order of magnitude as the (non-neural) actor-critic of [19], which

needs *2750 trials to reach that performance.

The evolution of average reward by trial (Figure 6C) shows

that agents start with a phase of relatively quick progression

(inset), corresponding to the agents learning to avoid the

immediate hazard of running into the edges of the rail. This is

followed by slower learning, as the agents learn to swing and

control the pole better and better. To ease the long learning

process we resorted to variable learning rates for both the actor

and critic on the cartpole task: we used the average recent

rewards obtained to choose the learning rate (see Models). More

precisely, when the reward was low, agents used a large learning

rate, but when performance improved, the agents were able to

learn finer control strategies with a small learning rate. Eventually

agents manage fine control and easily recover from unstable

situations (Figure 6D). Detailed analysis of the simulation results

showed that our learning agents suffered from noise in the actor

part of the network, hampering the fine control needed to keep

the pole upright. For example, the agent in Figure 6D has learned

how to recover from a falling pole (top and middle plots) but will

occasionally take more time than strictly necessary to bring the

pole to a vertical standstill (bottom plot). The additional spike

firing noise in our spiking neuron implementation could

potentially explain the performance difference with the actor-

critic in [19].

Discussion

In this paper, we studied reward-modulated spike-timing-

dependent learning rules, and the neural networks in which they

can be used. We derived a spike-timing-dependent learning rule

for an actor-critic network and showed that it can solve a water-

maze type learning task, as well as acrobot and cartpole swing-up

tasks that both require mastering a difficult control problem. The

derived learning rule is of high biological plausibility and

resembles the family of R-STDP rules previously studied.

Biological Plausibility
Throughout this study we tried to keep a balance between

model simplicity and biological plausibility. Our network model is

meant to be as simple and general as possible for an actor-critic

architecture. We don’t want to map it to a particular brain

structure, but candidate mappings have already been proposed

[42,43]. Although they do not describe particular brain areas,

most components of our network resemble brain structures.

Our place cells are very close to – and indeed inspired

Figure 6. Cartpole task. A: Cartpole swing-up problem (schematic). The cart slides on a rail of length 5, while the pole of length 1 rotates around its
axis, subject to gravity. The state of the system is characterized by (x,v,h, _hh), while the control variable is the force F exerted on the cart. The agent
receives a reward proportional to the height of the pole’s tip. B: Cumulative number of ‘‘successful’’ trials as a function of total trials. A successful trial
is defined as a trial where the pole angle was maintained up (DhDvp=4) for more than 10s, out of a maximum trial length Ttimeout~20 s. The black line
shows the median, and the shaded area represents the quartiles of 20 TD-LTP agents’ performance, pooled in bins of 10 trials. The blue line shows the
number of successful trials for a single agent. C: Average reward in a given trial. The average reward rate r(t) obtained during each trial is shown
versus the trial number. After a rapid rise (inset, vertical axis same as main plot), the reward rises in a much slower timescale as the agents learn the
finer control needed to keep the pole upright. The line and the area represent the median and the quartiles, as in B. D: Example agent behavior after
4000 trials. The three diagrams show three examples of the same agent recovering from unstable initial conditions (top: pole sideways, center:
rightward speed near rail edge, bottom: small angle near rail edge).
doi:10.1371/journal.pcbi.1003024.g006
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by – hippocampal place cells [22]. Here we assume that the

information encoded in place cells is available to the rest of the

brain. Actor neurons, tuned to a particular action and linked to the

animal level action through population vector coding are similar to

classical models of motor or pre-motor cortices [37]. So-called

‘‘ramp’’ neurons of the ventral striatum have long been regarded

as plausible candidates for critic neurons: their ramp activity in the

approach of rewards matches that of the theoretical critic. If one

compares experimental data (for example Figure 7A, adapted

from van der Meer and Redish [44]) and the activity of a typical

critic neuron (Figure 7B), the resemblance is striking. The prime

neuromodulatory candidate to transmit the global TD error signal

to the synapses is dopamine: dopaminergic neurons have long

been known to exhibit TD-like activity patterns [7,45].

A problem of representing the TD error by dopamine

concentration is that while the theoretically defined d error signal

can be positive as well as negative, dopamine concentration values

[DA] are naturally bound to positive values [46]. This could be

circumvented by positing a non-linear relation between the two

values (e.g., d~log½DA�) at the price of sensitivity changes over

the d range. Even a simpler, piecewise linear scheme d~½DA�{b
(where b is the baseline dopamine concentration) would be

sufficient, because learning works as long as the sign of the TD

error is correct.

Another possibility would be for the TD error to be carried in

the positive range by dopamine, and in the negative range by some

other neuromodulator. Serotonin, which appears to play a role

similar to negative TD errors in reversal learning [47], is a

candidate. On the other hand this role of serotonin is seriously

challenged by experimental recordings of the activity of dorsal

raphe serotonin neurons during learning tasks [48,49], which fail

to show activity patterns corresponding to an inverse TD signal.

One of the aspects of our actor-critic model that was not

implemented directly by spiking neurons but algorithmically, is the

computation of the TD signal which depends on the reward, the

value function and its derivative. In our model, this computation is

crucial to the functioning of the whole. Addition and subtraction of

the reward and the value function could be done through

concurrent excitatory and inhibitory input onto a group of

neurons. Similarly, the derivative of the value function could be

done by direct excitation by a signal and delayed (for example by a

an extra synapse) inhibition by the same signal (see example in

Figure 7C). It remains to be seen whether such a circuit can

effectively be used to compute a useful TD error. At any rate,

connections from the the ventral striatum (putative critic) to the

substantia nigra pars compacta (putative TD signal sender) show

many excitatory and inhibitory pathways, in particular through

the globus pallidus, which could have precisely this function [50].

Limitations
A crucial limitation of our approach is that we rely on relatively

low-dimensional state and action representations. Because both

use similar tuning/place cells representations, the number of

neurons to represent these spaces has to grow exponentially with

the number of dimensions, an example of the curse of

dimensionality. While we show that we can still successfully solve

problems with four-dimensional state description, this approach is

bound to fail sooner or later, as dimensionality increases. Instead,

the solution probably lies in ‘‘smart’’ pre-processing of the state

space, to delineate useful and reward-relevant low dimensional

manifolds on which place cells could be tuned. Indeed, the

representation by place cells can be learned from visual input with

thousands of ‘‘retinal’’ pixels, using standard unsupervised

Hebbian learning rules [20,51,52].

Moreover, TD-LTP is derived with the assumption of sparse

neural coding, with neurons having narrow tuning curves. This is

in contrast to covariance-based learning rules [53], such as R-max

[4,6,38,39] which can, in theory, work with any coding scheme,

albeit at the price of learning orders of magnitude slower.

Synaptic Plasticity and Biological Relevance of the
Learning Rule

Although a number of experimental studies exist [11–14,54]

targeting the relation between STDP and dopamine neuromodu-

lation, one is at pain to draw precise conclusions as to how these

Figure 7. Biological plausibility. A: Firing rate of rat ventral striatum ‘‘ramp cells’’ during a maze navigation task. In the original experiment, the
rat was rewarded in two different places, first by banana flavored food pellets, corresponding to the big drop in activity, then by neutral taste food
pellets, corresponding to the end of small ramp. Adapted from van der Meer and Redish [44]. B: Firing rate of a single critic neuron in our model from
the linear track task in Figure 2C. The dashed line indicates the firing rate {V0=n (Eq. 12) corresponding to V (t)~0. C: Putative network to calculate
the TD error using synaptic delays. The lower right group of neurons corresponds to the critic neurons we considered in this paper. Each group of
neurons gets its input delayed by the amount of the synaptic delay Dt. Provided the synapses have the adequate efficacies (not shown), this allows

the calculation of _VV (t)&(V (t){V (t{Dt)=Dt and the TD error d(t).
doi:10.1371/journal.pcbi.1003024.g007
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two mechanism interplay in the brain. As such, it is hard to extract

a precise learning rule from the experimental data. On the other

hand, we can examine our TD-LTP learning rule in the light of

experimental findings and see whether they match, i.e., whether a

biological synapse implementing TD-LTP would produce the

observed results.

Experiments combining various forms of dopamine or dopa-

mine receptor manipulation with high-frequency stimulation

protocols at the cortico-striatal synapses provide evidence of an

interaction between dopamine and synaptic plasticity [8–11].

While these experiments are too coarse to resolve the spike-timing

dependence, they form a picture of the dopamine dependence: it

appears that at high concentration the effect of dopamine paired

with high-frequency stimulation is the induction of long-term

potentiation (LTP), while at lower concentrations, long-term

depression (LTD) is observed. At a middle ‘‘baseline’’ concentra-

tion, no change is observed. This picture is consistent with

TD-LTP or TD-STDP if one assumes a relation DA(t)~
d(t)zbaseline between the dopamine concentration DA and the

TD error.

The major difference between TD-LTP and TD-STDP is the

behavior of the rule on post-before-pre spike pairings. While TD-

LTP ignores these, TD-STDP causes LTD (resp. LTP) for positive

(resp. negative) neuromodulation. Importantly this doesn’t seem to

play a large role for the learning capability of the rule, i.e., the pre-

before-post is the only crucial part. This is interesting in the light of

the study by Zhang et al. [13] on hippocampal synapses, that finds

that extracellular dopamine puffs reverse the post-before-pre side

of the learning window, while strengthening the pre-before-post

side. This is compatible with the fact that polarity of the post-

before-pre side of the learning window is not crucial to reward-

based learning, and might serve another function.

One result predicted by both TD-LTP and TD-STDP and that

has not, to our knowledge, been observed experimentally, is the

sign reversal of the pre-before-post under negative reward-

prediction-error signals. This could be a result of the experimental

challenges required to lower dopamine concentrations without

reaching pathological levels of dopamine depression. However

high-frequency stimulation-based experiments show that a reversal

of the global polarity of long-term plasticity indeed happens [8,11].

Moreover, a study by Seol et al. [54] of STDP induction protocols

under different (unfortunately not dopaminergic) neuromodulators

shows that both sides of the STDP learning window can be altered

in both polarity and strength. This shows that a sign change of the

effect of the pre-then-post spike-pairings is at least within reach of

the synaptic molecular machinery.

Another prediction that stems from the present work is the

existence of eligibility traces, closing the temporal gap between the

fast time requirements of STDP and delayed rewards. The

concept of eligibility traces is well explored in reinforcement

learning [1,5,55,56], and has previously been proposed for

reward-modulated STDP rules [6,30]. Although our derivation

of TD-LTP reaches an eligibility trace by a different path (filtering

of the spike train signal, rather than explicitly solving the temporal

credit assignment problem), the result is functionally the same. In

particular, the time scales of the eligibility traces we propose, on

the order of hundreds of milliseconds, are of the same magnitude

as those proposed in models of reward-modulated STDP [6,30].

Direct experimental evidence of eligibility traces still lacks, but

they are reminiscent of the synaptic tagging mechanism [57].

Mathematical models of tagging [58], using molecular cascades

with varying timescales, provide an example of how eligibility

traces could be implemented physiologically.

Insights for Reward-Modulated Learning in the Brain
One interesting result of our study, is the fact that although our

TD signal properly ‘‘teaches’’ the critic neurons the value function

and back-propagates the reward information to more distant

points, it is difficult to see the back-propagation in the time course

of the TD signal itself. The reason for this is that the signal is

drowned in rapid fluctuations. If one were to record a single

neuron representing the TD error, it would probably be

impossible to reconstruct the noiseless signal, except with an

extremely high number of repetitions under the same conditions.

This might be an explanation for the fact that the studies by

Schultz and colleagues (e.g., [45]) repeatedly fail to show back-

propagation of the TD error, even though dopamine neurons

seem to encode such a signal.

In this study, TD-STDP (and TD-LTP) is used in a ‘‘gated-

Hebbian’’ way: a synapse between A and B should be potentiated

if it witnessed pre-before-post pairings and the TD signal following

later is positive. This is fundamentally different from the role of the

reward-modulated version of that learning rule (R-STDP) in [32],

where it is used to do covariance-based learning: a synapse

between A and B should be potentiated if it witnesses positive

correlation between pre-before-post pairings and a success signal,

on average. One consequence of this is the timescale of learning:

while TD-based learning takes tens of trials, covariance based

learning typically requires hundreds or thousands of trials. The

other side of the coin is that covariance-based learning is

independent of the neural coding scheme, while TD-based

learning requires neural tuning curves to map the relevant

features prior to learning. The fact that the mathematical structure

of the learning rule (i.e., a three-factor rule where the third factor

‘‘modulates’’ the effect of pre-post coincidences [59]) is the same in

both cases is remarkable, and one can see the advantage that the

brain might have had to evolve such a multifunctional tool — a

sort of ‘‘Swiss army knife’’ of synaptic plasticity.

Models

Neuron Model
For the actor and critic neurons we simulated a simplified spike

response model (SRM0, [60]). This model is a stochastic variant of

the leaky integrate-and-fire neuron, with the membrane potential

of neuron of i given by

ui(t)~
X

j

wij

X
t
f
j
[F j ,t

f
j
wt̂ti

e(t{t
f
j )zxH(t{t̂ti)exp

t̂ti{t

tm

� �
, ð18Þ

where wij is the efficacy of the synapse from neuron j to neuron i,

F j is the set of firing times of neuron j, tm~20 ms is the

membrane time constant, x~{5 mV scales the refractory effect,

H is the Heaviside step function and t̂ti is the last spike of neuron i
prior to t.

The EPSP is described by the time course

e(s)~
e0

tm{ts

e
{s
tm {e

{s
ts

� �
H(s), ð19Þ

where ts~5 ms is the synaptic rise time and e0~20 mV:ms is a

scaling constant, and tm is the membrane time constant, as in Eq.

18. Given the membrane potential ui, spike firing in the SRM0 is

an inhomogeneous Poisson process: at every moment the neuron

has a probability of emitting a spike, according to an instantaneous

firing rate
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~rri(t)~g(ui(t))~r0 exp
ui(t){h

Du

� �
, ð20Þ

where r0~60 Hz, h~16 mV and Du~2 mV are constants

consistent with experimental values [61]. In the limit Du?0, the

SRM0 becomes a deterministic leaky integrate-and-fire neuron.

Navigation Task
The Morris water-maze pool is modeled by a two-dimensional

plane delimited by a square wall. The position x of the agent on

the plane obeys

_xx(t)~
a(t) if x(t) within boundaries

Dxd(t)u(x(t)) else:

�
ð21Þ

When the agent is within boundaries it moves with speed a(t), as

defined by the actor neurons’ activity (Eq.29). Whenever the agent

encounters a wall, it instantly ‘‘bounces’’ back a distance Dx~0:1
along unitary vector u(x(t)), which points inward, perpendicular

to the obstacle surface. Every ‘‘bumping’’ against a wall is

accompanied by a punishing, negative reward Robst~{1 delivery

(see reward delivery dynamics below).

We used two variants of the navigation task. The linear track is

a narrow rectangle of size (40|4) centered around the origin,

featuring a single starting position in x~({17:5, 0) and a wide

goal area (x1§16) on the opposite side. Because the goal of this

setup is to study critic learning, the action is clamped to a fixed

value a(t)~(5, 0), so that the agent runs toward the goal at a fixed

speed.

The second variant is the navigation maze with obstacle. It

consists of a square area of size (20|20) centered around the

origin, with four starting positions at x[f(+7:5, 0),(0,+7:5)g.
The goal area is a circle of radius rgoal~1 centered in the middle

of the maze. The goal is surrounded on three sides by a U-shaped

obstacle (width of each segment: 2, length: 10).

In both variants, place cells centers xj are disposed on a grid

(blue dots on Figure 1), with spacing sPC~2 coinciding with the

width of the place fields. The outermost centers lie a distance sPC

outside the maze boundaries. This ensures a smooth coverage of

the whole state space. In the case of the maze, the place cell grid

consists of 13|13 centers. For the linear track setup, the grid has

43|5 centers.

Trials start with the agent’s position x being randomly chosen

from one out of four possible starting positions. The place cells,

indexed by j, are inhomogeneous Poisson processes. After a trial

starts, the place cells’ instantaneous firing rates are updated to

rj(x(t))~rPC exp {
x(t){xj

		 		2

s2
PC

 !
, ð22Þ

where rPC~400 Hz is a constant regulating the activity of the

place cells, sPC~2 is the place cells separation distance and the xj

are the place cells centers. The presynaptic activity in the place

cells generates activity in the post-synaptic neurons of the critic

and the actor with a small delay caused by the rise time of EPSPs.

The value function V is calculated according to Eqs 12 and 13,

with parameters V0~{40½reward units� and n~2½reward units�
|s. Because V is delayed by the rise time tb of the k kernel, at the

start of a trial the TD error d(t) is subject to large, boundary effect

transients. To cancel these artifacts, we clamp the TD error to

d(t)~0, for the first Tclamp~500 ms of each trial. We use a reward

discount time constant tr~4 s.

The goal of the agent is to reach the circular area which

represents the submerged platform of the water-maze. When the

agent reaches this platform, a positive reward Rgoal~100 is

delivered, the trial ends and the agent is put in a so-called ‘‘neutral

state’’, which models the removal of the animal from the

experiment area. The effects of this is (i) the place cells

corresponding to the maze become silent, presumably replaced

by other (not modeled) place cells, and (ii) the expectation of the

animal becomes neutral, and therefore its value function goes to

zero. So at the end of a trial, we turn off place cell activity (rj~0),

and the value function is no longer given by Eq. 13, but decays

exponentially to 0 with time constant tk from its value at the time

of the end of the trial. Importantly, synaptic plasticity continues

after the end of the trial, so that the effect of Rgoal affects the

synaptic weight even though its delivery takes place in the neutral

state. Additionally, a trial can end without the platform being

reached: if a trial exceeds the time limit Ttimeout, it is declared a

failed trial, and interrupted with the agent put in the neutral state,

just as in the successful case, but without reward being delivered.

According to Eq. 3, rewards are given to the agent as a reward

rate. This reflects the fact that ‘‘natural’’ rewards, and reward

consumption, are spread over time, rather than point-like events.

So we translate absolute rewards (R) to a reward rate (r(t)),
calculated as the difference of two decaying ‘‘traces’’ obeying

dynamics

_rra(t)~{
ra(t)

ta

; _rrb(t)~{
rb(t)

tb

ð23Þ

i.e.,

r(t)~
ra(t){rb(t)

ta{tb

: ð24Þ

At most times, the reward is close to 0. Reward is delivered only

when some event (goal reached or collision against an obstacle)

occurs. The delivery of a reward R happens through instantaneous

update of the traces

ra(t)?ra(t)zR; rb(t)?rb(t)zR: ð25Þ

The resulting effect is a subsequent positive excursion of r(t), with

rise time tb~10 ms and fall time ta~200 ms, which, integrated

over time, amounts to R.

Acrobot Task
In the acrobot task, the position of the pendulum is described by

two angles: h1 is the angle between the first segment of the

pendulum and the vertical, and h2 is the angle between the second

segment and an imaginary prolongation of the first (Figure 5A).

When h1~h2~0, the pendulum hangs down. Critical to solving

the task are also the angular velocities _hh1 and _hh2. As in the maze

navigation case, place cells tuned to specific centers are used to

represent the state of the acrobot. We transform the angular

velocities lk~ tan{1 ( _hhk=4), k[1, 2. This allows a fine resolution

over small velocities, while maintaining a representation of higher

velocities with a small number of place cells. The state x is

represented by the four variables x~(h1,h2,l1,l2).

The place cells centers are disposed on a 4-dimensional grid

defined by indexes (m,n,p,q), such that
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x(m,n,p,q)~(x
(m)
1 ,x

(n)
2 ,x

(p)
3 ,x

(q)
4 ) with

x
(m)
1 ~

m

3
p, m~1, . . . ,6; x

(n)
2 ~

n

3
p, n~1, . . . ,6;

x
(p)
3 ~p tan�1 (p), p~{3, . . . ,3; x

(q)
4 ~q tan�1 (

9

4
p), q~{3, . . . ,3:

ð26Þ

This yields a total of 6|6|7|7~1764 centers. The activity of a

place cell with center x(m,n,p,q) is defined by

r(m,n,p,q)(t)~rPC exp

{
a(h1,x

(m)
1 )2

2s2
1

{
a(h2,x

(n)
2 )2

2s2
2

{
(l1{x

(p)
3 )2

2s2
3

{
(l2{x

(q)
4 )2

2s2
4

 !
,
ð27Þ

where a is a function returning the difference between two angles

modulo 2p in the range ({p,p� and the place cell widths s1 to s4

correspond to the grid spacing as in Eq. 26.

The acrobot dynamics obeys the following equations [1]:

€hh1~{
d2

€hh2zw1

d1

€hh2~

Fz
d2

d1

w1{m2l1lc2
_hh

2

1 sin h2{w2

m2l2
c2zI2{

d2
2

d1

d1~m1l2
c1zm2(l2

1zl2
c2z2l1lc2 cos h2)zI1zI2

d2~m2(l2
c2zl1lc2 cos h2)zI2

q1~{m2l1lc2
_hh2 sin h2( _hh2z2 _hh1)

{(m1lc1zm2l1)g sin h1zq2

w2~m2lc2g sin(h1zh2):

Here, d1, d2, w1 and w2 are convenience variables, F is the torque

applied to the joint, l1~l2~1 are the lengths of the segments, of

mass m1~m2~1, with moments of inertia I1~I2~1=12 and

lengths to the centers of mass lc1~lc2~0:5, under the influence of

gravity g~9:8 s{2. All dimensions except time are unit-less.

The goal is for the tip of the acrobot to reach a height hgoal~1
over the axis, i.e., fulfill the condition

l1 cos h1zl2 cos(h1zh2)ƒ{hgoal . Once this happens, or the

maximum trial time Ttimeout~100 is reached, the trial ends. To

entice the acrobot to do something, we give an ongoing

punishment rpenalty~{10 s{1 to the agent for not reaching the

reward, to be compared with the reward Rgoal~100 received at

the goal. As in the water-maze case, we use a reward discount time

constant tr~4 s.

Due to the larger number of place cells, we use less critic and

actor neurons than in the maze case, respectively Ncritic~50 and

Nactor~60, to reduce the number of synapses and the computa-

tional load.

To compare the performance of our agent against an

‘‘optimal’’ strategy, we use the direct search method [40].

The main idea behind the method is to search for the sequence

of action that will maximize the system’s total energy, with

knowledge of the acrobot dynamics. To make the search

computationally tractable, a few simplifications are made:

actions are limited to the alternative f{Fmax,Fmaxg, actions are

only taken in steps of 100 ms, only a window of the next 10

steps is considered at a time, and the number of action switch in

each window is limited to 2. Thus only 55 action sequences

have to be examined, and the sequence that maximizes the total

energy reached over the window, or reaches the goal height the

sooner, is selected. The first action in that sequence is chosen as

the action for the next step and the whole procedure is repeated

with the window shifted by one step. The goal height reaching

latency found with this method was 7.66s (red line in Figure 5B).

Cartpole Task
The position of the cartpole system is described by the cart

position x, the cart velocity v, the angle of the pole with the vertical

h (h~0 corresponds to the pole pointing upwards) and the angular

velocity _hh; these form the state vector x~(x,v,h, _hh). Similar to the

acrobot, the place cells for the cartpole problem are regularly

disposed on a four-dimensional grid of 7|7|15|15~11025
cells. The location of a place cell with index (m,n,p,q) is at location

x(m,n,p,q)~(x
(m)
1 ,x

(n)
2 ,x

(p)
3 ,x

(q)
4 ) with

x
(m)
1 ~

5

4
m, m~{3, . . . ,3; x

(n)
2 ~

5

4
n, n~{3, . . . ,3;

x
(p)
3 ~

2p

15
p{p, p~0, . . . ,14; x

(q)
4 ~

2p

3
q, q~{7, . . . ,7:

ð28Þ

The activity of a place cell is defined in a way analog to Eq. 27.

The variance of the gaussian place fields is diagonal (s2
1,s2

2,s2
3,s2

4),

where sk corresponds to the grid spacing in dimension k.

The dynamics of the cartpole are [62]:

Nc~(mczmp)g{mpl(€hh sin hz _hh
2

cos h)

€hh~

g sin hzcos h
{F{mpl _hh

2
sin hzmc sgn(Ncv)cos hð Þ
mczmp

zmcg sgn(Ncv)

� �
{

mp
_hh

mpl

l 4
3
{

mp cos h

mpzmc
(cos h{mc sgn(Ncv))

h i

a~
Fzmpl( _hh

2
sin h{€hh cos h){mcNc sgn(Ncv)

mpzmc

:

Here a = v̇ is the acceleration of the cart, l~0:5 is half the pole’s

length, mc~5:10{4 and mp~2:10{6 are coefficients of friction of

the cart on the track and of pole rotation respectively. The cart,

with mass mc~1, and the pole, with mass mp~0:1, are subject to

the acceleration of gravity g~9:8 s{2. As in the acrobot case, all

dimensions except time are unit-less.

Following [19], the agent is rewarded continuously depending

on the current height of the pole with r(t)~50 cos h, and the

reward discount time constant is set to tr~1 s. If the cart runs off

its rail (DxDw2:5) or over-rotates (DhDw5p) the trial is ended and a

Actor-Critic Learning with Spiking Neurons

PLOS Computational Biology | www.ploscompbiol.org 15 April 2013 | Volume 9 | Issue 4 | e1003024



negative reward R~{50 is given. A trial ends without reward

after Ttimeout~20 s. When a new trial starts, the position of the

system is initialized with a random h[½{p,p) and x~v~ _hh~0.

Actor Dynamics
In population vector coding, each actor neuron k ‘‘votes’’ for its

preferred action ak in the action space, by firing an action

potential. An action vector is obtained by averaging the product of

the instantaneous firing rate rk(t) (see Eq. 12) and the action

vector of each neuron, i.e.

a(t)~
1

Za(t)

X
k

rk(t)ak, ð29Þ

where rk is defined as

rk(t) :~ Yk0cð Þ(t), ð30Þ

with filter

c(t) :~
e
{t
tc {e

{t
uc

tc{uc
H(t),

with tc~50 ms and uc~20 ms being filtering time constants. The

term Za(t) in Eq. 29 is a normalization term. In the case of the

navigation task (two-dimensional action), it is equal to the number

of actor neurons, Za(t)~Nactor. In the cases of the acrobot and the

cartpole task (scalar action), Za(t)~
P

k rk(t).

We enforce a N-winner-takes-all mechanism on the action

neurons by imposing ‘‘lateral’’ connectivity between the action

neurons: action neurons coding for similar actions excite each

other, while they inhibit the neurons coding for dissimilar actions.

The synaptic weight between two action neurons k and k’ is

wkk’~
w{

Nactor

zwz

f k,k’ð Þ
Z

f
k

, ð32Þ

where f is a lateral connectivity function. This is zero for k~k’,
peaks for k~k’+1 and monotonously decreases towards 0 as ak

and ak’ diverge. Z
f
k~

P
k’ f (k,k’) is a normalization constant. The

parameters w{~{60 and wz~30 regulating the recurrent

connections were manually tuned: the lateral connectivity has to

be strong enough so that there is always exactly one ‘‘bump’’ of

similarly tuned neurons active whenever the action neurons receive

some excitation from the place cells, but not so strong that it

completely dominates the feed-forward input from the place cells.

The preferred vectors ak of the action neurons and the function f
are dependent on the learning task. In the case of the maze navigation

task, the preferred action vectors are ak~a0 sin(hk), cos(hk)ð ÞT
where a0~1:8 is a constant representing the agent velocity per rate

unit and hk~
2kp

Nactor

, for k~1, . . . ,Nactor. The f function was chosen

as

fnav(k,k’)~(1{dkk’) exp f cos(hk{hk’)ð Þ, ð33Þ

with f~8.

In the case of the acrobot and cartpole tasks, the action vectors

are ak~
2Fmaxk

Nactor

{Fmax. For the acrobot Fmax~0:75 represents

the maximum torque that the agent can exert and for the cartpole

task Fmax~10 is the maximum force on the cart. The lateral

connectivity function f in both cases was chosen as

facrobot(k,k’)~fcartpole(k,k’)~exp
(k{k’)2

l2

 !
, ð34Þ

with l~0:5. Additionally, we algorithmically constrain the torque

exerted by the agent to the domain F[½{Fmax,Fmax�. This models

the limited strength of the agent’s ‘‘muscles’’.

Other Reward-Modulated Synaptic Learning Rules
In R-STDP [6,30–32], the effects of classic STDP are modulated by

a neuromodulatory signal d(t)~r(t){�rr, where �rr is a constant

baseline. We transformed the reward-modulated R-STDP into the

TD-modulated rule TD-STDP by replacing the d(t) with d(t). The

TD-STDP rule can be written as

_wwij(t)~gd(t) ½Yi
:(X

t̂ti
j 0W )�0ke

� �
(t) ð35Þ

where the STDP learning window is

W (s)~

Aze{s=tz if sw0,

{A{e{s=t{ if sv0 and

0 if s~0:

8><
>:

The eligibility trace kernel ke is the result of an exponential decay, i.e.,

ke(s)~H(s)e{s=te , with time constant te~500 ms. The positive

constants Az~0:75 and A{~0:375 govern the size of the pre-

before-post and post-before-pre parts of the learning window

respectively, and the time constants tz~20 ms and t{~40 ms
determine their timing requirement.

R-max [4,6,32,38] is a reward-modulated learning rule derived

from policy gradient principles [5]. It can be written as

_wwij(t)~gr(t) Yi{~rri(t)ð Þ:(X t̂ti
j 0e)

h i
0ke

� �
(t) ð36Þ

where ~rri(t) is the instantaneous firing rate of neuron i, as defined

in Eq. 20.

Simulation Details
Initial values of the synaptic weights to both critic and actor

were randomly drawn from a normal distribution with mean

mw~0:5 and standard deviation sw~0:1. These values ensured an

initial value function V (t)&0 and reasonable action neuron

activity prior to learning.

For all learning rules, synaptic weights were algorithmically

constrained to the range 0ƒwƒ3, to avoid negative or runaway

weights. Learning rate values were manually adjusted (one value

for actor and another one for critic synapses) to the value that

yielded the best performance (as measured by the number of trials

completed in 2.000s of simulated time). These values for the

navigation and acrobot tasks are printed in Table 1. For the

cartpole task, somewhat faster learning was achieved by using a

variable learning rate

~ggcrit(�rr)~max
10

1z
3

2
exp(�rr=7)

, 1:25

0
B@

1
CA ð37Þ
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for the critic, where �rr is a running average of past reward rates r(t),
computed by filtering r(t) with an exponential window with time

constant 50s. The actor learning rate was ~ggact~0:5~ggcrit.

All simulations were ran using Euler’s method with time-step

Dt~0:2 ms, except for the acrobot and cartpole dynamics,

simulated using 4th order Runge-Kutta with Dt~0:01 ms.

Derivation of LV=Lwij

In this section we calculate the term
LV (x(t))

Lwij

, needed to derive Eq.

17. Using Eqs 12–13, and focusing on the synaptic weight wij from j to

i, we find

LV (x(t))

Lwij

~
n

Ncritic

Lri(t)

Lwij

~
n

Ncritic

LYi

Lwij

0k
� �

(t) ð38Þ

where we used the fact that ri9(t) is independent of wij for i’=i. The

derivative of the spike train
LYi(t)

Lwij

is ill-defined: in our stochastic

neuron model, the spike train itself is independent of the synaptic

weights. It is only the probability of the spike train actually being

emitted by the neuron that depends on the weights. Therefore we

replace
LYi(t)

Lwij

with
LSYi(t)TYi DX

Lwij

, the expected value of the spike train

Yi conditional on the input X. This yields

LSYi(t)TYi jX

Lwij

~
L

Lwij

X
Z

p(Yi~ZjX)Z(t)

~
X

Z

p(Yi~ZjX)Z(t)
L log p(Yi~ZjX)

Lwij

,

ð39Þ

where the sum is over all possible spike trains Z and p(Yi~ZDX) is the

probability density of the spike train Yi being equal to Z. The

probability density of that spike train Z, lasting from 0 to t, being

produced by an SRM0 neuron receiving inputs X is [38]

p(Yi~ZDX)~p(no spikes outside tf [ ZDui(t,X,Z))

|p(spikes in tf [ ZDui(t
f ,X,Z))

~e
{
Ðt
0

g(ui (s,X,Z))ds

P
tf [Z

g(u(tf ,X,Z)),

ð40Þ

where ui is the membrane potential (Eq. 18) and we have used Eq. 20.

Combining Eqs 39 and 40 yields

LSYi(t)TYi jX

Lwij

~
X

Z

p(Yi~ZjX)Z(t)

1

Du

ðt
0

Z(s){g(ui(s,X,Z))½ � Xj0e

 �

(s)ds

ð41Þ

The integration reflects the fact that the probability of a spike being

emitted by the neuron at time t is dependent not only on recent

presynaptic spikes, but also on the time of the last spike of neuron i,

which in turn depends on its whole history.

It is not clear that, in our context, this history dependence is a

desirable outcome. Two devices already take the spike train history

into account. Firstly, the definition of the value function V in the

TD framework is conditional only on the current state, and not the

long-term history. (This stems from the Markov decision process at

the root of TD.) Secondly, the filtering of the spike train by k
already ensures that the short-term history is remembered, making

the integral over the history redundant.

For these reasons, we choose to neglect the neuron’s history,

and to perform the following substitution

LSYi(t)TYi DX

Lwij

?
LSYi(t)TYi DX,̂tti

Lwij

, ð42Þ

i.e., we take the last spike time t̂ti of neuron i as given, and we ask

how does the mean spiking at time t vary as a function of the

synaptic weight wij . Therefore we have

LSYi(t)TY jX,̂tti

Lwij

~
L

Lwij

X
z[f0,dD(t)g

p(Y (t)~zjX,̂tti)z

~
Lg(ui(t),̂tti)

Lwij

dD(t),

ð43Þ

where we have used the definition of the neuron’s firing rate, Eq.

20, and dD is the Dirac distribution. Using Eqs 18 yields

Table 1. Learning rates.

Figure Rule Synapses Value Units

Figure 2C and D TD-LTP critic ~gg~0:5 ms:½reward units�{1:mV{1

Figure 4B, C and D TD-LTP critic ~gg~0:2 ms:½reward units�{1:mV{1

Figure 4B, C and D TD-LTP actor ~gg~0:05 ms:½reward units�{1:mV{1

Figure 4D TD-STDP critic g~0:0025 ½reward units�{1

Figure 4D TD-STDP actor g~0:0004 ½reward units�{1

Figure 4D R-max actor g~0:0015 ms{1:½reward units�{1:mV{1

Figure 5B and C TD-LTP critic ~gg~1:25 ms:½reward units�{1:mV{1

Figure 5B and C TD-LTP actor ~gg~1:25 ms:½reward units�{1:mV{1

Numerical values of the learning rates for the different learning rules used in simulations.
doi:10.1371/journal.pcbi.1003024.t001
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Lg(ui(t))

Lwij

dD(t)~
1

Du
g(ui(t),̂tti)dD(t)(X

t̂ti
j 0e)

~
1

Du
SYi X

t̂ti
j 0e

� �
T

Yi jX,̂tti
,

ð44Þ

where X
t̂ti
j is the spike train of neuron j culled to times posterior to

the spikes of neuron i, i.e., X
t̂ti
j (t)~Xj(t)H(t{t̂ti), with H denoting

the Heaviside step function. Wrapping up the steps from Eqs 38

and 42–44, we finally have

LV (x(t))

Lwij

~
n

NcriticDu
Yi X

t̂ti
j 0e

� �h i
0k

� �
(t): ð45Þ

Derivation of the Squared TD Gradient Learning Rule
In the Results section we derive a learning rule starting from Eq.

10. We also suggest that starting from a gradient descent on the

squared TD error (Eq.17) should yield a valid learning rule. Here

we derive such a learning rule. Combining Eq. 10, the definition of

the TD error (Eq. 5) and the result of the previous section (Eq. 45),

we find

_wwij(t)~~ggd(t) ½Yi
:(X

t̂ti
j 0e)�0 k

tr

{ _kk

� �� �
(t), ð46Þ

where X
t̂ti
j is the spike train of presynaptic neuron j. This learning

rule has the same general form as the TD-LTP rule (Eq. 17): a

‘‘Hebbian’’ pre-before-post coincidence term is first temporally

filtered, and then multiplied by the TD error with a term

(Figure 8A). The difference lies in the extra _kk in the filter, which

comes from a
L _VV (x(t))

Lwij

term. As Figure 8 suggests, the _kk term

largely dominates over k=tr. This is the consequence of our choice

of a long discount time constant (tr~4 s) with a short (*200 ms) k
kernel.

Noise Correlation Problem
Here we show, both analytically and in simulations, that the

squared TD gradient learning rule of Eq. 46 suffers from a noise

bias problem. This arises from the noise in the individual neurons

estimating the value function, and is serious enough to prevent

learning. To see this, we start by decomposing the spike train Yi(t)
of a neuron into a mean and a noise term, i.e.

Yi(t)~SYi(t)TYDXzji(t) ð47Þ

where we have defined ji(t) :~Yi(t){SYi(t)TYDX, with the

brackets S:TYDX denoting expectation, i.e., averaging over all

possible outcomes of critic neurons activity Y conditioned on the

presynaptic neural activity X. With this definition, we can rewrite

Eq. 46 as

_wwij~~gg r(t){
V0

tr

z
n

Ncritic

X
i’

SYi’TYDXzji’


 �
0 _kk{

k

tr

� �� �
(t)

 !

| SYiTYDXzji


 �
:(X

t̂ti
j 0e)

h i
0

k

tr

{ _kk

� �� �
(t),

ð48Þ

where the d error has been spelled out explicitly (Eqs 5, 13 and 12).

Eq. 48 suggests that quadratic terms jiji’ in the noise might play a

role in the learning rule. Indeed, distributivity and use of the facts

Sji(t)TYDX~0 and Sji(t)ji’(t’)TYDX~0 for i=i’ gives

S _wwijTYDX

~gg
~Sd(t)TYDX SYiTYDX(X

t̂ti
j 0e)0b

h i
(t)

� �

{
n

Ncritic

ð?
{?

ð?
{?

Cii(t{s,t{s’)b(s)b(s’)½X t̂ti
j 0e�(t{s’)dsds’:

ð49Þ

Here we have defined the autocorrelation of the noise terms

Cii(s,s’) :~Sji(s)ji(s’)TYDX, as well as b :~k=tr{ _kk for brevity.

The first term in the right-hand side of Eq. 49 is analog to Eq.

46, with SYi(t)TYDX replacing Yi(t), and Sd(t)TYDX replacing d(t).
In effect this is a ‘‘mean’’ version of the learning rule: this is what

one would get by replacing the stochastic spiking neurons in the

model by analog, noiseless units with a similar exponential

activation function.

The second term arises from the correlation of neuron noise in

the TD term d(t) and the Hebbian component of the learning rule.

This term is a function of the autocorrelation function of the

postsynaptic neuron. This carries only indirect information about

the postsynaptic firing (and thus the current value function

V (x(t))) and no information about the reward r. For this reason,

we conjecture that this second element is a potentially problematic

term, which we refer to as the ‘‘nuisance’’ term. This hypothesis is

confirmed by linear track simulations using the learning rule Eq.

46, shown in Figure 8B. These indicate that the learning rule is

unable to learn the task, contrary to TD-LTP (Figure 8C, same as

Figure 2B). More precisely, the value functions learned by the

squared TD gradient rule suffer from a negative ‘‘drag’’ term.

We next try to identify this negative ‘‘drag’’ with the nuisance

term. Although there’s no closed form expression for Cii(s,s’), one

can use the statistics of a Poisson process as a first order

approximation. In that case Cii(s,s’)~ri(s)dD(s{s’) (dD is the

Dirac distribution) and Eq. 49 becomes

S _wwijTYjX
~gg

~Sd(t)TYjX SYiTYjX(X
t̂ti
j 0e)0b

h i
(t)

� �

{
ns2 jð Þ
Ncritic

X
t̂ti
j 0½b20e�

� �
(t):

ð50Þ

The last term on the right-hand side of Eq. 50 implies that, on

average, each presynaptic spike in neuron j causes the synaptic

weight wij to depress by a fixed amount. This quantity increases

with the variance s2(ji) of the noise process, in this case the

inhomogeneous Poisson process that drives the SRM0 neuron,

and inversely to the number Ncritic of critic neurons. The time

course of the presynaptic spike effect is ruled by b20e, which is

plotted in the top panel of Figure 8D. The aggregate nuisance

effect on Dwij of a single presynaptic spike is proportional to the

integral of b20e over time.

In Figure 8E, we explore the dependence of the nuisance term

on Ncritic in numerical simulations. Eq. 50 suggests that the mean

learning rule term should obey a relationship of the form

S _wwijT~A{B=Ncritic: ð51Þ
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Here A is the result of the ‘‘useful’’ part of the learning rule, and

Bw0 contains all the other dependencies of the nuisance term. We

tested the Ncritic dependency by simulating agents with variable

numbers of critic neurons in a linear track scenario. The setup was

similar to that of Figure 2, except that the weights were frozen, i.e.,

we collected the value of the learning rule at each time step, but we

didn’t actually update the weights. The mean learning rule

outcome for 200s of simulations are plotted in Figure 8E as crosses,

against the number of critic neurons. The black line shows a fit of

the data by Eq. 51: both are in good agreement.

From Eq. 50, we see that the nuisance term also depends on the

variance s2(j) of the noise process. It is difficult to control the

variance of our spiking neurons’ noise process without also altering

their firing rate and thus the result of the learning rule. To

circumvent this difficulty, we turned to a rate model, where the

single critic neuron’s firing rate was

r(t)~f exp

P
j

wjrj(t)

Du

0
B@

1
CAzj(t), ð52Þ

Figure 8. Alternative learning rule and nuisance term. A: Schematic comparison of the squared TD gradient learning rule of Eq. 46 and TD-LTP,
similar to Figure 2A. B: Linear track task using the squared TD gradient rule. Same conventions as in Figure 2C. C: linear track task using the TD-LTP
rule (reprint of Figure 2C for comparison). D: Integrands of the disturbance term for Poisson spike train statistics. Top: squared TD gradient rule.
Bottom: TD-LTP rule. In each plot the numerical value under the curve is given. This corresponds to the contribution of each presynaptic spike to the
nuisance term. E: Disturbance term dependence on Ncritic for the squared TD gradient rule. The mean weight change under initial conditions on an
unrewarded linear track task with frozen weights, using the squared TD gradient learning rule, is plotted versus Ncritic, the number of neurons
composing the critic. Each cross corresponds to the mean over a 200s simulation, the plot shows n~100 crosses for each condition. The line shows a
fit of the data with SDwT~AzB=Ncritic , the dependence form suggested by Eq. 50. F: Same as E, for critic neurons using the TD-LTP learning rule. G,
H: Same experiment as E and F, but using a rate neuron model with Gaussian noise of mean 0 and variance s2 . The line shows a fit with
SDwT~AzBs2 , the dependence form suggested by Eq. 50.
doi:10.1371/journal.pcbi.1003024.g008
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where f is a constant, the place cells rates rj(x(t)) are defined in

Eq. 22 and j(t) is a white noise process. Similar to the steps

above, a gradient descent on d2(t) yields a learning rule of the

form

_wwj~gd(t)
k

tr

{ _kk

� �
0r

� �
ri(t): ð53Þ

Due to the noise component in r, the learning rule suffers from

the same noise-driven nuisance as the spiking version. This

depends on the noise’s variance s2(j), so that the mean weight

change obeys

S _wwjT~A{Bs2(j), ð54Þ

where Bw0. In Figure 8F, we use the rate-based model and rule

in the same ‘‘frozen weights’’ linear track scenario as in Figure 8E.

This time we looked at how the mean weight change varied as a

function of the noise variance. Again, the data is well matched by

a fit with Eq. 54 (black line), suggesting that the nuisance term

behaves as expected.

Noise Correlation in the TD-LTP Rule
In the preceding section we found that a noise correlation

nuisance in the squared TD gradient learning rule causes it to be

ineffective. However, the same actually should apply to the TD-

LTP rule. Indeed, if we repeat the steps above leading to Eq. 50

for the learning rule TD-LTP, we get

S _wwijTYjX
~gg

~Sd(t)TYjX SYiTYjX(X
t̂ti
j 0e)0b

h i
(t)

� �

{
ns2 jð Þ
Ncritic

X
t̂ti
j 0½b

k

tr

0e�
� �

(t):

ð55Þ

The only difference is the time course of the nuisance term,

which is b20e for the squared TD gradient rule versus (b
k

tr

)0e for

TD-LTP. Figure 8D shows a plot of both expressions: because the

TD-LTP expression is much smaller, these are plotted on different

axes. As noted before, the integral of the nuisance is proportional

to these time courses (shown on Figure 8D). The term for TD-LTP

is more than three orders of magnitude smaller than that of the

square TD gradient rule.

In Figure 8G and H, we repeat the experiments of Figure 8E

and F, respectively. These show that the TD-LTP learning rule

also suffers from a nuisance term, but that it is orders of magnitude

smaller than for the squared TD gradient rule. As shown by

Figure 8C and in the Results section, this nuisance is not sufficient

to prevent TD-LTP from properly learning the value function V .

The Trouble with Continuous Q-Learning
In the Results section, we claim that Q-values based algorithms,

such as Sarsa [24] and Q-Learning [23] are difficult to extend to

continuous time in a neural network setting. Here we develop this

argument.

In the discrete Sarsa algorithm, the agent maintains an

estimation of the state-action Q-values. For an agent following

the policy p, starting at time step t in state st and executing

action at, this is defined as the discounted sum over future

rewards R:

Qp(st,at)~
X?
k~0

ckR(sp
tzk,ap

tzk): ð56Þ

Here c[(0,1) is a discount factor, and sp
tzk and ap

tzk represent

the future states and actions visited by the agent under policy

p. To learn Q-values approximations Q(s,a) to the real Qp(s,a),
Sarsa suggests the following update rule at time step tz1:

Q(st,at)?Q(st,at)zdt, ð57Þ

where the TD error dt is defined as

dt~Rt{Q(st,at)zcQ(stz1,atz1): ð58Þ

If one were to propose a continuous time version of Sarsa, one

would start by redefining the state-action value function

Q(x(t),a(t)) to continuous time t, similar to the value function of

Eq. 3

Qp(x(t),a(t)) :~

ð?
t

r(xp(s),ap(s))e
{(s{t)

tr ds: ð59Þ

Here tr now plays the role of the discount factor c. As we did for

Eq. 5, we define the TD error on the Q-value by taking the

derivative of Eq. 59

d(t) :~r(x(t),a(t)){
1

tr

Q(x(t),a(t))z _QQ(x(t),a(t)): ð60Þ

To calculate the TD error, one therefore needs to combine the

three terms in Eq. 60. We assume the reward r(x(t),a(t)) is given

by the environment. Typically [16,20], neural networks imple-

mentations of Q-values based reinforcement learning consist of a

number ‘‘action cells’’ neurons j, each tuned to a specific action aj

and rate-coding for the state-action values

Q(x(t),aj)~rj(t), ð61Þ

where rj(t) is neuron j’s firing rate. In that case, reading out the

value Q(x(t),a(t)) is thus simply a matter of reading the activity of

the neuron j coding for the action aj~a(t) selected at time t.

Reading out the temporal derivative _QQ(x(t),a(t)) is harder to do

in that context, because the currently chosen action is evolving all

the time. For small Dt, we can approximate

_QQ(x(t),a(t))&
Q(x(tzDt),a(tzDt)){Q(x(t),a(t))

Dt

~
rj0 (t){rj(t)

Dt
,

ð62Þ

where we also used Eq. 61 and identified the action neuron j’
tuned to action aj’~a(tzDt).

The difficulty that arises in evaluating Eq. 62 is the following. It

requires a system that can keep track of the two recent actions a(t)
and a(tzDt), identify the relevant neurons j and j’, and calculate

a difference of their firing rates. This is hard to envision in a

biologically plausible setting. The use of an actor-critic architec-

ture solves this problem by having a single population coding for

the state-based value V (x(t)) at all times.
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