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Abstract
Social interactions shape the patterns of spreading processes in a population. Techniques

such as diaries or proximity sensors allow to collect data about encounters and to build net-

works of contacts between individuals. The contact networks obtained from these different

techniques are however quantitatively different. Here, we first show how these discrepancies

affect the prediction of the epidemic risk when these data are fed to numerical models of epi-

demic spread: low participation rate, under-reporting of contacts and overestimation of con-

tact durations in contact diaries with respect to sensor data determine indeed important

differences in the outcomes of the corresponding simulations with for instance an enhanced

sensitivity to initial conditions. Most importantly, we investigate if and how information gath-

ered from contact diaries can be used in such simulations in order to yield an accurate

description of the epidemic risk, assuming that data from sensors represent the ground truth.

The contact networks built from contact sensors and diaries present indeed several structural

similarities: this suggests the possibility to construct, using only the contact diary network

information, a surrogate contact network such that simulations using this surrogate network

give the same estimation of the epidemic risk as simulations using the contact sensor net-

work. We present and compare several methods to build such surrogate data, and show that

it is indeed possible to obtain a good agreement between the outcomes of simulations using

surrogate and sensor data, as long as the contact diary information is complemented by pub-

licly available data describing the heterogeneity of the durations of human contacts.

Author Summary

Schools, offices, hospitals play an important role in the spreading of epidemics. Informa-
tion about interactions between individuals in such contexts can help understand the pat-
terns of transmission and design ad hoc immunization strategies. Data about contacts can
be collected through various techniques such as diaries or proximity sensors. Here, we first
ask if the corresponding datasets give similar predictions of the epidemic risk when they
are used to build a network of contacts among individuals. Not surprisingly, the answer is
negative: indeed, if we consider data from sensors as the ground truth, diaries are affected
by low participation rate, underreporting and overestimation of durations. Is it however
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possible, despite these biases, to use data from contact diaries to obtain sensible epidemic
risk predictions? We show here that, thanks to the structural similarities between the two
networks, it is possible to use the contact diaries to build surrogate versions of the contact
network obtained from the sensor data, such that both yield the same epidemic risk esti-
mation. We show that the construction of such surrogate networks can be performed
using solely the information contained in the contact diaries, complemented by publicly
available data on the heterogeneity of cumulative contact durations between individuals.

Introduction
Knowledge of the structure of human interactions is crucial for the study of infectious diseases
spread and the design and evaluation of adequate containment strategies. The structure of con-
tact networks, [1], the presence of communities [2], bridges or “linkers” between communities
[3–5], “super-spreaders” [6–8], the heterogeneity of contact durations [9], are all important
characteristics that determine potential transmission patterns. The study of human contacts is
particularly relevant in contexts such as schools, working places, hospitals where individuals
might spend several hours in close proximity [5, 10–22].

Interactions and contacts between individuals are conveniently seen within the framework of
networks in which nodes represent individuals and (weighted) links correspond to the occur-
rence of contacts (the weight giving the duration of the contacts). Measuring directly such net-
works represents an important challenge [20]. Many studies have relied on contact diaries or
surveys [10, 12, 23–32], while technological advances have led to a strong increase in the use of
wearable sensors in the recent years [9, 13–15, 17–20, 33–35]. Quantitative comparisons
between datasets obtained from sensors and self-reported diaries, in terms of the numbers and
durations of contacts between individuals and of the contact network statistics, are however
scarce, mainly because very few studies have combined these two data collection means [21, 36].
These investigations have shown that diaries suffer from small participation rates, under-report-
ing of contacts, and over-estimation of the contact durations. Under-reporting is particularly
strong for short contacts, while long ones are better reported, and some studies have put forward
methods to estimate its magnitude and to correct for it [29, 37]. Interestingly, and despite the
much lower number of nodes and links in contact networks inferred from contact diaries, the
overall structure of these networks is very similar to the one obtained from wearable sensors.
Moreover, the links with largest weights (as measured by sensors), which might play a major
role in propagation processes, are reported with high probability in the contact diaries.

In this paper, we go beyond the comparison of the contact networks obtained by these
methodologies and explore the impact of their differences on the evaluation of the epidemic
risk when such datasets are used in numerical simulations of infectious disease propagation.
Our goal is to understand to what extent and how the information gathered from contact dia-
ries can be used in such simulations in order to yield an accurate description of the epidemic
risk, despite the biases mentioned above. We first compare the outcomes of spreading simula-
tions performed using data coming from wearable sensors and from contact diaries that
describe the contacts between students in the same context (a high school) and on the same
day. Although the two networks are supposed to describe the same reality, we observe impor-
tant differences in the simulations, due to the low participation rate in the diaries and to a
stronger community structure in the contact diaries network than in the contact sensors net-
work. We then design and evaluate a set of methods to use the information contained in the
contact diaries to build surrogate versions of the contacts that yield, when used in the
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simulations, a better estimation of the real epidemic risk as quantified by the distribution of
epidemic sizes (considering as ground truth the dataset from the sensors). We show that good
results are obtained when the contact diary information is complemented by known stylized
facts characterizing human interactions, in particular the heterogeneity of contact durations.

Results

Data description
We use two datasets collected in a French high-school in 2013 and made publicly available in
[21]. The data describe face-to-face contacts between students of 9 classes as collected by (i) the
SocioPatterns infrastructure [38] based on wearable sensors, during one week and (ii) self-
reported contact diaries filled on a specific day of the same week (Dec. 5th, 2013). In the diaries,
contact was explicitly defined as close (less than 2 m) face-to-face proximity, in order to match
as much as possible this definition to the contacts detected by sensors. Using these data, we
build two distinct contact networks for the day in which the diaries were collected: the Contact
Sensors Network (CSN) and the Contact Diaries Network (CDN). In each network, nodes rep-
resent students and a link is drawn between a pair of nodes (i, j) if at least one contact between
students i and j is present in the corresponding dataset during the considered day. We present
and compare in the Supporting Information the main networks’ characteristics. Note that, in
the diaries, some participants reported contacts with non-participants. One could a priori use
this information and build a contact network including both participants and non-participants.
However, since by definition the contacts of non-participants are unknown, this would intro-
duce a potentially strong and most importantly completely uncontrolled bias in the measures
of the network’s structural properties such as, e.g., its clustering or the node degrees.

A weight can moreover be assigned to each link (i, j): for the CSN, the weight wij is given by
the cumulative duration of the contacts registered by the sensors on that day between i and j;
for the CDN we can use the duration reported by the students in the diaries, building the net-
work CDND, or use for each link a duration taken at random from the list of durations regis-
tered by the sensors, obtaining the network CDNS (see Methods for details). The rationale
behind building CDNS comes from the results of [21, 36] that show that durations reported by
students tend to be strongly overestimated. Since, on average, contacts reported in the diaries
as long tend also to be long according to the sensor data, we will also consider a different
assignment of links to the CDN, in which we still take durations at random from the list of
durations registered by the sensors, but assign the longer durations to the links of CDN with
longer reported durations: we denote the resulting network by CDNS’.

The contact sensor network counts 295 nodes (participation rate 77.8%) and 2162 links, while
the contact diaries network has 120 nodes (participation rate 31.6%) and 348 links. Incomplete
participation, even in the case of the sensor data, leads to biases in the simulations using the CSN
with respect to what would be obtained if the whole population had participated, due to the fact
that contacts with and among non-participants are not detected. This point has been discussed in
[40], together with methods to build surrogate data and obtain estimate of the epidemic risk in
the case of such population sampling. In order not to confuse the issues of population sampling
and comparison between diaries and sensors, we consider here as ground truth the CSN, collected
by wearable sensors for which the definition of contact does not depend on a possible interpreta-
tion of the diary question by the students nor on the fact that they might not recall contact events.

Numerical simulations of epidemic spread
In the following, we perform simulations of the spread of infectious diseases in the considered
population, using as substrate for propagation events the contact networks described above. It

Epidemic Risk Estimation through Contact Diaries

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005002 June 24, 2016 3 / 19



is important to note here that we consider propagation processes on static networks. Indeed,
the CDN does not contain information on the timing of the contacts, so that it is natural to
compare the outcome of simulations performed on such a static network with simulations per-
formed on a static version of the CSN. Moreover, when modeling the propagation of infectious
diseases with realistic timescales of several days, it has been shown in [39] that a daily weighted
contact network contains enough information to obtain a good estimate of the process out-
come. When dealing with faster processes, the temporal evolution of the network would
become relevant; in that case, it would be possible to use the techniques put forward in [40] to
build realistic surrogate timelines of contacts on weighted networks, using the robustness of
the distributions of the durations of single contact events and of the intervals between succes-
sive contacts measured in different contexts. Note also that, even if the networks do not take
into account the timing of the contact events, they still include information on the aggregate
contact durations through the weights, which are known to play a crucial role in the outcome
of spreading processes [39, 41–43].

For simplicity, we consider the paradigmatic Susceptible-Infected-Recovered (SIR) model of
epidemic propagation. In this model, each Susceptible node i can be infected by an Infected
neighbour j with probability β�wij�dt for each small time step dt. Infected people recover with
rate μ and enter in the Recovered category. Recovered individuals cannot be infected again.
The process starts with a single Infected individual chosen at random (the seed) and ends
when there are no more Infected nodes. The epidemic risk in the population, which depends
on the interplay of the ratio β/μ and the network’s structure and weights, is measured by the
distribution of the final size of epidemics (i.e., of the fraction of individuals in the Recovered
category at the end of the process), obtained by repeating the simulations with randomly cho-
sen seeds. Note that, since we consider static networks, only the ratio β/μ is relevant, and multi-
plying both by a certain factor only changes the timescale on which the epidemic unfolds. The
shape of the distribution of epidemic sizes depends on the features of the underlying network
structure in terms of possible patterns of contagion. The comparison of these distributions
gives hints about similarities and discrepancies of various datasets for the evaluation of the epi-
demic risk.

We first compare in Fig 1 the outcome of simulations of the SIR model performed on the
CSN and on the two versions of the CDN described above (CDND with weights reported by
students and CDNS with weights registered by sensors assigned randomly to the links), for one
specific value of β/μ = 30. The three distributions of epidemic sizes are very different from each
other. The outcome of simulations performed using CSN is quite standard, with a fraction of
small outbreaks that reach only a small fraction of the population and another peak corre-
sponding to large outbreaks. As shown in the Supporting Information, the outcome does not
depend on the class of the initial seed. The shape of the distribution obtained when using the
CDND is more peculiar, with a series of peaks, including one at very large epidemic sizes. Such
structure is typical of spreading processes on networks with a strong community structure [4],
which corresponds to the results of [21]: (i) due to the low participation rate and the under-
reporting, the community structure of the CDN is stronger than the one of the CSN, with few
links between classes; depending on the seed, the simulated disease can thus remain confined
in one class or in a group of few classes, leading to the peaks at intermediate values of the epi-
demic size; we moreover show in the SI that the outcome depends on the class of the initial
seed for the CDN but not for the CSN; (ii) on the other hand, as contact durations are overesti-
mated, the propagation probability on each link is also overestimated and, if the disease man-
ages to spread between classes, almost all individuals are affected, leading to the peak at large
epidemic sizes. The CDNS case shows a different result: no more than half of the whole popula-
tion is affected by the spread. As the weights have in this case the same statistics as the CSN,
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this is simply due to the low participation rate [40] and the much smaller average degree in the
CDN with respect to the CSN. We also note that, since the weights are assigned randomly to
the links between students, the structure of the contact matrix giving the average durations of
contacts between students of different classes can strongly differ between the CDNS and both
the CSN and the CDND, leading to different patterns of propagation between classes (see Sup-
porting Information). We finally note that the simulations on the CDNS’, which keeps the dis-
tribution of the weights from CSN and in which larger weights are assigned to links with
longer reported durations, yield even smaller outbreaks. This is probably due to the fact that
the large weights reported in the diaries tend to be within classes, so that the links bridging clas-
ses and favoring the spread tend to have smaller weights in the CDNS’ than in the CDNS. We
also show in the SI the temporal evolution of the density of infectious individuals for the vari-
ous cases considered here.

Matching networks. In order to discard the differences due simply to the population sam-
pling, and to focus on the impact of under-reporting (i.e., of unreported links) and overestima-
tion of durations on the estimation of the epidemic risk, we consider “matched” versions of the
networks, in which we keep only the nodes present in both CSN and CDN. We obtain the
matched networks: CSNm, CDNm

D and CDNm
S . Among the 120 students who filled in the diaries,

11 in fact did not wear sensors on the day of interest: we obtain thus 109 nodes, distributed in 7
of the 9 classes of the CSN. We moreover discard one of the classes in which only one student
filled in the diary. We end up with matched networks of 108 nodes in 6 classes.

Fig 2 displays the outcome of SIR simulations performed on the three matched networks.
Comparison with Fig 1 shows that the outcomes for CDNm

D and CDNm
S are similar to the cases

of CDND and CDNS, which is expected as these networks do not differ strongly (only 12 nodes
and 62 links have been removed in the matching procedure). On the other hand, the epidemic

Fig 1. Distribution of final size of epidemics. 1000 SIR simulations performed on the original contact sensors network (CSN) and the original contact
diaries network with durations respectively reported by students (CDND) and registered by sensors (CDNS and CDNS’). Each process starts with one
random infected seed. β/μ = 30.

doi:10.1371/journal.pcbi.1005002.g001
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risk is strongly underestimated in the CSNm with respect to the CSN: this is due to the strong
reduction in the number of nodes and links [40] and hence in the number of potential trans-
mission routes between students and classes. However, the distribution does not exhibit peaks
as for the CDNm

D case: the community structure remains indeed weaker in the CSNm with
respect to the CDNm, with higher densities of links between different classes. We also note that
the underestimation obtained by using CSNm is less strong than in the case of a random
removal of the same number of nodes [40] (not shown). This is due to the fact that the students
who filled in the diaries tend to be more connected than the others in the CSN: as a result, the
CSNm has 970 links while a random removal of the same number of nodes from the CSN leads
on average to a network with�560 links. Finally, although both CSNm and CDNm

S have the
same distributions of weights and lead both to strong underestimations of the epidemic risk,
the resulting distributions do not coincide, in particular because the CDNm

S has a much smaller
number of links.

We also show in Fig 2 the outcome of simulations performed using another representation
of the contact diaries network, namely the Contact Matrix Distribution Network (CMDN)
introduced in [44] and built as follows: as explained in Methods, we perform a fit of the distri-
butions of contact durations reported by students by a negative binomial functional form, dis-
tinguishing between contacts between students of the same class or of different classes. We
then use these fitted distributions to randomly assign weights to each pair of students. Note
that these weights can be equal to 0, in which case no link is drawn between the students. This
procedure yields a network with global link density close to the CDNm and such that the con-
tact matrices of link densities and of average contact durations between classes are also similar
to the ones obtained from the CDNm (see Supporting Information). The overall result is a

Fig 2. Distribution of final size of epidemics. 1000 SIR simulations performed on the matched contact sensors network (CSNm), the matched contact
diaries network with durations respectively reported by students (CDNm

D ) and registered by sensors (CDNm
S ) and the contact diaries network with weights

obtained by a negative binomial fit of contact durations reported by students between and within classes (CMDN). Each process starts with one random
infected seed. β/μ = 30.

doi:10.1371/journal.pcbi.1005002.g002
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distribution of epidemic sizes more similar to the case of the CSNm (results for other values of
β/μ are shown in the Supporting Information).

Building surrogate networks to estimate the epidemic risk. We now address the issue of
how the data coming from contact diaries could be used to provide an accurate estimation of
the epidemic risk, despite the discrepancies obtained when these data are used directly in simu-
lations. To this aim, we propose several procedures to build surrogate contact diaries networks
that overcome the issues of low participation rate and overestimation of contact durations,
which bear a strong impact on the simulation outcome, as shown above. In the same spirit as
[40], we start from the available dataset and extend it by adding the missing nodes to the con-
tact network, as well as surrogate links. We build these surrogate networks using only informa-
tion known in the CDNm. We note that we do not try to infer the true missing links but to
build a “plausible” version of these links, such that the simulations of epidemic spread on the
resulting network yield an accurate estimation of the epidemic risk.

The rationale behind the procedures we propose comes from (i) the observed similarity
between the overall structure of the contact networks measured by sensors and by diaries, as
quantified by the contact matrices of the densities of links between classes [21] shown in Fig 3,
and (ii) the results of [44] that show how such contact matrices, together with information on
the heterogeneity of contact durations, play a crucial role in determining propagation patterns
in a structured population. Note that, as 3 of the 9 classes of the CSN are not present in the
CDN, we consider here a version of the CSN limited to the remaining 6 classes (the resulting
CSN has 204 nodes and 1600 links).

We propose a three-steps procedure to build surrogate contact networks for the 6 classes
considered, starting from the CDNm, which contains only a fraction of the nodes of these clas-
ses (see details in Methods): (i) we first add the missing nodes in each class; (ii) we randomly
add links in each class and between classes in order to maintain the contact matrix of edge den-
sities fixed to its measured value in the CDNm, shown in Fig 3(b); (iii) we associate weights to
the links of the resulting surrogate network CDNs.

Both steps (ii) and (iii) can be performed in different ways. With respect to step (ii), we
notice that the empirical contact matrix (Fig 3(b)) contains some elements equal to zero,

Fig 3. Contact matrices of edge densities. The entry at row X and column Y of the matrix is given by the total number of links between students in class
X and students in class Y, normalized by the maximum number of observable links (nX nY or nX(nX − 1)/2 if X = Y, with nX the cardinality of the class X)
giving the edge link densities for (a) the contact sensors network and (b) the matched contact diaries network, both limited to the 6 classes considered.
The cosine similarity between the two matrices is equal to 97%.

doi:10.1371/journal.pcbi.1005002.g003
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corresponding to a total absence of links between classes. This corresponds to an unrealistically
strong community structure and is due to the low sampling rate and to the under-reporting of
contacts. We thus consider two cases: (a) we strictly keep the contact matrix with its zero ele-
ments; (b) we replace the zeros with random values drawn from a uniform distribution
between the minimum and maximum values of the non-zero off-diagonal elements of the
matrix (see Methods). In what follows, we will refer to these cases respectively with the sub-
scripts z (‘zero’) and nz (‘no zero’), obtaining CDNs

z and CDN
s
nz.

We first focus on the structure obtained through this procedure. We show in the SI some
statistical characteristics of the surrogate networks, compared to the empirical CDN and CSN:
in particular, the structural properties of CDNs

nz are much closer to the CSN than the empirical
CDN. Moreover, we start by simply assigning homogeneous weights in step (iii) and compare
the outcome of simulations of the SIR model with simulations performed on a version of the
CSN with as well homogeneous weights, denoted CSNH. This amounts to the assumption that
each student spends the same amount of time with all his/her contacts, a minimal assumption
corresponding to an absence of information about contact durations. We report in Fig 4 box-
plots for the distributions of epidemic sizes larger than 10%, obtained from SIR simulations at
various values of β/μ on the resulting homogeneous networks CDNs

z;H (homogeneous weights

and contact matrix zeros kept) and CDNs
nz;H (homogeneous weights and contact matrix zeros

replaced). We also report in the Supporting Information the fraction of epidemics reaching
more than 10% of the population, as a function of β/μ.

Fig 4. Box-plots of epidemic size distributions.Comparison of the distributions of epidemic sizes for epidemics reaching more than 10% of the
population, resulting from SIR simulations performed on the contact sensors network with homogeneous weights (CSNH) and two surrogate contact
diaries networks with homogeneous durations (CDNs

z;H, CDN
s
nz;H). For each boxplot, the central mark stands for the median, its edges represent the 25th

and 75th percentiles. The whiskers extend to the most extreme data points not considered outliers, while outliers are plotted individually. Points are drawn
as outliers if they are larger than a + h(b − a) or smaller than a − h(b − a), where a and b are the 25th and 75th percentiles, respectively and h is the
maximumwhisker length set by default to h = 1.5. (1000 simulations for each value of the ratio β/μ 2 {4, 6, 8, 10, 12, 14}).

doi:10.1371/journal.pcbi.1005002.g004
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Fig 4 and Fig S7 in S1 File clearly show that, despite the high similarity between the contact
matrices of the surrogate network and of the CSN, an important underestimation of the epi-
demic size is obtained. Replacing the zeros in the contact matrix gives better results but still
yields a clear underestimation of the risk with respect to the CSN reference.

Let us now turn to the more realistic hypothesis of heterogenous cumulative durations of
contacts among students. It is indeed known that these durations are very heterogeneous: most
are short, but durations orders of magnitude longer than the average are not uncommon [9].
Within the usual hypothesis of a transmission probability proportional to the contact duration,
this implies that different contacts can correspond to very different transmission probabilities,
and hence that they should not be treated as equivalent. The importance of taking the diversity
of contact durations has indeed been assessed for instance in [39, 41–43]. In this case, step (iii)
of the surrogate network building procedure, which regards the assignment of weights to links,
needs to be precised. We consider here two possibilities: we use either the list of weights (daily
cumulative durations) reported in the diaries, or the list of weights registered by the sensors. In
both cases, weights are randomly drawn from the empirical list and assigned at random to the
links in the surrogate network (see Methods). Taking into account the two possibilities of keep-
ing or replacing the zeros in the contact matrix of link densities, we end up with four surrogate
contact networks: CDNs

z;D and CDNs
nz;D, both with weights randomly drawn from the list of

durations reported by students (note that we do not find different results between keeping
fixed the original weighted structure of the CDN and assigning random weights also to the cor-
responding links); CDNs

z;S and CDN
s
nz;S, both with weights randomly picked from the cumula-

tive durations registered by sensors.
Fig 5 presents the outcome of SIR simulations on these surrogate networks, compared to the

distributions of epidemic sizes obtained with the CSN, for two values of β/μ. First, the overesti-
mation of the contact durations in the diaries, combined with the replacement of zeros in the
contact matrix, leads to a very strong overestimation of the epidemic risk when CDNs

nz;D is

used. The CDNs
z;D in turn yields a peculiar shape of the distribution with intermediate peaks,

due to its unrealistically strong community structure, in a way similar to the CDND case. Dis-
tributions obtained with CDNs

z;S are also impacted by this structure and lead to an underesti-

mation of the risk together with the intermediate peaks due to the strong community structure.
Finally, simulations performed using the CDNs

nz;S give a much better prediction of the epidemic

risk associated to the CSN (Fig 5(b) and 5(d)).
Some differences between the outcomes of simulations using the contact sensor network

and the CDNs
nz;S are nonetheless observed at large β/μ, in particular for intermediate epidemic

sizes (epidemics involving between 20% and 70% of the population): a non-negligible contribu-
tion to the epidemic size distribution is observed for the CSN but not for the CDNs

nz;S. We show

in the Supporting Information that the distribution of sizes obtained on a version of the CSN
in which weights are randomly reshuffled looses this contribution of intermediate size epidem-
ics. This shows that the observed discrepancies result from the random assignment of weights
to links in the CDNs

nz;S, which does not preserve correlations between structure and weights

present in the CSN.
Fig 6 shows the robustness of our results concerning the comparison of outcomes of simula-

tions on the various networks when β/μ is varied, by presenting the boxplots of the distribution
of epidemic sizes for epidemics that involve more than 10% of the population. The fraction of
such epidemics as a function of β/μ is shown in the Supporting Information. Overall, a good
agreement is observed for all values of β/μ, with however a systematic small underestimation of
the largest epidemic sizes as well as an underestimation of intermediate sizes, especially at large
β/μ (see Supporting Information), and a narrower peak at large sizes when the CDNs

nz;S is used.
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In order to build CDNs
nz;S, we have used in step (iii) the distribution of aggregate contact

durations measured by the sensors. We however need to consider the possibility that only dia-
ries have been collected in a given setting, so that such a distribution is not available. To this
aim, we take advantage of the robustness of such distributions, as discussed for instance in [9].
We investigate this issue in some more details here, to understand if distributions of contact
durations are similar enough in different contexts: our aim is to use publicly available data on
contact duration distributions in a context-independent way in the step (iii) of our procedure.
We consider five publicly available datasets, corresponding to contacts measured by wearable
sensors in: a French and an American primary school [35, 45], an office building [5] a hospital
[22] and a conference [39]. All these data have been collected by the SocioPatterns collabora-
tion [38], except for the case of the American primary school, in which a different infrastruc-
ture was used [35].

For all these datasets, the distributions of cumulated contact durations are broad and, as
also discussed in [44], can be modeled by negative binomial functional forms. We show in the
Supporting Information that similar parameters of the negative binomial fit are obtained for
each dataset and for the combined one. Therefore, to further generalize the procedure and
avoid relying on a single dataset, we consider in the following the fit of the five combined data-
sets. We then assign to the links of the CDNs

nz weights drawn at random from this fitted distri-
bution, obtaining CDNs

nz;NB. Figs 7 and 6 compare the distributions of epidemic sizes obtained

Fig 5. Distribution of final size of epidemics. 1000 SIR simulations performed on the contact sensors network (CSN) and the four surrogate
contact diaries network with and without zeros in the contact matrix of link densities, and with durations extracted at random from the lists of values
respectively reported by students and registered by sensors: (a), (c) CDNs

z;D and CDNs
z;S; (b), (d) CDN

s
nz;D and CDNs

nz;S. Each process starts with one
random infected seed. β/μ 2 {10, 30}.

doi:10.1371/journal.pcbi.1005002.g005
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when the SIR model is simulated on the resulting surrogate network and on the CSN (see also
the Supporting Information, in which we moreover show the outcome of simulations for differ-
ent initial seeds, as well as the temporal evolution of the density of infectious individuals in the
population when using the CDNs

nz;NB.)

Despite using less information on the specific context than CDNs
nz;S, since we do not rely on

the specific distribution of weights measured there, the surrogate contact network CDNs
nz;NB

leads to a good prediction of the epidemic risk. In particular, the emergence, location and
amplitude of the peak of the distribution at large epidemic values is correctly predicted. How-
ever, the distribution of final epidemic sizes is systematically shifted towards higher shares of
population with respect to the CDNs

nz;S case. Thus, for small values of β/μ the outcome of simu-

lations using CDNs
nz;S are in slightly better agreement with the CSN case. However, for higher

β/μ and for the largest epidemic size reached, the CDNs
nz;NB performs better. Overall, both sur-

rogate networks yield satisfactory predictions of the epidemic risk associated to a propagation
on the CSN.

Discussion
Data on the contact patterns of individuals collected by different methods lead to different con-
tact network structures, and some studies have started to investigate this issue through detailed
quantitative comparisons [21, 36]. In the present paper, we have gone further by comparing

Fig 6. Box-plot of the distribution of epidemic sizes larger than 10%.Comparison of the distribution of epidemic sizes for SIR simulations performed
on the contact sensors network (CSN), the surrogate contact network without zeros in the contact matrix of link densities and with weights randomly
drawn from the distribution of contact durations registered by sensors (CDNs

nz;S), and the same surrogate contact network but with weights randomly
drawn from a negative binomial fit of the distribution of contact durations registered by sensors in several similar environments (CDNs

nz;NBÞ. For each box,
the central mark stands for the median, its edges represent the 25th and 75th percentiles. The whiskers extend to the most extreme data points not
considered outliers, while outliers are plotted individually. Points are drawn as outliers if they are larger than a + h(b − a) or smaller than a − h(b − a), where
a and b are the 25th and 75th percentiles, respectively and h is the maximumwhisker length set by default to h = 1.5. (1000 simulations for each value of
the ratio β/μ. β/μ 2 {6, 8, 10, 12, 14, 16, 18, 20, 30, 40}).

doi:10.1371/journal.pcbi.1005002.g006
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the outcome of simulations of spreading processes performed on contact networks gathered
either through wearable sensors or through contact diaries. Not surprisingly, we have shown
that the results differ strongly, due to the low participation rate to the diaries, the under-report-
ing of contacts and the overestimation of contact durations in diaries. In particular, the direct
use of the links and durations reported in the diaries yields a peculiar distribution of epidemic

Fig 7. Outcome of the spreading processes. Comparison of the distributions of epidemic sizes obtained for 1000 SIR simulations performed on the
contact sensors network and on the surrogate contact network with weights randomly drawn from a negative binomial fit of the distribution of contact
durations registered by sensors in several environments (CDNs

nz;NB). Each process starts with one random infected seed. (a) β/μ = 6, (b) β/μ = 10, (c)
β/μ = 14, (d) β/μ = 20, (e) β/μ = 30, (f) β/μ = 40.

doi:10.1371/journal.pcbi.1005002.g007
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sizes suggesting a very strong community structure that might lead to the design of inadequate
containment strategies. On the other hand, using the links reported in the diaries but more
realistic weights yields a strong underestimation of the epidemic risk.

In a second and more important step, we have asked if, despite this low participation rate
and these biases, the information contained in the contact network built from the contact diaries
can be used to build a surrogate contact network whose properties are close enough to the real
contact network (considered here to be the one obtained from the wearable sensors) to yield a
correct estimation of the epidemic risk when used in simulations of spreading processes. The
rationale comes from the structural similarities found in the contact matrices giving the densi-
ties of links between individuals of different classes obtained using both sensors and diaries [21].
These similarities suggest to build a surrogate contact network starting from the contact diary
network, adding nodes and links in order to maintain this matrix fixed, and assigning weights to
the links. We note that two recent works [37, 40] have considered related but different issues. In
[37], only diary data is available, and the authors present a synthetic network model based on
data and adjusting for under-reporting. This adjustment for reporting errors leads in this case
only to a small difference in epidemic predictions. In [40] on the other hand, only sensor data is
considered, and the authors assume to have an incomplete information on the contact network
registered by sensors due to an uniform population sampling (hence, all contacts between par-
ticipating individuals are assumed to be known). Here on the other hand, the available dataset is
given by diaries, in which population sampling is not uniform (actually, the students who filled
in diaries tend to have more contacts than the others) and in which under-reporting implies
that many links between participating individuals are also missing. Moreover, we face two addi-
tional issues (i) the low sampling rate yields a contact matrix of link densities which contains
zeros, in an unrealistic way, and (ii) various possibilities can be considered when assigning
weights to the links of the surrogate networks as weights reported in the diaries are strongly
overestimated. Despite these issues, the surrogate network we build yields, when used in simula-
tions, a good agreement with simulations performed on the whole contact sensor network in
terms of epidemic risk prediction, under the condition of using the list of weights (cumulative
contact durations) gathered by the wearable sensors. In order to get rid of this condition, we
argue that this list comes from a distribution that has been shown in previous works to be very
robust across contexts [9]. We therefore consider weights taken at random from a pool of pub-
licly available datasets, and show that using these weights gives also satisfactory results. Overall,
we thus have presented a procedure that uses only the information contained in the contact dia-
ries and in public data, which allows to obtain a good prediction of the epidemic risk, as mea-
sured by the distribution of epidemic sizes, when used in simulations of a spreading process.

In the Supporting Information, we moreover consider the issue of using, instead of contact
diaries, data coming from friendship surveys, in order to build the surrogate contact network
used in the simulations. We show that the epidemic risk prediction obtained through this pro-
cedure is not accurate. This could be expected as daily encounters in the school are not neces-
sarily related to the existence of a relationship between students: contacts occur between non-
friends due to daily activities, while friends do not meet necessarily every day. This outcome
highlights the importance of taking into account the different nature of social ties [21, 46],
which can each be relevant for specific processes.

Some limitations of our work are noteworthy. First, our results rely on an assumption made
in replacing the zeros observed in the contact matrix of link densities by random values. In the
context under scrutiny, zero values can indeed easily be considered as unrealistic. In other con-
texts, it might however happen that different groups in the population really do not mix. In
such a case, one might expect that this kind of information could be gathered from other
sources (schedules, location of classrooms or offices, etc) [47] and thus integrated into the
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procedure. Second, we have considered as ground truth the contact sensor network. On the
one hand, this network in fact suffers from an incomplete participation, so that the outcome of
spreading processes is underestimated with respect to hypothetical data containing informa-
tion on the whole population. However, such underestimation can be compensated through
the procedure presented in [40]. On the other hand, it is important to note that it is not yet
completely clear whether the contacts measured by wearable sensors are the best proxy for
potentially infectious contacts. We work therefore under this hypothesis, which is indeed quite
widely used but should be kept in mind. Third, we have considered here static networks. As
discussed in [39], the outcome of simulations is then close enough to the one of simulations
taking into account the full contact dynamics if we consider slow enough processes. For fast
processes, the burstiness of contacts becomes very relevant; in this case, it would be crucial to
supplement our procedure by the construction of surrogate timelines of contacts and intervals
between contacts at high temporal resolution, as done in [40]. Finally, we cannot at this point
investigate the efficiency of our procedure in other contexts, for lack of datasets reporting con-
tacts measured by both wearable sensors and contact diaries in the same context and at the
same date. Hopefully such datasets will become more available in the future, yielding new test-
ing grounds for our method. Many populations of interest can indeed be divided into groups
or categories that do not mix homogeneously, often with more contacts within groups than
between groups, and for which the contact matrix formalism and the procedures we present to
construct surrogate networks are therefore relevant [40]. We conclude by mentioning that
future work could also investigate other dynamical processes on networks, such as information
spreading or opinion formation processes.

Methods

Data description
The datasets we use have been presented and made publicly available in [21]. They correspond
to contacts between students of 9 classes in a high school in France, collected through wearable
sensors on the one hand and contact diaries on the other hand. The sensors registered contacts
with a temporal resolution of 20s for 327 participating students (out of 379 in the 9 classes, i.e.,
a 86.3% participation rate) during the week of Dec. 2–6, 2013. Contact diaries contain data
reported by students about encounters and their cumulative durations for Dec. 5, 2013. In
these diaries, students were asked to report the cumulative durations of their contacts choosing
among four intervals: at most 5 minutes, between 5 and 15 minutes, between 15 minutes and 1
hour, more than one hour. The students belong to 9 classes with different specializations: “MP”
classes focus more on mathematics and physics, “PC” classes on physics and chemistry, “PSI”
classes on engineering studies and “BIO” classes on biology. We collected data among students
of nine classes corresponding to the second year of such studies: 3 classes of type “MP” (MP,
MP�1, MP�2), two of type “PC” (PC and PC�), one of type “PSI” (PSI�) and 3 of type “BIO”
(2BIO1, 2BIO2, 2BIO3).

Using these datasets, we build two networks of contacts among students for the same day
(Dec 5, 2013): the Contact Sensors Network (CSN) and the Contact Diaries Network (CDN).
In each network, nodes represent students, and a links is drawn between two students if:

1. sensors register at least one contact during the relevant day (CSN);

2. at least one of the two students reported an encounter (CDN).

The resulting networks have 295 nodes for the CSN (other students were absent or did not
wear the sensors on that day) and 120 nodes for the CDN. In particular, no student from
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classes PC� and PSI� filled a diary, and only one fromMP�1. We thus discarded these classes
in most of the analysis and in particular in the contact matrices, remaining with 6 classes.

Each link carries a weight. In the CSN it represents the cumulative duration of contacts regis-
tered by sensors during the day. For the CDN we consider several possibilities. In the CDND we
use weights reported in the diaries: we associate to each time-interval its maximum possible
value (5, 15, 60 minutes respectively for the first three intervals and 4 hours for the last one. This
choice takes into account data reported and registered and the school schedule) and, if two stu-
dents reported different durations for their encounter, we use the average of the reported values.
In the CDNS on the other hand, we consider weights randomly drawn from the distribution of
contact durations registered by sensors. Results are averaged over 1000 such weight assign-
ments. For the CDNS’ finally, we start from CDN and rank the E links in decreasing order of
their reported weights (assigned as in CDND, and with random order for equal weights). We
extract E weights from the distribution of contact durations registered by sensors, rank them as
well in decreasing order, and assign the weights to the links of CDN in such a way to match the
two orderings (i.e., assigning the largest weights to the links with largest reported weights).

Matching networks
The CSN, the CDND and the CDNS are matched to retain only nodes appearing in both CSN
and CDN (see Table 1 for details about classes size before and after matching). We refer to
them as thematched networks: CSNm, CDNm

D and CDNm
S .

The CMDN is built by using a Contact Matrix Distribution (CMD). Following [44], we con-
sider a CMD where each entry, (X, Y), is the empirical distribution of durations reported by
diaries for contacts between all students in class X and class Y, including zero durations (corre-
sponding to an absence of link between two students). We fit each such distribution by a nega-
tive binomial functional form. Then, for each pair of nodes, we draw at random a weight using
the corresponding negative binomial fit. Note that in this way we do not maintain fixed the
link structure of the CDN. We however keep on average the same density of links between dif-
ferent classes.

Construction of surrogate networks
The basic steps for building a binary surrogate contact network CDNs for the six considered
classes, starting from the matched contact diaries network, are:

Table 1. Comparison of network properties. Number of nodes in each class in the contact sensors network
and in the contact diaries network in the original (respectively CSN, CDN) and the matched forms (respec-
tively CSNm, CDNm).

CSN CDN CSNm CDNm

2BIO1 35 22 20 20

2BIO2 30 13 11 11

2BIO3 33 15 13 13

MP 32 23 23 23

MP*1 28 1 0 0

MP*2 34 19 18 18

PC 40 27 23 23

PC* 35 0 0 0

PSI* 28 0 0 0

Tot 295 120 108 108

doi:10.1371/journal.pcbi.1005002.t001
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1. we add all missing nodes in each class (we know the number of students in each class in the
CSN): the number of nodes grows from 108 in the CDNm to 204 in the CDNs;

2. we add new links within and between classes in order to keep fixed the observed contact
matrix of edge densities for the contact diaries network (given in Fig 3(b)). To this aim, we
randomly pick up pairs of nodes, i belonging to class X and j to Y. If i and j are not yet linked
and if the current density of links between classes X and Y is smaller than the corresponding
entry of the empirical matrix (Fig 3(b)), we add a link between i and j.

3. the previous step is repeated until we obtain link densities within and between classes equal
to the ones of the CDNm (Fig 3(b)).

Results are averaged over 500 realisations of this procedure.
As explained in the main text, we moreover deal in two different ways with the zero values

of the link densities between several class-pairs in the CDN. We either keep these densities or
replace them with values drawn at random from a uniform distribution of values between the
minimum and maximum values (diagonal excluded) of the contact matrix of Fig 3(b). In this
way the contact matrix structure is preserved, with more interactions within than between
classes.

To assign weights to the links of the surrogate networks, we consider several possibilities.
We first assume homogeneous contact durations and assign to each link a weight equal to the
average of cumulative durations registered by sensors. This yields two versions of the surrogate
contact networks:

• CDNs
z;H: with homogeneous contact durations and keeping zero densities in the contact

matrix of edge densities;

• CDNs
nz;H: with homogeneous contact durations and zero densities replaced in the contact

matrix of edge densities.

We refer to the contact sensors network under the homogeneous duration hypothesis by
CSNH.

If instead we assume heterogeneous contact durations, we obtain two possible surrogate
contact diaries networks: we assign weights at random to the links of CDNs, drawn at random
with replacement from the list of durations either reported by students or registered by sensors.
We thus obtain four versions of the surrogate contact networks:

• CDNs
z;D, with durations drawn from the ones reported by students and keeping zero densities

in the contact matrix of edge densities;

• CDNs
nz;D, with durations drawn from the ones reported by students and zero densities

replaced in the contact matrix of edge densities;

• CDNs
z;S, with durations drawn from the ones registered by sensors and keeping zero densities

in the contact matrix of edge densities;

• CDNs
nz;S, with durations drawn from the ones registered by sensors and zero densities

replaced in the contact matrix of edge densities.

Finally, the surrogate contact network obtained by assigning weights randomly drawn from
the negative binomial fit of the distribution of publicly available contact durations registered by
sensors is indicated by the acronym CDNs

nz;NB.
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