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Abstract

Most organisms live in ever-changing environments, and have to cope with a range of different conditions. Often, the set of
biological traits that are needed to grow, reproduce, and survive varies between conditions. As a consequence, organisms
have evolved sensory systems to detect environmental signals, and to modify the expression of biological traits in response.
However, there are limits to the ability of such plastic responses to cope with changing environments. Sometimes,
environmental shifts might occur suddenly, and without preceding signals, so that organisms might not have time to react.
Other times, signals might be unreliable, causing organisms to prepare themselves for changes that then do not occur.
Here, we focus on such unreliable signals that indicate the onset of adverse conditions. We use analytical and individual-
based models to investigate the evolution of simple rules that organisms use to decide whether or not to switch to a
protective state. We find evolutionary transitions towards organisms that use a combination of random switching and
switching in response to the signal. We also observe that, in spatially heterogeneous environments, selection on the
switching strategy depends on the composition of the population, and on population size. These results are in line with
recent experiments that showed that many unicellular organisms can attain different phenotypic states in a probabilistic
manner, and lead to testable predictions about how this could help organisms cope with unreliable signals.
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Introduction

Most organisms, from bacteria to multicellular eukaryotes, have

sensory systems that allow measuring environmental cues, and

responding to these cues by adjusting gene expression and

modifying patterns of development and growth [1,2]. The ability

to modify the phenotype in response to signals can increase

survival and reproduction in variable environments [3]. One

important and well-studied example is the response to stressful

conditions (reviewed in [4,5]). The concept of stress response is

based on the idea that organisms can express protective features

that allow them to survive adverse conditions, and that the

expression of these features comes at a metabolic cost [6]. Due to

such cost, it is usually assumed that organisms express these

features only in response to signals that indicate stress. Examples

for such stresses, and organismal responses to these stresses,

include nutrient starvation in bacteria, which can induce the

expression of alternative metabolic pathways or sporulation [7,8],

or antibiotic stress, which can be counteracted by keeping a part of

a bacterial population dormant and thus insensitive to the

antimicrobial [9].

Here, we are interested in the evolution of stress responses

under conditions where organisms are faced with unreliable

environmental signals; a situation where episodes of stress are

usually preceded by a cue to which organisms can react – but in

some cases, signals are not followed by stress, or stress is not

preceded by a signal. These assumptions are realistic in biological

systems: examples for stress without signals could include

infections by pathogens, exposure to solar radiation, or rapid

translocation from one habitat to another. We assume signals to be

low levels of any environmental condition that would, at higher

levels, cause stress and impact organismal functioning if not

countered by stress response. In such situations, a deterministic

response to environmental cues might not be ideal. Organisms that

always express protective features in response to signals, and never

express them without signals, face two types of problems: they

might suffer high metabolic costs by always responding to the

signal, even if it is often not followed by stress; and if stress occurs

without preceding signal, all individuals are in an unprotected

state, and are thus vulnerable to the deleterious effects of stress.

A number of previous studies investigated evolutionary

responses to uncertain environments [10–17]. A common result

is that such conditions can lead to the evolution of organisms that

express phenotypes probabilistically; an individual can express a

set of different phenotypes (for example protected and unprotect-

ed), and each phenotype is expressed with a certain probability.

These probabilities will typically depend on the genotype of the

individual, as well as on the state of the environment. Recent
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experimental advances have provided a solid basis for the notion

of probabilistic phenotypes. A number of experiments with

genetically identical microorganisms that live in homogeneous

environments have found substantial phenotypic variation be-

tween individuals [18–20]. In some cases, clonal populations

differentiate into two or more discrete groups of phenotypes

[5,8,9,21]. The basis of this phenotypic differentiation is usually

thought to be stochastic gene expression [18]. Importantly,

although individuals with different phenotypes are genetically

identical, the propensity to express different phenotypes is

genetically encoded, and is thus an evolvable trait [22].

Both theoretical and experimental studies suggest that proba-

bilistic expression of the phenotype can help organisms cope with

uncertain environments, in two different ways [10–15,17,23–26].

First, consider environments that undergo rapid changes without

preceding signals. Such situations can select for genotypes in which

each individual expresses an alternative (for example protected)

phenotype with a low probability, irrespective of environmental

cues. As a consequence, some carriers of this genotype are in a

state in which they are prepared for new environmental conditions

but typically perform worse in the present environment. This

strategy is known as bet-hedging and it increases mean reproduc-

tive output over time by minimizing its variance, at the cost of a

fraction of the individuals always being maladapted [17,23,27–32].

For the remainder of this text, we refer to this strategy as ‘random

switching’. Second, consider a situation where environmental

shifts are usually preceded by signals, but these signals are not

reliable. Such a situation can lead to the evolution of types that

sense signals, and respond to them with a certain probability,

rather than deterministically. It has been shown in a game-

theoretic model that such a strategy can outcompete random

switching [13]. We refer to such sensing-based strategies with

probabilistic responses as ‘responsive switching’. Previous studies

have investigated how selection for random or responsive

strategies depends on their costs and on the type and timescale

of environmental change [12,13,33,34]. A number of relevant

studies approached this topic from the perspective of information

processing [12,35,36]. Donaldson-Matasci and colleagues used

information theoretic measures to analyze a similar problem, and

found that switching probabilities for partially reliable signals

evolve to intermediate values [26]. This is in line with previous

results, which showed that bet-hedging strategies could be

improved by adjusting the probabilities of a phenotypic decision

in response to environmental cues [24,25,37]. Our model looks at

the production of phenotypes in response to presence or absence of

a signal. This analogous to previous models [24,25,37] that

investigate the production of phenotypes in response to cues that

can take on different values, if we treat the presence and absence

of signal as two different values of a cue.

Here we consider phenotype switching in the absence of

environmental signals, and phenotype switching in response to

environmental signals as two different, evolvable traits, a situation

that we think is realistic in a natural situation: consider, for example,

a bacterium expressing a transcription factor at a certain base-line

level. This expression might be due to leaky regulation of the gene

encoding the transcription factor, and will vary slightly between

individual cells in a population as a consequence of stochastic effects

of gene expression [18]. In some of those cells it can exceed a

threshold value, triggering a positive feedback loop and changing

the transcriptional program of this cell. The probability of exceeding

this threshold corresponds to the probability of random switching in

our model. If there is an environmental cue indicating changing

conditions, the bacterial population will sense this. In some

individuals, depending on how strongly they sense the signal,

expression of the transcription factor will be regulated in response to

the cue, and its level will rise above the threshold, resulting in

induction of the response. The probability of up regulating the

transcription factor in response to the cue is an example for what we

call responsive switching in our model.

We are interested in two main questions. First, we investigate

the simultaneous evolution of random and responsive switching.

We are interested in the conditions that favor one over the other

strategy, and we analyze how combining the two strategies can

help organisms cope with environmental uncertainty. Second, we

are interested in how the evolution of random and responsive

switching depends on the ecological setting. Specifically, we

address the question how selection on the response to unreliable

signals can depend on the composition of the population.

We are using two theoretical approaches to address these issues.

First, we use an analytical model to derive a mathematical

expression of the long-term growth rate of a genotype, as a

function of random and responsive switching, and of the properties

of the environment. We use this approach to analyze the

combinations of random and responsive phenotype switching

values that maximize the long-term growth rate. We find that,

when signals are only partially reliable, genotypes can evolve that

use both strategies simultaneously. Second, we use an individual-

based approach to assess the impact of the ecological setting on the

evolutionary dynamics. We first consider unstructured environ-

ments, where the evolutionary outcome is simply dependent on

how well different genotypes can match environmental fluctua-

tions, and on how well they balance costs and benefits of entering a

protected state. Then, we turn to environments that are divided

into patches, and in which the population density is locally

regulated in each patch. In these situations, the success of a

genotype depends on the strategies of the other individuals in the

population. In populations of risk prone individuals, risk averse

types benefit, but this benefit vanishes once their numbers

increase. This indicates that the evolutionary success of a given

type depends on the composition of the population, and that the

evolutionary dynamics of bet-hedging depends on the ecological

setting.

Author Summary

Most organisms are occasionally exposed to adverse
environmental conditions, and can express protective
features that help them mitigate the harmful effects of
environmental stresses, such as infections, exposure to UV
light or chemicals, or sudden habitat changes. Interesting-
ly, a number of recent experiments with unicellular
microbes revealed marked variability in the responses to
such stress between genetically identical individuals. Some
individuals express protective features even in the absence
of stress; others do not express these features even if stress
reaches substantial levels. Why is stress response, which
seems so important for organisms, not more tightly
controlled? One possibility is that this variation can help
organisms mediate between costs and benefits of protec-
tion. These protective features are usually expressed in
response to environmental signals that indicate stress.
However, most signals are not absolutely reliable. Some-
times stressful conditions will not be preceded by a signal;
other times, a signal might not be followed by stress. We
used analytical and individual-based models to investigate
how a probabilistic expression of stress response can
evolve in response to unreliable signals, and in how the
ecological setting influences the evolutionary dynamics.

Evolution of Probabilistic Stress Response
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Methods

In order to analyze the evolutionary dynamics of random and

responsive phenotype switching, we use both analytical and

individual-based modeling approaches. In both cases we assume

that individuals carry a genotype consisting of two loci. The first

locus encodes the probability of random switching (from the

vegetative to the protected phenotype), and the second locus

encodes the probability of responsive switching. In an environment

without stress, the growth rate of the vegetative phenotype is

Gns
v ~2, and Gns

p ~2{s for the protected phenotype, where s

denotes the investment in protection. In the stressful environment,

the growth rate of the vegetative phenotype is Gs
v~2{t, and

Gs
p~2{s for the protected phenotype, where t denotes the

penalty for the lack of protection in a stressful environment. The

probability of stress to occur is pstr. Furthermore, signals of varying

reliabilities indicate stress; these signals occur with probability psig,

and they may or may not be associated with stress. The association

between signals and stress is defined as a. Thus, four different

environmental states are possible: no signal/no stress (E1), no

signal/stress (E2), signal/no stress (E3), signal/stress (E4). The

probabilities of these four states are given by

E1~(1{psig)(1{pstr)za,

E2~(1{psig)pstr{a,

E3~psig(1{pstr){a,

E4~psigpstrza,

ð1Þ

respectively. We assume that a§0. The possible values of a
depend on the values of pstr and psig, such that alpha can take on

values between a~0 and a~max((1{psig)pstr,psig(1{pstr)). The

expected growth rates in each of the four environments are given

by the following equations

G1~(1{qnw)Gns
v zqnwGns

p ,

G2~(1{qnw)Gs
vzqnwGs

p,

G3~(1{qw)Gns
v zqwGns

p ,

G4~(1{qw)Gs
vzqwGs

p,

ð2Þ

where qnw~rran is the proportion of the carriers of a given

genotype that is in the protected phenotype in the absence of

signals, and qw~rranzrres{rranrres is the proportion that is in the

protected phenotype in the presence of signals.

Analytical model
We first derive an analytical expression for the long-term growth

rate of a population in a single habitat (single patch) and two

habitats (two patches), given parameters of the model defined above:

psig, pstr, s, t, and a. We assume that the switching probabilities rran

and rres are continuous traits, and ask which combination of these

traits maximizes the obtained long-term growth rate.

In the case of a single patch, the long-term growth rate is the

geometric mean of the growth rates in each of the four

environmental states, weighted by the frequency of the four states:

Gunstr~ P
4

i~1
G

Ei
i ð3Þ

where the weights Ei are given in (1).

In the case of two patches, we assume that the environmental

state in the first patch is independent from the environmental state

in the second patch. This results in sixteen combinations of Ei and

Ej , where i,j~f1,2,3,4g, namely fE1E1, E1E2, E1E3, E1E4,

E2E1, E2E2, � � �g. We assume unlimited migration at the end of

each time step, and thus full mixing between the two patches. For

one time step, the growth rate of a given genotype is the arithmetic

mean of the growth rates in each of the two patches. We can thus

calculate the mean growth rate of a given type for each of the

sixteen environmental states. The long-term growth rate is then

given by

Gstr~ P
4

i~1
P
4

j~1

GizGj

2

� �Ei Ej
: ð4Þ

Individual-based model
For the individual-based approach, we bin the two switching

probabilities rran and rres into d discrete phenotype categories that

span the range between 0 and 1 with gradation of 1=(d{1). At the

start of the simulation, the number of individuals in every bin is

drawn from a normal distribution with mean N=d2, where N is

the (constant) population size of one patch, and a standard

deviation of 104. At each generation, the environmental state Ei is

drawn from a multinomial distribution with the probabilities given

in (1), and selection, density regulation, migration, and mutation

follow. This process is repeated for n generations. For presentation

of the results, the rran and rres values of the bin that contains the

highest number of individuals are determined, and those values

are averaged over m runs.

Selection. If the number of individuals in a bin i is Ni, then

the expected number of individuals, li, that will constitute the next

generation can be calculated as follows, depending on the four

possible environmental states:

l
E1
i ~B(Ni,qns)G

ns
p zB(Ni,1{qns)G

ns
v ,

l
E2
i ~B(Ni,qns)G

s
pzB(Ni,1{qns)G

s
v,

l
E3
i ~B(Ni,qs)G

ns
p zB(Ni,1{qs)G

ns
v ,

l
E4
i ~B(Ni,qs)G

s
pzB(Ni,1{qs)G

s
v,

where ‘ns’ refers to the absence of signal, ‘s’ refers to the presence

of signal, and B denotes binomial distribution. The actual number

of individuals that constitute the next generation is drawn from a

Poisson distribution with the expected number l
Ej
i for bin i and

environment j.
Density regulation & migration. To impose density regu-

lation, we scale the number of individuals to a target population

size (the target population size is defined below). This scaling is

either done for the whole populations, or, in the case of local

density regulation, within a patch. If the number of individuals

before density regulation exceeds the target population size, the

scaling represents density-dependent mortality of individuals

competing for a finite resource. If the number of individuals

before density regulation is smaller than the target population size,

the scaling represents population growth. In the case of one patch,

the target population size is equal to N, the carrying capacity. In

the case of k patches, the implementation of scaling depends on

the mode of density regulation. With local density regulation, each

patch is scaled to the same local target population size N. The

Evolution of Probabilistic Stress Response
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number of individuals of a given genotype in patch i is thus

multiplied by a fraction N=N (i), where N (i) is the number of all

individuals in patch i. With global density regulation, the total

number of individuals across all patches are scaled to a global

target population size of N tot~Nk; the number of individuals of a

given genotype is thus multiplied by a fraction N tot=
Pk

i~1 N (i).

After density regulation, all individuals from the two patches are

pooled. At the beginning of the next generation, each surviving

individual is placed into one of the two patches with equal

probability. For analyzing situations with more than two patches,

density regulation was implemented analogously to the situation

with two patches.

Mutation. In each generation, each individual changes its

genotype category (mutates) with probability mran for the random

switching category, and mres for the responsive switching category.

A binomial distribution is used to draw individuals that will

mutate, and these individuals are distributed randomly on

different bins. For all data shown, we only considered mutational

changes to neighboring categories, assuming that the mutations

have small phenotypic effects. Relaxing this assumption, and

allowing for mutations with large phenotypic effects, did not

change the evolutionary endpoints (not shown).

A semi-deterministic version of this model has also been used.

This was achieved by using the expected values as actual rates. In

the case of binomial distributions, the expected numbers are a

product of a sample size and a probability.

All simulations in this study were encoded in C++, and the data

was plotted using R. The computer code can be found in Dataset

S1.

Results/Discussion

Our focus is on how organisms evolve to respond to

environmental signals that indicate stressful conditions, and how

the course of evolution depends on the reliability of the signals. We

assume an environment that occurs in two distinct states, benign

and stressful. We further assume discrete time steps. During each

time step, the environment is in one of the two states; it can change

the state during the transition to the next time step. There is a

signal that tends to indicate stressful conditions. If there is a signal,

it occurs at the beginning of a time step, and organisms can react

to the signal during that time step. The signal is not necessarily

reliable. Sometimes, signals are not followed by stress; other times,

there is no signal, but there is stress.

The organisms can also exist in two states, vegetative

(unprotected) and protected. The vegetative state confers a high

fertility in time steps without stress, but a high mortality during

time steps with stress. Individuals in the protected state have a

lower fertility, but survive stress better. An individual’s transition

from the vegetative to the protected state is referred to as

‘phenotypic switch’. Responsive switching occurs in response to

the signal, while random switching occurs without signal. Both

traits are genetically encoded, and can thus evolve. Each

individual has two loci to encode these two traits, and there are

an infinite number of alleles at each locus, ranging from 0 (the

organism never switches) to 1 (the organisms switches with

probability one). Our goal here is to investigate how the evolution

of these two traits depends on the environmental conditions. We

employ two different modeling approaches: an analytical model, to

calculate the long-term growth rate of a genotype, and an

individual-based approach, to model the evolution of random and

responsive switching in heterogenous environments. The results of

the analytical model are then compared to the individual-based

model, which gives us an idea of the impact of stochasticity as well

as population effects on the evolution of phenotypic heterogeneity.

(See Methods for a detailed description of the two models and the

parameters used.)

We first examine a situation where stress is always preceded by a

signal, but where signals are not necessarily followed by stress. In

other words, we assume that the probability of a signal, psig,

exceeds the probability of a stress event, pstr, and that the statistical

association between signal and stress, a, is maximal

(a~pstr(1{psig)); this is the case if stress is always preceded by a

signal. In this case, there is no benefit of switching in the absence

of signal. Random switching (rran) is thus expected to evolve

towards zero, and this is indeed what the analytical model shows

(Fig. S1A). We thus examine how the reliability of environmental

signals affects the evolution of responsive switching, rres. We do not

vary the reliability of signals by varying a, but by changing the

probability of signals (psig) relative to the probability of stress (pstr),

reflecting a situation where signal reliability is solely determined by

the prevalence of signals. When signals get more prevalent than

stress, their reliability decreases, even if a stays maximal. We then

calculate the long-term growth rate of a genotype as a function of

its rres, and identify the value of rres that maximizes the long-term

growth rate. We find that, as the reliability of signals increases (psig

approaches pstr), the long-term growth rate is maximized by

increasingly larger values of responsive switching (Fig. 1A).

Therefore, the analytical model predicts that increasing signal

reliability leads to the evolution of increasingly high responsive

switching. The strength of this effect depends critically on the

penalty imposed if the phenotype does not match the state of the

environment: relaxing the very stringent mortality used in Fig. 1

(t~1:9999, i.e. the unprotected type has a growth rate of 10{4

under stress conditions) makes it less important for individuals to

invest in protection, and the long-term growth rate becomes less

dependent on the rates of random and responsive switching (Fig.

S2).

We then analyze the situation where every stress event is

preceded by a signal, but there are more stress events than signals;

formally, this corresponds to pstrwpsig at maximal a. Responsive

switching is expected to evolve to 1 in this situation, which our

analytical model shows (Fig. S1B). We thus examine how the

frequency of stress events affects the evolution of rran. We calculate

long-term growth rates of genotypes as a function of their values of

rran. As the frequency of stress events increases relative to signals,

the values of rran that maximize long-term growth rate increase

(Fig. 1B). This is what one would expect; if all signals are followed

by stress, the only way to increase protection is to increase random

switching with increasing stress frequency.

We next consider a more general scenario where stress is not

always preceded by signals and, as before, signals are not always

followed by stress. Individuals can only protect themselves against

stress that is not preceded by a signal if they sometimes switch

randomly to a protected state, i.e., if their rran is larger than zero.

We would thus assume that, at least for certain parameter

combinations, long-term growth rate is maximal for individuals

that have intermediate values of both rran and rres.

We investigate how different signal reliabilities affect combina-

tions of these two traits that maximize long-term growth rates. To

vary signal reliability, we vary a, the association between signal

and stress, while keeping the probabilities of stress and signal

constant. Fig. 2 shows the long-term growth rate as a function of

rres and rran. Fig. 2A–C depict the function relating a genotype’s

long-term growth rate to its values of random and responsive

switching. At least two interesting observations can be made. First,

we see that for intermediate values of a, the analytical model

predicts that the long-term growth rate is maximized by a

Evolution of Probabilistic Stress Response
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genotype that has intermediate values of both random and

responsive switching (Fig. 2A–C, contour plots). Second, we see

that an increasing signal reliability a drives the evolution of higher

responsive switching and lower random switching. Individual-

based simulations support these results (Fig. 2A–C, yellow filled

circles). They show that the dominant genotype after many

generations is close to the combination of rran and rres that

maximize the long-term growth rate according to the analytical

model. Varying the cost of protection, s, and the penalty of

expressing an unprotected phenotype in a stressful environment, t,
changes the results quantitatively. More costly protection (higher

values of s) leads to decreasing rates of rres as well as rran, whereas

higher penalties for not being protected (higher values of t) lead to

higher switching rates (Fig. S3).

The consequences of the evolutionary dynamics of random and

responsive switching are presented in Fig. 2D–F as scaled Venn

diagrams. Each scaled Venn diagram is plotted for one particular

genotype, namely the genotype whose combination of random

switching and responsive switching maximizes the long-term

growth rate, given certain signal reliability. The diagrams depict

the sets ‘signal’, ‘stress’, and ‘switching’. Areas of overlap between

sets present the frequency of different outcomes. For example, the

overlap between the three sets ‘signal’, ‘stress’, and ‘switching’

presents the proportion of time steps that fulfill three conditions:

there is a stressful event, this event is preceded by a signal, and the

genotype switches to the protective state. From these diagrams,

one can thus read the probability of all possible outcomes,

including correct decisions, false positive decisions (switch if there

is no stress) and false negative decisions (do not switch if there is a

stress). These diagrams show that if signal reliability is high,

switching occurs almost exclusively in response to the signal, and

the fraction of correct decisions is high. As the signal reliability

decreases (from D to F), there is a shift from responsive switching

to random switching. However, despite this shift, the fraction of

correct decisions decreases. Overall, we see that the evolution of

random and responsive phenotype switching strategies is strongly

affected by the reliability of environmental signals, and both

strategies can evolve simultaneously.

So far, we have assumed a simple ecological setting – a

population that lives in a homogeneous environment, and where

all individuals are always subject to the same conditions. Would

the conclusions change substantially if we modified the ecological

setting? To investigate this, we consider a situation where the

population evolves in two spatially separated patches, and where

the environmental conditions imposed in the two patches are

independent from each other (see Methods). We assume unlimited

migration of individuals at the end of each time step, so that

individuals are completely mixed. We use the analytical model to

determine the combination of random and responsive switching

that maximizes long-term growth rate, and use the individual-

based model to investigate the evolutionary dynamics (Fig. 2G).

The analytical model predicts that in this case the switching values

that maximize the long-term growth rate will be lower than in case

of a single patch. An intuitive explanation for this is the following:

distributing the carriers of a particular genotype over two patches

with independent environments leads to decreasing variation in

performance of this genotype over time, since it decreases the

chance that all carriers will be exposed to stressful conditions at the

same time. Avoiding risk by investing more often into protection

thus becomes less important for a genotype’s survival. A similar

effect was analyzed in earlier studies, showing that optimal

germination rates of annual plants increase as dispersal rates

increase [38,39]. In this case, germination is the riskier strategy,

and increased dispersal allows risk-prone types to persist.

We then again used an individual-based model to analyze the

evolutionary dynamics with different types of density regulation,

which are not captured in our analytical model. It is essential to

include density regulation in our individual based model; without

density regulation, the number of individuals will either decline to

zero, or grow without limit. We thus assume that the environment

has a constant carrying capacity, N, and implement two different

types of density regulation. With global density regulation, we pool

all individuals in the two patches at the end of each time step, and

impose mortality (to bring the number of individuals down if it

exceeds the carrying capacity) and reproduction (to increase the

number of individuals if it is lower than the carrying capacity); the

Figure 1. Maximal long-term growth rate depends on the frequency of signals and stress. In (A), we show the long-term growth rate of a
genotype as a function of its rate of responsive switching, rres, for different values of psig, as predicted by the analytical model given by equation (3).
The rate of random switching, rran, is zero, and pstr~0:1. As the probability of the signal, psig, decreases and approaches the probability of stress, pstr

(i.e., if there are fewer signals that are not followed by stress, and signal reliability thus increases), the long-term growth rate is maximized by higher
values of responsive switching. In (B), we consider a situation where all signals are followed by stress, but not all stress is preceded by a signal. The
figure shows the long-term growth rate of a genotype as a function of its rate of random switching, rran, for different values of pstr, as predicted by
the analytical model given by equation (3). The rate of responsive switching, rres , is one. As the probability of stress, pstr, increases (i.e., if there is an
increasing number of stress events that are not preceded by signals), the long-term growth rate is maximized by higher values of random switching.
The probability for a signal, psig, is 0.5. Cost parameters used are s~1:3, t~1:9999 for both plots.
doi:10.1371/journal.pcbi.1002627.g001
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Figure 2. Simultaneous use of random and responsive switching can maximize a genotype’s long-term growth rate. Long-term term
growth rate predicted by the analytical model in a single patch as a function of random and responsive switching values, rran and rres (A–C). Three
contour plots show the combination of both strategies that maximizes the long-term growth rate, and how this combination depends on the signal
reliability. Highly reliable signals select for types that have high values of responsive switching, and low values of random switching (A). Unreliable
signals select for types that have low values of responsive switching, and high values of random switching (C). Signals of intermediate reliability select
for types that have intermediate levels of both responsive and random switching (B). These predictions are in line with the results of the individual-
based model, where the dominant type after n generations is close to the combination of rran and rres predicted by the analytical model (yellow filled
circles; A–C). For each parameter combination (A–C), the scaled Venn diagram (D–F) depicts the probability of false positive (switch if there is no
stress, probabilities are 0.11424, 0.22448, and 0.27585 for A, B, and C, respectively), false negative (do not switch if there is stress, probabilities are
0.01524, 0.02048, and 0.01935 for A, B, and C, respectively), and correct decisions (probabilities are 0.08391, 0.06385, and 0.06132 for A, B, and C,
respectively) for the strategy that maximizes the long-term growth rate. In a situation with two patches (G), the results of the individual-based model
depend on the type of density regulation. When the population undergoes global density regulation (yellow filled circles), the dominant types are
close to the combination of switching values that maximizes long-term growth rate according to the analytical model (G; contour plot); when the
population undergoes local density regulation (purple filled circles), the dominant types have higher values of random switching than predicted by
the analytical model. Parameters used in all panels are pstr~0:1, psig~0:5, s~0:32, t~1:98, and for individual-based runs we evolve the population
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imposed rates of mortality and reproduction are identical in the

two patches. With local density regulation, we assume a carrying

capacity for each patch (equal for the two patches, and equal to

N ), and adjust the density locally in each patch at the end of each

time step (see Methods).

Both local and global density regulation are relevant mecha-

nisms in natural environments. An example for local density

regulation is a bacterial infection: bacteria infect different hosts,

and are exposed to selection and reproduce in those hosts, where

population density is regulated locally. An example for global

density regulation would be the following: individuals live in

discrete patches that are spatially separated, but live off a resource

that is freely diffusible. By consumption of this resource all

individuals are equally affected, and their density is thus regulated

globally.

With global density regulation, the phenotype that dominates

the individual-based models after many generations is close to the

combination of random and responsive switching that, according

to the analytical model, maximizes the long-term growth rate

(Fig. 2G, contour plot, and orange circles, respectively). In other

words, the two modeling approaches give consistent results. This is

expected, since previous research [40,41] showed that if density

regulation acts in the same way on different strategies within a

population, which is the case in our global density regulation

regime, then the dynamics of selection is the same as if there was

no density regulation. In this situation, relative fitness of the

individuals is unchanged, and it is the relative fitness of each

individual in its environment that is important, rather than an

individual’s absolute fitness over all environments. However, with

local density regulation, the phenotypes that dominate the

individual-based models after many generations have higher

values of random switching than predicted by the analytical

model (Fig. 2G, purple circles). The intuitive explanation for this is

the following: if the population undergoes local density regulation,

individuals that survive in those patches where most other

individuals die because of stress experience low population density

after selection and can produce a larger number of offspring.

Consequently, individuals with higher random switching values

have an advantage in cases when stressful events are not preceded

by signals, which tend to eliminate most individuals in the patch.

However, the benefit for individuals with higher switching values

depends on the composition of the population; if the population is

already dominated by individuals with high random switching,

their benefit vanishes. One would thus expect that this leads to

negative frequency-dependent selection on the switching strategy.

The analytical model, which does not include density regulation,

does not capture this effect.

To investigate this effect in more detail, we perform a pairwise

invasibility analysis [42] of different switching strategies. We

consider a population consisting of two genotypes, a and b. We

assume that both genotypes have equal responsive switching values

rres, and different random switching values ra
ran and rb

ran.

Henceforth, we refer to values ra
ran and rb

ran as strategies A and

B, respectively. Pairwise invasibility analysis is then carried out to

investigate whether A can invade into populations of B, for all

possible combinations of A[½0,1� and B[½0,1�, and vice versa. To

determine the invasion success, we run semi-deterministic

individual-based models with a single genotype, and introduce

the invading strategy at 1% of the population size (see legend of

Fig. 3). The resulting pairwise invasibility plots (PIPs) for a single

patch as well as for two patches with global and local density

regulation are shown in Fig. 3.

The PIPs show that populations with small random switching

values can be invaded by mutants with higher values, while

populations with large random switching values can be invaded by

mutants with lower values. There is an intermediate strategy

(‘‘singular strategy’’) that cannot be invaded by any mutant. In

other words, the singular strategy is convergence stable, and it is

evolutionary stable [43]. One would thus expect that populations

initiated with very small or very large random switching values

would evolve towards the singular strategy, and then reside there

[42,43]. The PIPs also support the result of the individual based

models stating that local density regulation promotes the evolution

of higher values of random switching: with local density regulation

(Fig. 3G), the singular strategy is at a higher value of random

switching than with global density regulation (Fig. 3D).

Interestingly, with the numerical resolution of our analysis, the

singular strategy for one patch is indistinguishable to that for two

patches with local density regulation. As discussed above, we

expect two effects when increasing the number of patches from

one to two. The variation in performance decreases, favoring risk

prone types; and local density regulation promotes types that

survive when most individuals in a patch die, favoring risk averse

types. Our finding suggests that, at least for the conditions

analyzed here, these two effects cancel each other, so that the

singular strategy is the same for one or two patches. Increasing the

number of patches further beyond two does not change the value

of the singular strategy (not shown).

We have discussed above how local density regulation is

expected to result in negative frequency dependent selection on

the rate of random switching. This effect manifests in the PIPs:

with local density regulation (but not with global density

regulation, or with a single patch), there are combinations of A
and B that can invade each other. Such combinations of A and B
are expected to coexist ecologically, i.e. to coexist as long as they

do not mutate and evolve [42,43]. If they are subject to mutations

that change the rate of random switching, both strategies evolve

towards the convergent and evolutionary stable singular strategy,

and the population becomes dominated by that strategy (Fig. S4).

The biological relevance of this coexistence is thus limited; it might

play a role in situations where the populations are often not in

their evolutionary equilibrium, for example because the environ-

mental regime changes frequently.

The two density regulation regimes we employ here have

similarities to the concepts of ‘hard’ and ‘soft’ selection in ecology

([44,45], and reviewed in [46]). There, the term ‘soft selection’

refers to constant habitat output, and ‘hard selection’ to variable

habitat output, which is similar to the local and global density

regulation regimes we use in our individual-based model. These

models find that soft selection promotes the emergence of

polymorphisms that are based on local adaptation to the different

habitats [44–46]. In our case, conditions vary over time, rather

than (consistently) across habitats, and we find no protected

polymorphisms. We find, however, that the two types of regulation

regimes lead to differences in the evolutionary endpoints of

random and responsive switching, for reasons discussed above.

It is also interesting to note that the evolutionary dynamics of

random and responsive switching does quantitatively depend on

the population size: the individual-based model shows that, in

small populations, both random and responsive switching evolve

for n~1000 generations at the population size N~108 and repeat it m~100 times. Mutation rates are mran~mres~10{5 The resolution used is d~51.
a values used are 0.03 for (A), 0.01 for (B) and (G), and 0 for (C).
doi:10.1371/journal.pcbi.1002627.g002
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Figure 3. Invasion success of random switching strategies for various ecological settings. Pairwise invasibility plots (PIPs) are shown for
three different ecological settings: single patch (A–C), two patches with global density regulation (D–F), and two patches with local density
regulation (G–I). To produce these plots, we fixed the value of responsive switching to rres~0:1 and performed the pairwise invasion analysis with
two strategies, A and B, characterized by two different values of random switching, ra

ran and rb
ran, respectively; the invading strategy was introduced

at frequency of 1%, and if it increased in frequency after n~500 generations, invasion was considered successful. Left panels (A,D,G) show the
invasion of strategy B into the resident population of strategy A, while middle panels (B,E,H) show the invasion of strategy A into the resident
population of strategy B; red color show successful invasion, while yellow color show unsuccessful invasion. Right panels (C,F,I) show the overlay of
the left and middle panels. Two things can be noted. First, the singular strategy in two patches with global density regulation has a lower switching
value than the other two. Second, in the case of two patches and local density regulation, some combinations of two strategies are mutually
invasible. Parameters used are pstr~0:1, psig~0:5, s~0:32, t~1:98, d~51, N~108, n~500 for mran~mres~0 and a semi-deterministic simulations
(see Methods); results were averaged m~100 times, and a phenotype was counted as able to invade if it increased in frequency in more than 50% of
the simulations.
doi:10.1371/journal.pcbi.1002627.g003
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to slightly higher values than predicted by the analytical model

(Fig. S5). With increasing population size, these values decline, and

approach the values predicted by the analytical model. We

interpret this finding as follows: types with low switching values

have higher variance in performance across time, and therefore

more often reach low densities. In small populations, small

densities translate to small numbers of individuals, and thus a risk

of extinction; small populations are therefore dominated by types

that have higher switching values, and are thus less prone to

extinction. This is in line with previous results on the effects of

population size [47] and population bottlenecks [32] on the

evolution of bet-hedging strategies. An important example of the

impact of small populations is the onset of bacterial infections: for

the human pathogens Shigella and Salmonella, for example, there

have been reports that ingestion of fewer than 100 bacteria is

sufficient to cause disease [48]. Increased phenotypic switching

might decrease the extinction risk during such population

bottlenecks, and the diversity of molecular mechanisms that

promote phenotypic variation in bacterial pathogens [49] are in

line with this interpretation.

Overall, our results point to the importance of probabilistic

behavior in response to unreliable signals. We focused on

environments where episodes of stress are usually preceded by a

signal, but where this signal is not absolutely reliable. We find that

such conditions promote the evolution of types whose phenotype

expression is statistically associated with the signal, but also

deviates from it in a significant way. In clonal populations of these

types, not all individuals enter a protective state in response to the

signal, and some individuals also enter this state when there is no

signal. This probabilistic behavior balances the costs and benefits

of stress protection. By limiting the number of individuals that

respond to the signal, it decreases the average metabolic costs of

protection. And by inducing the protective state in some

individuals even in the absence of the signal, it increases the

chance that the genotype survives rare events of stress that occur

without warning. Interestingly, the costs and benefits of protection,

and therefore the evolutionary dynamics of bet-hedging, depend

on the ecological setting. Under conditions where the population is

distributed across discrete patches, and where lone survivors of

stress events in a patch benefit from reduced crowding, the benefit

of surviving stress events increases. Consequently, such popula-

tions evolve towards a state where they are dominated by types

that frequently enter the protective state even in the absence of a

signal. These results emphasize the role of the ecological setting for

bet-hedging. To describe the evolutionary dynamics of bet-

hedging, it is not always sufficient to analyze the fit between the

phenotypes expressed by a give genotype and the state of the

environment. In some situations, the success of a bet-hedging

strategy depends on the phenotypes expressed by others, and thus

on the composition of the population.

Supporting Information

Dataset S1 The code consists of a directory ‘Main’ where classes

and functions for the simulations are defined. In the folder

‘Figures’ the C++ code for the respective figures can be found if

they show simulation data ‘one main *.cpp file, a ‘parms’ file that

specifies the arguments for main(), and Makefile), as well as R

scripts for producing the final plots (*.R files). To run the code, the

directory of ‘Main’ needs to be specified in each *.cpp file as well

as in each Makefile (variable MAIN). The code uses the GNU

GSL libraries, version 1.14. To compile the code, use the

command ‘make compile’, and to execute the compiled program,

use the command ‘make run’. Please direct queries concerning the

code to RM (rafal.mostowy@gmail.com).

(ZIP)

Figure S1 Maximal alpha leads to extreme values of rran

or rres, depending on the environmental probabilities pstr

and pstr. We show two realizations of our models that underlie the

plots shown in Fig. 1. Contour plots are created by using the

analytical model, and yellow filled circles show realizations of the

individual-based model. (A) shows a situation where a is maximal,

and psigwpstr. In this situation, every stress is preceded by a signal,

but not every signal is followed by stress. This situation

corresponds to the one shown in Fig. 1A. Parameters used are

pstr~0:1, psig~0:5, s~0:8, t~1:98, a~0:05. (B) shows a

situation where a is maximal, and psigvpstr. In this case, every

signal is followed by a stress, but not every stress is preceded by a

signal, corresponding to the situation shown in Fig. 1B. Parameters

used are pstr~0:8, psig~0:5, s~1:62, t~1:8, a~0:1. The

parameters for the individual-based model in both A and B are

n~1000 generations, population size N~108, averaged over

m~100 runs, resolution of d~51, mutation rates

mran~mres~10{5).

(TIF)

Figure S2 Decreasing penalty for being unprotected in
case of stress changes values of rres that maximize long-
term growth rates. With decreasing cost of being unprotected

in a stressful environment, t, it becomes less important to protect

in response to signals. The plots are analogous to Fig. 1A, with the

parameter t varied as indicated in the figure, and all other

parameters kept identical.

(TIF)

Figure S3 Costs influence the values of rres and rran that
maximize long-term growth rates. We change the penalty of

being unprotected in case of stress, t, and the cost of protection, s.

Contour plots show the outcome of the analytical model, yellow

filled circles are realizations of the individual-based models. The

parameters used are the same as in Fig. 2B, except for s and t,
which are indicated in the figure.

(TIF)

Figure S4 The coexistence of two strategies with
different values of random switching is not evolution-
arily stable. We simulated the evolution of a population

consisting of a single type (A) and of two types that are predicted

to be mutually invasible (B). In both cases, the population evolves

to the singular strategy predicted by the PIPs (Fig. 3G–I).

Parameters used are pstr~0:1, psig~0:5, s~0:32, t~1:98,

d~51, N~108, n~10000 for mw~mr~10{5. Responsive

switching was fixed at a value of rres~0:04, and random switching

types were introduced at values of rres~0:2 for (A) and at

rres~f0:2,0:9g for (B), respectively. For (B), both types were

introduced at a frequency of N=2. This plot shows a typical result

of a simulation.

(TIF)

Figure S5 The impact of population size on the
evolution of phenotype switching values. The evolution of

random and responsive switching values depends on the

population size in populations evolving in a single patch (A), or
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in two patches with local or global density regulation (B and C,

respectively). As population size increases, the evolutionary

endpoint corresponds to increasingly lower values of random

(turquoise) and responsive (red) switching (except for responsive

switching in two patches under global density regulation (C),

where responsive switching does not depend on the population

size). Parameters in all panels are pstr~0:1, psig~0:5, a~0:01,

s~0:32, t~1:98. We ran each simulation for n~2000 genera-

tions, and repeated it m~5000 times. The resolution used is

d~21. Error bars represent standard error of the mean. Note that

the axes only depict a small fraction of the possible range of

switching values.

(TIF)
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22. Freed NE, Silander OK, Stecher B, Böhm A, Hardt WD, et al. (2008) A simple
screen to identify promoters conferring high levels of phenotypic noise. PLoS

Genet 4: e1000307.

23. Cohen D (1966) Optimizing reproduction in a randomly varying environment.
J Theor Biol 12: 119–129.

24. Cohen D (1967) Optimizing reproduction in a randomly varying environment
when a correlation may exist between the conditions at the time a choice has to

be made and the subsequent outcome. J Theor Biol 16: 1–14.

25. Haccou P, Iwasa Y (1995) Optimal mixed strategies in stochastic environments.
Theor Popul Biol 47: 212–243.

26. Donaldson-Matasci M, Bergstrom C, Lachmann M (2010) The fitness value of

information. Oikos 119: 219–230.
27. Cooper WS, Kaplan RH (1982) Adaptive ‘‘coin-ipping’’: a decision-theoretic

examination of natural selection for random individual variation. J Theor Biol
94: 135–151.

28. Stearns SC (2000) Daniel bernoulli (1738): evolution and economics under risk.
J Biosci 25: 221–228.

29. Evans MEK, Dennehy JJ (2005) Germ banking: bet-hedging and variable

release from egg and seed dormancy. Q Rev Biol 80: 431–451.
30. Venable DL (2007) Bet hedging in a guild of desert annuals. Ecology 88: 1086–

1090.
31. Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental

evolution of bet hedging. Nature 462: 90–93.

32. Libby E, Rainey PB (2011) Exclusion rules, bottlenecks and the evolution of
stochastic phenotype switching. Proc Biol Sci 278: 3574–83.

33. Thattai M, Van Oudenaarden A (2004) Stochastic gene expression in uctuating
environments. Genetics 167: 523.

34. Lachmann M, Jablonka E (1996) The inheritance of phenotypes: an adaptation
to uctuating environments. J Theor Biol 181: 1–9.

35. Smith J (1999) The idea of information in biology. Q Rev Biol 74: 395–400.

36. Schmidt K, Dall S, Van Gils J (2010) The ecology of information: an overview
on the ecological significance of making informed decisions. Oikos 119: 304–

316.
37. DeWitt T, Langerhans R (2004) Integrated solutions to environmental

heterogeneity: theory of multimoment reaction norms. DeWitt TJ, Scheiner

SM, editors. Phenotypic Plasticity: functional and conceptual approaches. USA:
Oxford University Press. 272 pp.

38. Klinkhamer P, De Jong T, Metz J, Val J (1987) Life history tactics of annual
organisms: the joint effects of dispersal and delayed germination. Theor Popul

Biol 32: 127–156.
39. Bulmer M (1984) Delayed germination of seeds: Cohen’s model revisited. Theor

Popul Biol 26: 367–377.

40. McNamara J (1995) Implicit frequency dependence and kin selection in
uctuating environments. Evol Ecol 9: 185–203.

41. Grafen A (1999) Formal darwinism, the individual–as–maximizing––agent
analogy and bet–hedging. Proc R Soc B 266: 799–803.
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