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Abstract
We present a framework for designing cheap control architectures of embodied agents. Our

derivation is guided by the classical problem of universal approximation, whereby we

explore the possibility of exploiting the agent’s embodiment for a new and more efficient uni-

versal approximation of behaviors generated by sensorimotor control. This embodied uni-

versal approximation is compared with the classical non-embodied universal

approximation. To exemplify our approach, we present a detailed quantitative case study

for policy models defined in terms of conditional restricted Boltzmann machines. In contrast

to non-embodied universal approximation, which requires an exponential number of param-

eters, in the embodied setting we are able to generate all possible behaviors with a drasti-

cally smaller model, thus obtaining cheap universal approximation. We test and corroborate

the theory experimentally with a six-legged walking machine. The experiments indicate that

the controller complexity predicted by our theory is close to the minimal sufficient value,

which means that the theory has direct practical implications.

Author Summary

Given a body and an environment, what is the brain complexity needed in order to gener-
ate a desired set of behaviors? The general understanding is that the physical properties of
the body and the environment correlate with the required brain complexity. More pre-
cisely, it has been pointed that naturally evolved intelligent systems tend to exploit their
embodiment constraints and that this allows them to express complex behaviors with rela-
tively concise brains. Although this principle of parsimonious control has been formulated
quite some time ago, only recently one has begun to develop the formalism that is required
for making quantitative statements on the sufficient brain complexity given embodiment
constraints. In this work we propose a precise mathematical approach that links the physi-
cal and behavioral constraints of an agent to the required controller complexity. As con-
troller architecture we choose a well-known artificial neural network, the conditional
restricted Boltzmann machine, and define its complexity as the number of hidden units.
We conduct experiments with a virtual six-legged walking creature, which provide evi-
dence for the accuracy of the theoretical predictions.
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Introduction
The goal of this article is to provide a framework that allows us to determine the complexity of
a control architecture in accordance with the cheap design principle from embodied artificial
intelligence [1, 2]. Cheap design in this context refers to the relatively low complexity of the
brain or controller in comparison with the complexity of an observed behavior. A classical
example is given by the Braitenberg vehicles [3], which are Gedankenexperiments designed to
show how a seemingly complex behavior can result from very simple control structures. Brai-
tenberg discusses several artificial creatures with simple wirings between sensors and actuators.
He then describes how these systems produce a behavior that an external observer would clas-
sify as complex if the internal wirings were not revealed. Most interestingly, he then relates the
wiring of his vehicles to various neural structures in the human brain. The idea of a simple wir-
ing that leads to complex behaviors is also discussed in [1, 2], who present the walking behavior
of an ant as an example. Without taking the embodiment and, in particular, the sensorimotor
loop into account, the complex behavior (of a complex morphology) seems to require a com-
plex control structure [2]. A strong indication that cheap design is a common principle in bio-
logical systems is given by the fact that the human brain accounts for only 2% of the body mass
but is responsible for 20% of the entire energy consumption [4], which is also remarkably con-
stant [5]. Further support for cheap design as a common principle is given by a recent study on
the brain sizes of migrating birds. It is known that migrating birds have a reduced brain size
compared with their resident relatives. Sol et al. [6] have studied various species and the
affected brain regions and point out that the reduced brain sizes could be a direct result from
the need to reduce energetic, metabolic and cognitive costs for migrating birds.

It is generally believed that cheap design of control architectures is possible whenever the
morphology of the system can contribute to the control of behaviors, which is referred to as
morphological computation [7, 8]. This kind of computation can be illustrated in the context of
the human walking behavior, which only needs to be actively controlled during the stance
phase. The swing phase results mainly from the interaction of the physical properties of the leg
with the environment (gravity). This is demonstrated by the Passive Dynamic Walker [9],
which is a purely mechanical system that resembles the physical properties of human legs. The
human walking behavior is emulated as a result of the interaction of the mechanical system
with its environment (gravity and a slope). It is an extreme example of cheap design that
requires no active control at all.

Morphological computation has been identified as a prime concept within the field of
embodied cognition about two decades ago [7]. However, only recently one has begun to
develop a theoretical understanding of this concept [10–15]. Currently, the field does not pro-
vide sufficiently conclusive definitions that would allow us to analytically reveal the design
principles of cheap control based on high values of morphological computation. Experimental
evidence of such a coupling has been provided in evolutionary settings. For instance, the work
of Auerbach and Bongard [16] shows that complex environments increase the selection pres-
sure for complex morphologies, given a low-complexity controller. This suggests an evolution-
ary coupling between morphological computation and cheap design.

We are interested in quantifying to what extent a control structure can be reduced if the
physical constraints are taken into account. Above, we referred to a system as cheaply designed,
if it has a control structure of low complexity that produces behaviors which an external
observer would classify as complex. In this work, we are not concerned with the complexity of
the behavior. Instead, we present an approach to determine the minimal complexity of a con-
trol structure that is able to produce a given set of desired behaviors with a given morphology
in a given environment. In other words, rather than comparing the complexities of the control
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structure and the behavior, we ask: what is the minimal brain complexity (or size) that can con-
trol all (desired) behaviors that are possible with the body in a given environment?

We follow a bottom-up–understanding by building–approach to cognitive science [17],
which is also known as behavior-based robotics [18] and embodied artificial intelligence [1, 2].
The core concept is that cognitive systems are considered as embedded and situated agents
which cannot be understood if they are detached from the sensorimotor loop. This implicitly
means that we assume sensor state sparsity and continuity of physical constraints. Consider
the human retina as an example. We do not see random images but structured patterns and,
moreover, the sequence of these patterns is also highly dependent on our behavior. This behav-
ior-dependent structuring of information is also known as information self-structuring and has
been identified as one of the key principles of learning and development [19, 20]. The second
implication from the sensorimotor loop is continuity, e.g. natural systems are unable to teleport
themselves from one place to another. Therefore, we can safely assume that the world around
us will not be too different from the recent past and the recent future.

The sensorimotor loop (SML) [21, 22] is described by a type of partially observable Markov
decision process (POMDP) where an embodied agent chooses actions based on noisy partial
observations of its environment. An illustration of this causal structure is given in Fig 1. We
aim at optimizing the design of policy models for controlling these processes. One aspect of the
optimal design problem is addressed by working out the optimal complexity of the policy
model. In particular, we are interested in the minimal number of units or parameters needed in
order to obtain an artificial neural network that can represent or approximate a desired set of

Fig 1. Sensorimotor loop.

doi:10.1371/journal.pcbi.1004427.g001
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behaviors. A first step towards resolving this problem is to address the minimal size of a univer-
sal approximator of policies. In realistic scenarios, universal approximation is out of question,
since it demands an enormous number of parameters, many more than actually needed. In this
paper we reconsider the universal approximation problem by exploiting embodiment con-
straints and restrictions in the desired behavioral patterns.

We introduce the notions of embodied behavior dimension and embodied universal approxi-
mation, which quantify the effective dimension of a system that is subject to sensorimotor con-
straints (embodiment) and formalize the minimal control paradigm of cheap design in the
context of the sensorimotor loop. We substantiate these ideas with theoretical results on the
representational capabilities of conditional restricted Boltzmann machines (CRBMs) as policy
models for embodied systems. CRBMs are artificial stochastic neural networks where the input
and output units are connected in a bipartite and undirected manner to a set of hidden units.
Given the embodied behavior dimension, we derive bounds on the number of hidden units of
CRBMs that is sufficient to generate a set of behaviors by appropriate tuning of interaction
weights and biases. In order to test our theory, we present an experimental study with a six-leg-
ged walking robot and find a clear corroboration. The experiments indicate that the sufficient
controller complexity bounds predicted by our theory are tight, which means that the theory
has direct practical implications.

CRBMs are defined by clamping an input subset of the visible units of a restricted Boltzmann
machine (RBM) [23, 24]. Conditional models of this kind have found a wide range of applica-
tions, e.g., in classification, collaborative filtering, and motion modeling [25–28], and have
proven useful as policy models in reinforcement learning settings [29]. These networks can be
trained efficiently [30, 31] and are well known in the context of learning representations and
deep learning [32]. Although estimating the probability distributions represented by RBMs is
hard [33], approximate samples can be generated easily from a finite Gibbs sampling procedure.
The theory and in particular the expressive power of RBM probability models has been studied
in numerous papers [34–37]. Recently also the representational power of CRBMs has been stud-
ied in detail [38]. CRBMs can model non-trivial conditional distributions on high-dimensional
input-output spaces using relatively few parameters, and their complexity can be adjusted by
simply increasing or decreasing the number of hidden units. Hence we chose this model class
for illustrating our discussion about the complexity of SML control problems.

This paper is organized as follows. Section “The Causal Structure of the Sensorimotor
Loop” contains a description of the sensorimotor loop. Section “From Policies to Behaviors”
presents the notions of embodied behavior dimension and embodied universal approximation.
In section “Cheap Representation of Embodied Behaviors” we use these two notions in order
quantify and enforce dimensionality reduction. Section “A Case Study with Conditional
Restricted Boltzmann Machines” contains our theoretical discussion on the representational
power of CRBMmodels, comparing the non-embodied and the embodied settings. Section
“Experiments with a Hexapod” validates the theory experimentally. In “Discussion” we offer
our conclusions and outlook. In the Supporting Information S1–S4 Videos show the walking
hexapod controlled by four CRBMs of different complexity, S1 Text contains technical proofs,
S2 Text contains details about the estimation of the embodied behavior dimension, and S3
Text discusses possible generalizations of the ideas presented in the main part of the paper.

Methods

The Causal Structure of the Sensorimotor Loop
What is an embodied agent? In order to develop a theory of embodied agents that allows us to
cast the core principles of the field of embodied intelligence into rigorous theoretical and
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quantitative statements, we need an appropriate formal model. Such a model should be general
enough to be applicable to all kinds of embodied agents, including natural as well as artificial
ones, and specific enough to capture the essential aspects of embodiment. How should such a
model look like? First of all, obviously, an embodied agent has a body. This body is situated in
an environment with which the agent can interact, thereby generating some behavior. In order
to be useful, this behavior has to be guided or controlled by the agent’s brain or controller.
Drawing the boundary between the brain on one side and the body, together with the environ-
ment, on the other side suggests a black box perspective of the brain. The brain receives sensor
signals from and sends effector or actuator signals to the outside world. All it knows from the
world is based on this closed loop of signal transmission. In other words, the world is a black
box for the brain with which it interacts through sensing and acting. In particular, the bound-
ary between the body and the environment is not directly “visible” for the brain. Both are parts
of that black box and interact with the brain in an entangled way. Therefore, we consider them
as being one entity, the outside world or simply the world. The brain is causally independent of
the world, given the sensor signals, and the world is causally independent of the brain, given
the actuator signals. This is the black box perspective.

Let us now develop a formal description of this sensorimotor loop. We denote the set of
world states byw. This set can be, for instance, the position of a robot in a static 3D environ-
ment. Information from the world is transmitted to the brain through sensors. Denoting the
set of sensor states bys, we can consider the sensor to be an information transmission channel
fromw tos as it is defined within information theory [39]. Given a world state w 2w, the
response of the sensor can be characterized by a probability distribution β(w; ds) of possible
sensor states s 2s as result of w. For instance, if the sensor is noisy, then its response will not
be uniquely determined. If the sensor is noiseless, that is, deterministic, then there will be only
one sensor state as possible response to the world state w. In any case, the response of the sen-
sor given w can be described in terms of a Markov kernel

b : w �! Ds ;

where Δs denotes the set of probability distributions on the sets of sensor states. The set of

all such sensor channels is denoted by Dw
s . Whenever the base sets is discrete, we simply

write s instead of ds and β(w; s) instead of β(w; ds). Note that, as a Markov kernel, β satisfies
various measure-theoretic conditions (positivity, normalization, measurability; for the techni-
cal definitions of Markov kernels see, e.g., [40]). Markov kernels are closely related to condi-
tional probabilities, which would justify the notation p(sjw) instead of β(w; s). However, we
prefer the latter notation. Following Pearl’s concept of causal networks [41], the Markov ker-
nels formalize the mechanisms of the sensorimotor loop. This means that the Markov kernels
play the more fundamental role, and we want to distinguish this role also by the notation. Once
the mechanisms are defined, they generate distributions so that we can also compute the condi-
tional distributions from them. For instance, one could compute the conditional distribution
p(sjw) and compare this with the mechanism β(w; s). Clearly, they coincide whenever p(w)> 0,
which we consider as a consistency property. However, there is an important difference, reflect-
ing the fact that β is a mechanism: it is defined for all w. If the behavior of an agent is restricted
to only a few world states, then the conditional distribution p(sjw) will be defined only for these
world states.

After having described the mathematical model of a sensor in detail, it is now straightfor-
ward to consider a corresponding formalization of the other components of the sensorimotor
loop. We continue with the notion of a policy. The agent can generate an effect in the world in
terms of its actuators. Since we consider the body as part of the world, this can lead, for
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instance, to some body movement of the agent. In order to guide this movement, it is beneficial
for the agent to choose its actuator state based on the information about the world received
through its sensors. Denoting the state set of the actuators bya, we can again consider a chan-
nel froms toa as formal model of a policy, represented by a Markov kernel

p : s �! Da ;

where Δa denotes the set of probability distributions ona. Note that this definition of a policy
also allows us to consider a random choice of actions, leading to so-called non-deterministic

policies. The set of policies is denoted by Ds
a. Finally, we consider the change of the world state

from w to w0 in the context of an actuator state a as a channel, denoted by α, which assigns a
distribution α(w, a; dw0) to w, a. With the set Δw of probability distributions onw, we have

a : w�a �! Dw :

We refer to α as world channel and denote the set of all world channels by Dw�a
w . Similar causal

structures, involving Markov kernels, have been considered in the general context of control
and systems theory [42] as well as in the context of population dynamics [43].

From Policies to Behaviors
We have defined three mechanisms that are involved in a (reactive) sensorimotor loop of an
embodied agent. Clearly, the agent’s embodiment poses constraints to this loop, which we attri-
bute to the mechanisms β and α. The agent is equipped with these mechanisms, but they are
both considered to be determined and not modifiable by the agent. On the other hand, the pol-
icy π can be modified by the agent in terms of learning processes. In order to describe the pro-
cess of interaction of the agent with the world, we have to sequentially apply the individual
mechanisms in the right order. Starting with an initial world state wt at time t, first the sensor
state st is generated in terms of the channel β. Then, based on the state of the sensor, an actua-
tor state at is chosen according to the policy π. Finally, the world makes a transition, governed
by α, from the state wt to a new state wt+1, which is influenced by the actuator state at of the
agent. Altogether, this defines the combined mechanism

P
pðwt; dst; dat; dwtþ1Þ≔ bðwt; dstÞpðst; datÞ aðwt; at; dwtþ1Þ : ð1Þ

Note that we consider β and α fixed and therefore emphasize only the dependence on π. Now,
with the new state wt+1 of the world, the three steps are iterated. This generates a process which
is shown in Fig 2. Formally, the process is a probability distribution over trajectories that start
with w0:

w0; s0; a0;w1; s1; a1;w2; s2; a2;w3; . . . ; sT�1; aT�1;wT : ð2Þ

In order to describe this probability distribution, we have to iterate the mechanism Eq (1) by

Fig 2. Causal structure of the reactive SML.

doi:10.1371/journal.pcbi.1004427.g002
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multiplication:

P
pðw0; ds0; da0; dw1; . . . ; dsT�1; daT�1; dwTÞ ≔

YT�1

t¼0

P
pðwt; dst; dat; dwtþ1Þ : ð3Þ

Now, what aspects of the sequence Eq (2) represent the behavior of the agent? Let us con-
sider, for instance, a walking behavior. It is given as a movement of the agent’s body in physical
space, which is completely determined by the world process. Remember that the body is part of
the world. Clearly, the particular sequence of sensor and actuator states does not matter as long
as they contribute to the generation of the same body movement. Therefore, we consider the
world process wt as the one in which behavior takes place and marginalize out the other pro-
cesses from Eq (3), which leads to:

P
pðw0; dw1; . . . ; dwTÞ : ð4Þ

One can show that, with weak assumptions, the limit for T!1 exists, so that we can write

P
pðw0; dw1; dw2; . . .Þ ;

which is a Markov kernel from an initial world state w0 to the set of all infinite future sequences

w1, w2, . . .. Denoting the set of such Markov kernels by Dw
w1 , we can formalize the policy-

behavior map, which assigns to each policy the corresponding behavior:

c1 : Ds
a �! Dw

w1 ; p 7! P
pðw0; dw1; dw2; . . .Þ : ð5Þ

Two policies π1 and π2 will be considered equivalent, if they generate the same behavior, that
is,

c1ðp1Þ ¼ c1ðp2Þ : ð6Þ

We argue that embodiment constraints render many policies equivalent. We can exploit this
fact in order to design a concise control architecture. This will lead to a quantitative treatment
of the notion of cheap design within the field of embodied intelligence. Let us treat this systems
design problem in a more rigorous way. As we pointed out, the agent is equipped with the
mechanisms β and α which constitute the embodiment of the agent. In a biological system
these mechanisms will change due to developmental processes. However, we want to restrict
our attention to the learning processes and disentangle them from developmental processes by
assuming that the latter ones have already converged and therefore consider them as fixed.
Learning refers to a process in which the policy is changing in time. Clearly, in order to model
this change the agent has to be equipped with a family of possible policies, which we denote by
M, and refer to as policy model. For instance, we can consider a neural network as a policy
model that is parametrized by synaptic weights and threshold values for the individual neu-
rons. Changing the weights and the thresholds will lead to a change of the policy (although
there may be degeneracies, in general). In any case, going through all the possible parameter
values will generate a setM of policies with which the agent is equipped for its behavior.

Intuitively, it is clear that the embodiment constraints cause restrictions in the set of behav-
iors that an agent can realize. For example, inertia restricts the pace at which an embodied sys-
tem can change its direction of motion (imagine a train switching the traveling direction
instantaneously). In turn, not all world-state transitions may be possible in a single time step,
regardless of what the policy specifies as a desirable action to take. These restrictions create a
bottleneck between the set of policies on one side and the set of possible behaviors on the
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other. The consequence is that, generically, infinitely many policies parametrize the same
behavior, in the sense of Eq (6). Therefore, it should be possible to find a concise modelM
that is capable of generating all possible behaviors. In particular, we consider a modelM that
satisfies

c1ðMÞ ¼ c1ðDs
aÞ ;

whereM denotes the set of limit points ofM. We refer to this property ofM as being an
embodied universal approximator. In order to highlight the exploitation of embodiment con-
straints for cheap design, we compare this kind of universal approximation to the standard

notion of universal approximation,M ¼ Ds
a, which we refer to as non-embodied universal

approximation.

Cheap Representation of Embodied Behaviors
If we understand the way in which different policies are mapped to the same, or to different,
behaviors, then we can parametrize all the behaviors that can possibly emerge in the SML by a
low-dimensional (or low-complexity) set of policies. We develop the necessary tools in this sec-
tion. For clarity we will focus on the reactive SML with finite sensor and actuator state spaces
but allowing the possibility of a continuous world state. In particular we will use β(w; s) instead
of β(w; ds) and π(s; a) instead of π(s; da). Possible generalizations of these settings are discussed
in supporting information S3 Text. See S3 Fig for an illustration of a generalization to non-
reactive systems.

For a reactive SML, the condition stated in Eq (6) is equivalent to

P
p1ðw; dw0Þ ¼ P

p2ðw; dw0Þ ;
where

P
pðw; dw0Þ ¼

X

s2s

X

a2a
bðw; sÞpðs; aÞaðw; a; dw0Þ ð7Þ

is the one-step world state transition kernel. Therefore, the mechanism P
π(w; dw0) will play an

important role in our analysis and we consider the one-step formulation of the policy-behavior
map:

c : Ds
a �! Dw

w; p 7! P
pðw; dw0Þ : ð8Þ

The map ψ is an affine map from the convex set Ds
a to the convex set Dw

w. Its image

B≔cðDs
aÞ

represents the set of all possible behaviors that the SML can generate. We refer to the dimen-
sion ofB as the embodied behavior dimension

d≔dim ðBÞ :
The embodied behavior dimension d is equal to the maximal number of affinely independent
vectors in the setB. This is given by the number of linearly independent vectors in the set

bðw; sÞðaðw; a0; dw0Þ � aðw; a; dw0ÞÞ; s 2 s; a 2 a n fa0g; ð9Þ

for some arbitrary a0 2a. See supporting information S1 Text for more details about this.
In order to illustrate the effect of the embodiment on the embodied behavior dimension d,

we formulate a simple upper bound in terms of β and α. In order to do so, we interpret the
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expression Eq (9) as a product of two vectors. More precisely, for each s 2s consider the vector
β(�; s) that assigns to each w 2w the number β(w; s), and denote by rank(β) the maximal num-
ber of linearly independent vectors β(�; s). Ifw is finite, rank(β) is simply the rank of the matrix
with entries (β(w; s))w 2 w, s 2 s. Furthermore, for each a 2a n {a0} consider the difference
vector α(�, a0; dw0) − α(�, a; dw0) that assigns to each w the difference α(w, a0; dw0) − α(w, a; dw0)
of probability distributions. Let rank(α) denote the maximal number of linearly independent
difference vectors of that form. Ifw is finite, rank(α) is simply the rank of the matrix with
entries (α(w, a0; w0) − α(w, a; w0))a 2 an{a0},(w, w0) 2 w ×w.

With these definitions, Eq (9) yields

d � rank ðbÞ � rank ðaÞ : ð10Þ

The upper bound Eq (10) may not provide an accurate estimate of the embodied behavior
dimension. However, it illustrates how the embodiment constraints, represented by β and α,
can lead to an embodied behavior dimension d that is much smaller than the dimension of the

set of all policies Ds
a, which is jsj(jaj − 1). In the following, we present simple examples that

illustrate why the rank of β and α is expected to be small in embodied systems.
The sensors are usually insensitive to a large number of variations of the world state w. This

means that β outputs the same distribution for several different w. Furthermore, the sensors
implement a certain degree of redundancy, meaning that, for each w the probability distribu-
tion β(w; �) 2 Δs has certain types of symmetries. Consider, for example, the 20 × 20 maze
shown in Fig 3 (left-hand side). The world state includes the location of the agent in the maze,
(i, j) 2 {1, . . ., 20}2. The agent is endowed with two sensors: a left eye and a right eye. Each eye
measures a weighted sum of the light intensity arriving from the walls in the immediate vicinity
of the agent. The left eye outputs the value Sleft = 0.8 xw + 0.2 xn + 0.1 xs + 0 xe (with probability
one), where xw,n,s,e = 1 if there is a wall to the immediate west, north, south, east, respectively,
and 0 otherwise. Similarly, Sright = 0 xw + 0.2 xn + 0.1 xs + 0.8 xe. Each eye can produce a total of
8 states: 0,0.1,0.2,0.3,1,1.1,1.2,1.3. The naive number of joint sensor states (Sleft, Sright) is
8 × 8 = 64. However, both eyes are partially redundant, and the actual total number of possible

Fig 3. Ambiguity and redundancy of the sensor measurement. In this example, an agent navigates the 20 × 20 maze shown in the left panel. The agent is
endowed with two sensors (eyes), Sleft and Sright. Each sensor measures a weighted average of the walls in the immediate vicinity, illustrated in the central
panel, and outputs one of 8 possible numerical values, as shown in the right panel. There are 400 possible locations in the maze but only 8 × 8 = 64 joint
sensor states. This implies that the sensor measurement is highly ambiguous about the world state. Furthermore, the outputs of both sensors are not
independent; they always have the same value at the decimal place. Due to this redundancy, the factual number of joint sensor states is 15, instead of 64.

doi:10.1371/journal.pcbi.1004427.g003
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joint states is 15 (the case of four walls surrounding a location is excluded). In this example,
400 world states are mapped onto 15 sensor states, which implies that the rank of β is 15. This
example illustrates the two typical properties of the sensor measurement mentioned above: the
ambiguity of the measurement, mapping several world states to the same sensor state, and the
redundancy, by which several sensors measure partially overlapping information about the
world state.

In the case of α, usually several actions a produce the same world state transition, such that,
for any fixed world state w, α(w, �; �) is piece-wise constant with respect to a. Furthermore, for
any given w, only very few states w0 2w are possible at the next time step, regardless of a,
such that α(w, a; �) assigns positive probability only to a very small subset ofw. This means
that rank(α) is usually much smaller than (jaj − 1) (the maximum theoretically possible
rank). An example for this kind of constraints on α is a robot’s knee, which in a time step can
only be moved to adjacent positions, as the one shown in Fig 4.

So far we have discussed the embodied behavior dimension of an embodied system and rea-
soned why it can be much smaller than the dimension of the policy space. Since the policy-
behavior map ψ is affine, for any generic behavior that can possibly emerge in the SML, there is

a ~d-dimensional set (in fact a polytope) of equivalent policies generating that same behavior,

where d þ ~d equals the full dimension jsj(jaj − 1). By selecting representatives from each set
of equivalent policies, we can define low-dimensional policy models which are just as expres-

sive as the much higher dimensional set Ds
a of all possible policies, in terms of the represent-

able behaviors. The following example shows that it is possible to define a smooth manifold of
policies which translate in a one-to-one fashion to the set of all possible behaviors in the SML.

Example. Embodied universal approximator of minimal dimension. Consider the matrix
E 2 R

d×(s×a) that represents the policy-behavior map ψ with respect to some basis. Then the

exponential family Es
a of policies defined by

pyðs; aÞ ¼
exp ðy>Eðs; aÞÞP

a02a exp ðy>Eðs; a0ÞÞ ; y 2 R
d ; ð11Þ

is an embodied universal approximator of dimension d. In fact, each behavior from the setB is

realized by exactly one limit point of the set Es
a. See Fig 5 for an illustration and supporting

information S1 Text for technical details.

Fig 4. Locality of world-state transitions. At subsequent time steps, the knee of a robot can only move by a
small amount. Only very few world state transitions are possible within one time step (e.g., transitions to
neighboring positions). This hexapod is used in the experimental evaluation of our theory in “Experiments
with a Hexapod”.

doi:10.1371/journal.pcbi.1004427.g004
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The previous discussion shows that the set of behaviorsB that can possibly emerge in the
SML usually has a much lower dimension than the set of all policies. Furthermore, it shows
that it is possible to construct low-dimensional embodied universal approximators. Nonethe-
less, among all behaviors that are possible in the SML, we can expect that only a smaller subset
B�B is actually relevant to the agent. For instance, among all locomotion gaits that an agent
could possibly realize with its body in a given environment, we can expect that it will only uti-
lize those which are most successful (e.g., in terms of maximizing some reward function or the
predictive information [44–46]). The notion of embodied behavior dimension can be directly
generalized in order to accurately account for such behavioral restrictions. Given any set of
behaviors B, we are interested in the following problem.

Problem. For a given set of behaviors B � B ¼ cðDs
aÞ and a classM of policy models,

what is the smallest modelM 2M that can generate all these behaviors; that is, B � cðMÞ?
Later below we will consider a classM of policy models defined in terms of CRBMs. In what

follows, we focus on sets B of behaviors that take place within a subsetW�w of world states
and consider the corresponding subset S≔fs 2 s : s 2 supp ðbðw; �ÞÞ for some w 2 Wg of
sensor values that can be observed at these world states. When controlling behaviors from the
set B, only states in S are relevant for the policy, as the other sensor states are never observed.
Furthermore, in order to stay inW only a restricted setAs of actuator states is allowed given
that the state s is observed. This motivates us to study a set of policies that is assigned to a sen-
sor state set and a family of corresponding positive probability actuator state sets. In order to

simplify the notation, we denote the familyAs, s 2 S, simply byA and consider the set DS
A �

Fig 5. Illustration of the exponential family Eq (11) of policies. This figure shows an example with jwj = 3 and jaj = 2 and a policy-behavior map ψ with
embodied behavior dimension d = 2. In this case, the polytope Ds

a is the three-dimensional cube of 3 × 2 row stochastic matrices shown in the middle. The
curved surface within is the exponential family Es

a, which is parametrized by two parameters. The exponential family is mapped by the policy behavior map ψ

to the same set of behaviors (the hexagon illustrated in the right) as the set Ds
a of all policies.

doi:10.1371/journal.pcbi.1004427.g005
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Ds
a of policies π that satisfy

s 2 S; pðs; aÞ > 0 ) a 2 As :

Next we consider the set BS;A≔cðDS
AÞjW of behaviors onW that are generated by policies

with the given sensor and actuator restrictions. With its dimension dS,A: = dim(BS,A), we
have the following result, which gives us a simple and powerful combinatorial tool for
addressing the above problem of representing specific behavior sets.

Lemma 1. Any modelM � Ds
a with the following property can approximate any behavior

from the set BS,A arbitrarily well: for every policy p 2 Ds
a whose S-rows have a total of jSj +

dS,A or less non-zero entries, there exists a policy p� 2M with π(s; �) = π�(s; �) for all s 2 S.
See supporting information S1 Text for technical details and S1 Fig for an illustration of this

result. This lemma states that for universal approximation of embodied behaviors it suffices to
approximate the policies that assign positive probability only to a limited number of actions
(for a relevant set of sensor values). The number of actions is determined by the embodied
behavior dimension. Keep in mind that the relevant set S of sensor values may be much smaller
thans not only due to behavioral constraints but also due to the redundancy of the sensors.
Recall the maze example from Fig 3, where there are 64 theoretically possible sensor values but
only 15 that are actually measured. This kind of redundancy is typical for embodied systems
and generally leads to a strong reduction of the sensor states. Furthermore, redundancy in the
sensor process results not only from the nature of the sensory apparatus, as in the maze exam-
ple, but also from the agent’s behavior. This important mechanism, which is exploited by
embodied agents, is known as information self-structuring [20].

It is worthwhile mentioning that the exponential family from Eq (11) and Lemma 1 describe
two complementary types of universal approximators of embodied behaviors. The first type,
described in the example, is composed of maximum entropy policies, whereas the second type,
described in the lemma, is composed of minimum entropy policies. If we consider the set of
equivalent policies that map to a given behavior, the exponential family selects the one with the
most random state-action assignments that are possible for generating that behavior. On the
other hand, Lemma 1 selects the ones with the most deterministic state-action assignments
that are possible for generating that behavior. Geometrically, the set of equivalent policies of a
given behavior is the convex hull of the minimum entropy policies, with the maximum entropy
policy lying in the center. The exponential family has nice geometric properties, but it is very
specific to the kernels β and α, which define the sufficient statistics E. The set described in
Lemma 1 can also be considered as a policy model. It offers several advantages that we will
exploit later on. First, it has a very simple combinatorial description. Second, it only depends
on the embodied behavior dimension d, irrespective of the specific kernels β and α (which are
not directly accessible to the agent). Third, it selects policies with the minimum possible num-
ber of positive probability actions.

Results

A Case Study with Conditional Restricted Boltzmann Machines
Definitions. A Boltzmann machine (BM) is an undirected network of stochastic binary

units, some of which may be hidden. Such a network defines probabilities for the joint states of
the visible units, given by the relative frequencies at which these states are observed, asymptoti-
cally, depending on the network parameters (interaction weights and biases). The probability
of each joint state x = (xV, xH) of the visible and hidden units is given by the Gibbs-Boltzmann
distribution pðxÞ ¼ 1

Z
expð�HðxÞÞ with energy functionH(x) = ∑i,j xiWij xj + ∑i bi xi and

A Theory of Cheap Control in Embodied Systems

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004427 September 1, 2015 12 / 22



normalization partition function Z(W, b) = ∑x0 exp(−H(x0)). The probabilities of the visible
states are given by marginalizing out the states of the hidden units, p(xV) = ∑xH p(xV, xH).

An RBM is a BM with the restriction that there are interactions only between the visible and
the hidden units; that is,Wij 6¼ 0 only when unit i is visible and j hidden. An RBM defines a
model of conditional probability distributions, given by clamping the states of some of the visi-
ble units:

Definition 2. The conditional restricted Boltzmann machine model with k input, n output,

andm hidden units, denoted CRBMk
n;m, is the set of all conditional distributions in Ds

a,s =

{0,1}k,a = {0,1}n, that can be written as

pðs; aÞ ¼ 1

ZðW; b;Vsþ cÞ
X

z2f0;1gm
exp ðz>Waþ z>Vsþ b>aþ c>zÞ; 8a 2 f0; 1gn

; s 2 f0; 1gk ;

where> denotes vector transposition and Z(W, b, Vs + c) is a normalization factor for each
s 2 {0,1}k. Here, s, a, and z are state vectors of the input, output, and hidden units, respectively.
Furthermore, V 2 R

m×k is a matrix of interaction weights between hidden and input units,
W 2 R

m×n is a matrix of interaction weights between hidden and output units, c 2 R
m is a vec-

tor of biases for the hidden units, and b 2 R
n is a vector of biases for the output units.

The model CRBMk
n;m hasmk +mn +m + n parameters (the interaction weights and biases).

When there are no input units, i.e., k = 0, the conditional probability model reduces to the
restricted Boltzmann machine probability model with n visible andm hidden units, which we
denote by RBMn,m. Fig 6 illustrates a CRBM in the sensorimotor loop.

Non-embodied vs. embodied universal approximation. In this section we present results
about the representational power of CRBMs contrasting the minimal number of hidden units
that suffices for non-embodied universal approximation with the minimal number of hidden
units that suffices for universal approximation of embodied behaviors. In the first case we ask

for the minimalm for which the model CRBMk
n;m can approximate every conditional distribu-

tion from the set Ds
a withs = {0,1}k anda = {0,1}n, denoted by Dk

n, arbitrarily well. We have
the following result:

Theorem 3. Non-embodied universal approximation. The model CRBMk
n;m can approxi-

mate every conditional distribution from Dk
n arbitrarily well if m � 1

2
2kð2n � 1Þ and only if

m � 1
ðnþkþ1Þ ð2kð2n � 1Þ � nÞ.

Fig 6. Illustration of a CRBM policy in the sensorimotor loop.

doi:10.1371/journal.pcbi.1004427.g006
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The full statement of the theorem is quite technical, and thus we refer the interested reader
to [38]. The necessary bound (the second inequality), however, follows from simple parameter
counting arguments. The result shows that the number of hidden units required for non-
embodied universal approximation is exponential in the number of input and output units.

Now we take a look at the embodied setting. By Lemma 1, we can achieve embodied univer-
sal approximation by considering only policies with a limited number of non-zero entries.
Using each hidden unit of a CRBM to model each relevant non-zero entry of the policy, we
obtain the following result:

Theorem 4. Embodied universal approximation. The model CRBMk
n;m can approximate

any behavior from BS,A arbitrarily well whenever m� jSj + dS,A − 1. In particular, the model is
an embodied universal approximator whenever m� jsj + d − 1.

Proof. We use Lemma 1. The joint probability model RBMk+n,m can approximate any proba-
bility distribution with support of cardinalitym + 1 arbitrarily well [34, 35]. Hence, withm�
jsj + d − 1, RBMk+n,m can approximate any joint distribution with jsj + d non-zero entries
arbitrarily well. The result for conditional distributions is a direct implication of this.

This theorem gives an upper bound for the minimal number of hidden units that suffices to
obtain embodied universal approximation. The bound depends on the embodiment con-
straints of the system, captured in the embodied behavior dimension. In general, this bound
will be much smaller than the exponential bound from Theorem 3.

Experiments with a Hexapod
In the previous sections we have derived a theoretical bound for the complexity of a CRBM
based policy. In this section, we want to evaluate that bound experimentally. For this purpose,
we chose a six-legged walking machine (hexapod) as our experimental platform (see Fig 7 left
panel), because it has a well-studied morphology in the context of artificial intelligence, with
one of its first appearances as Ghengis [47]. The purpose of this section is not to develop an opti-
mal walking strategy for this system. Contrary, this morphology was chosen, because the tripod
gait (see Fig 7 right panel) is known to be one of the optimal locomotion behaviors, which can
be implemented efficiently in various ways. This said, learning a control for this gait is not triv-
ial, and hence it is a good testbed to evaluate our complexity bound for CRBM based policies.

This section is organized in three parts. The first part presents the experimental set-up as far
as it is required to understand the results. The second part describes how the CRBM complex-
ity parameterm was estimated form the data. The third part presents the results of the experi-
ment and compares them with the theoretical bound.

Fig 7. Hexapod set-up. Left-hand side: The simulated hexapod with a display of the joint configurations. Right-hand side: Visualization of the target walking
pattern. The plot shows which leg touched the ground at which point in time. Blue areas refer to a contact with a the ground, while orange areas refer to points
in time during which the correspond leg did not touch the ground. The different legs are plotted over the y-axis, while each point on the x-axis refers to a single
point in time.

doi:10.1371/journal.pcbi.1004427.g007
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Simulation. The hexapod was simulated with YARS [48], which is a mobile robot simula-
tor based on the bullet physics engine [49]. Each segment of the hexapod is defined by its phys-
ical properties (dimension, weight, etc.). In the case of the hexapod shown in Fig 7 (left-hand
side), the main body’s dimension (bounding box) is 4.4m length, 0.7m width, 0.5m height, and
the weight is 2kg. For the tripod walking gait, inertia does not play a significant role, which
means that the effect of the specific weight of the hexapod is negligible. Each leg consists of
three segments (femur, tarsus, tibia). However, the two lower segments (tarus, tibia) are con-
nected by a fixed joint. The leg segments were freely modeled with respect to the dimensions of
an insect leg. The motors that connect a femur and tarsus (knee) only allow rotations around
the local y-axis of the femur segment (see Fig 7). The deviation of the knee joints is limited to
ωknee 2 [−15°,25°]. For joints which connect the main body with a femur (shoulder), the devia-
tion is limited to ωshoulder 2 [−35°,35°]. The rotation axes of the shoulder joints are limited to

the local z-axis of the main body. The angular positions of the joints define the sensor (~Si) and

actuator (~Ai) values. The actuator values (output of the CRBM) are translated into forces,
which are controlled by bullet and YARS to reach the desired angular position (for details see
[48, 49]). The maximal joint forces are large enough, such that each leg is able to lift the entire
body on its own. This is done to mimic the leg strength of insects.

The policy update frequency was set to 10Hz, i.e., every 100ms the controller received a sen-
sor value per sensor and generated an actuator value per actuator. The target behavior of the
hexapod (a tripod walking gait, see Fig 7) was generated by an open-loop controller which
applied phase shifted sine oscillations to the actuators. For each actuator, one period of the cor-
responding sine oscillation was discretized into 50 values (a single locomotion step requires 5
seconds). A faster walking behavior would not have given the legs enough time to reach the
maximal angular positions. For evaluating the bound, exploiting the maximal range of the sen-
sors and actuators is more important than optimizing the walking speed of the hexapod.

For the training and analysis, the sensor and actuator data was discretized into 16 uniform
bins for each sensor and actuator. This corresponds to four binary input units for each sensor
and four binary output units for each actuator. Combined into two random variables S = (S1,
S2, . . ., S12), A = (A1, A2, . . ., A12), this leads to a total of 16

12 possible values (jsj = jaj = 1612)
corresponding to a total of 48 binary input and 48 binary output units. In the following sec-
tions, we only refer to this preprocessed data, which means that calculations and the training of
the CRBMs described in the remainder of this section refer to the two random variables S, A.

In the next section we estimate the controller complexity that is sufficient to reproduce the
desired tripod walking gait.

Estimation of the sufficient complexity. Before the estimation procedure and results are
presented, we restate the inequality given in Theorem 4, which is given by

m � jSj þ dS;A � 1 : ð12Þ

This means that a CRBM should not require more hidden units (m) than the sum of the sup-
port set cardinality jSj and embodied behavior dimension dS,A minus 1. The following para-
graphs explain how these two values were calculated from the recorded data.

The first step in estimating the sufficient controller complexity of the CRBM policy model is
the estimation of the support’s cardinality jSj. It was mentioned above that there are 1612 possi-
ble sensor values. The necessary complexity of a CRBM policy for a specific behavior depends
on the actually used number of sensor values, which we call the sensor support set. By estimat-
ing the cardinality of the support set, we know how many sensor values the CRBM needs to
take into account in order to reproduce the behavior of interest.
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The estimation of the support set cardinality depends on the quality of the sample. There-
fore, we sampled the sensor and actuator values of the target behavior over 105 time steps to
ensure a sufficient convergence of the relative frequencies. Fig 8 (left-hand side) shows the his-
togram for all recorded sensor values. The orange vertical line shows where we have pruned
the data so that 80% of the recorded data was kept. Fig 8 (right-hand side) shows the remaining
data. With this procedure (recording, estimating relative frequencies, pruning the data to 80%),
we estimated the cardinality of the sensor support set at jSj = 63. The pruning threshold of
80% might appear arbitrary here. To clarify, estimating the support from data is an interesting
research topic by itself, which, however, goes beyond the scope of this work. Our underlying
assumption for the pruning is that the sampling is noisy. We decided for a pruning threshold
at approximately twice the inflection point of the histogram. We want to point out that the
threshold was chosen before the results of the experiments (see next section) were available.

The next step is to estimate the embodied behavior dimension, which is done here based on
the affine rank of the empirically estimated internal world model γ(s, a; s0). For the sake of
readability, we defer the justification for the replacement of the embodiment-behavior dimen-
sion by the affine rank of the internal world model to the supporting information S2 Text. See
S2 Fig for an illustration of the underlying causal structure.

Given the internal world model ~g sampled from the target behavior, we obtain the relevant
quantity dS,A as follows (see supporting information S2 Text):

dS;A ¼
X

s2S
rank ðð~gðs; a0; s0Þ � ~gðs; a; s0ÞÞs02S;a2aÞ : ð13Þ

The sampled internal world model ~gðs; a; s0Þ is pruned in accordance with the estimated sup-
port set S. For the remaining data, we counted the joint occurrences of s, a, s0 and filled the
matrix ~gðs; a; s0Þ (pairs (s, a) index the rows and s0 indexes the column). Each non-zero row is
normalized to produce a probability distribution and the other rows are discarded. The result-
ing estimated value for the embodied behavior dimension is dS,A = 3. This means that there is

a 3-dimensional face of the polytope DS
a of policies on S, which contains a policy that generates

the target behavior. This implies that the target behavior can be generated by a mixture of 4
deterministic policies. The mixture reflects the stochasticity of the system, which results mainly
from the discretization of sensor values.

Fig 8. Estimation of the support’s cardinality. Estimation of the support set cardinality (before and after pruning).

doi:10.1371/journal.pcbi.1004427.g008
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Resulting estimation of the model complexity: It follows that the CRBM is able to represent
the target behavior whenever the number of hidden units satisfies

m � jSj þ dS;A � 1 ¼ 63þ 3� 1 ¼ 65 : ð14Þ

To evaluate the tightness of this bound, we conducted a series of experiments, which are
explained in the following section.

Experiments to evaluate the tightness of the complexity estimation. Before the experi-
ments can be described, there is an important note to make. This work is concerned with the
minimal complexity that is sufficient for controlling a set of desirable behaviors (this set may
consist of all possible behaviors or of just one specific behavior). Here, we are not concerned
with the question how these CRBMs should be trained optimally. This is why we used a stan-
dard training algorithm for RBMs [30, 31] and conducted a large scan over different complex-
ity parametersm. For eachm = 1, 2, 3, . . ., 100 we trained 100 CRBMs with the following
learning parameters: epochs = 20000, batch size = 50, learning rate α = 1.0, momentum = 0.1,
Gaussian distributed noise on sensor data = 0.01, weight cost = 0.001, CRBM Gibbs updates for
sampling = 10, on a data set of 104 pairs of sensor and actuator values. Each trained CRBM was
evaluated ten times, by applying it to the hexapod and recording the distance covered in 30 sec-
onds. The performance of the CRBMs is measured against the target tripod walking gait, which
achieves 20.6 meters during the same time. As we are concerned with the performance that is
in principle possible for a givenm, we choose the policy that covered the most distance at one
of the 10 trials (out of the 100 trained policies, for eachm). The plot in Fig 9 (left-hand side)
shows the best performance of the best policy for all scanned values ofm. The plot in Fig 9
(right-hand side) shows the average performance of the best policy and the standard deviation,
over 10 different evaluations, for all values ofm. The results show that our estimation is fairly
tight, which means the performance of the CRBMs converges to the optimal behavior close to
the estimated value ofm = 65. The supporting information S1–S4 Videos show the perfor-
mance of the best CRBM form = 5, 15, 65, 75.

Discussion
We presented an approach for studying and implementing cheap design in the context of
embodied artificial intelligence. In this context, we referred to cheap design as the reduction of
the controller complexity that is possible through an exploitation of the agent’s body and envi-
ronment. We developed a theory to determine the minimal controller complexity that is

Fig 9. Experimental results. Performance of the best CRBM for different complexity parametersm in comparison to the performance of the target behavior
(horizontal orange line). The vertical blue line indicates them estimated from the data (see supporting information S2 Text).

doi:10.1371/journal.pcbi.1004427.g009
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sufficient to generate a given set of desired behaviors. Being more precise, we studied the way
in which embodiment constraints induce equivalent policies in the sense that they generate the
same observable behaviors. This led to the definition of the effective dimension of an embodied
system, the embodied behavior dimension. In this way, we were able to define low-dimensional
policy models that can generate all possible behaviors. Such policy models are related to the
classical notion of universal approximation.

We used CRBMs as a platform of study, for which we presented non-trivial universal
approximation results in both the non-embodied and the embodied settings. While the non-
embodied universal approximation requires an enormous number of hidden units (exponen-
tially many in the number of input and output units), embodied universal approximation can
be achieved using a much smaller number, depending on the effective dimension of the system.
Experiments conducted on a walking machine demonstrate the tightness of the estimated
number of hidden units for a CRBM controller. This shows the practical utility of our theoreti-
cal analysis for embodied artificial intelligence. To the best of our knowledge, the presented for-
malism and results are amongst the first quantitative contributions to cheap design.

In artificial intelligence, learning is one of the central fields of interest. Crucial for the suc-
cess of any learning method is the complexity of the underlying model, e.g. a neural network. If
the model is chosen too complex, the learning algorithm will likely require too much time and
get stuck in a suboptimal solution. If it is chosen too simple, it might not be able to solve the
problem at all. This paper deals with the design of concise controller structures with main
focus on the model class of conditional restricted Boltzmann machines. In this context, we find
that the numberm of hidden nodes naturally reflects the idea of a cheap or concise control. On
the other hand, the total numberm(k + n + 1) + n of parameters of the conditional restricted
Boltzmann machine, increases linearly inm, which suggests that a concise control is not only
beneficial in terms of mass and energy consumption but also in terms of the quality of learning.
It is well known from statistical learning theory [50] that the number of parameters is not
always the right measure for controlling the quality of learning. However, for the purpose of
this discussion it is sufficient to take an intuitive perspective and interpret low-dimensional
models as being beneficial for learning. A central problem within learning theory is the prob-
lem of finding the right model complexity for optimal generalization properties. Regularization
theory and statistical learning theory provide the right theoretical settings for optimizing the
generalization ability of a learning system [50, 51]. Here, an increasing sequence of model com-
plexities is considered, depending on the available data at each time, so that universal approxi-
mation is achieved only in the limit of infinite data. The choice of the right model is
dynamically adjusted to the available data. In our context, however, the choice of the model is
fixed and based on the embodiment of the system. More precisely, we can choose a low-dimen-
sional model, depending on the embodiment dimension, which is our main observation.
Whether or not the replacement of a universal approximator by an embodied universal
approximator solves the problem of generalization remains an open problem. In any case, the
generalization abilities of embodied systems have to be further studied, where concepts from
regularization theory and statistical learning theory, such as the structural risk minimization
principle [50], will be helpful. In this regard, the freezing-freeing concept [52] seems to point
in a similar direction.

Finally, we would like to comment on the applicability of our work to biological systems.
The general field of embodied intelligence emerged from the observation that natural intelli-
gent systems tend to incorporate and exploit their morphological properties for the generation
of behavior. This suggests the hypothesis that brains of naturally evolved systems are optimized
towards concise architectures, referred to as cheap design. Given a fully developed theory of
embodied intelligence, this hypothesis should be testable for various biological systems.
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Although our approach is guided by this long-term vision, in its current form it is not directly
applicable to biological systems. In order to approach applicability, it is important to develop
methods for efficiently estimating β and α from biological data. Furthermore, conditional
restricted Boltzmann machines represent very simple and unrealistic brain models. Therefore,
our results have to be extended to more realistic brain models. Our work may be seen as a
guideline for extensions towards understanding cheap design in biological systems.

Supporting Information
S1 Text. Technical proofs.
(PDF)

S2 Text. Estimation of the Embodied Behavior Dimension based on the Internal World
Model.
(PDF)

S3 Text. Generalizations.
(PDF)

S1 Fig. Illustration of the policy-behavior map. This figure shows an example with jsj = 3,

jaj = 2, jwj = 3, and a sensor kernel β of affine rank two. Both the policy polytope Ds
a and the

set Dw
a are three-dimensional cubes. The set bDs

a of kernels p(w; a) = ∑s β(w; s)π(s; a), p 2 Ds
a,

is a two-dimensional polygon (the blue hexagon). This projection by β represents one part of
the policy-behavior map. The union of all two-dimensional faces of the policy polytope (one of
them highlighted in dashed yellow) has the same image as the entire policy polytope.
(TIF)

S2 Fig. Special causal structure of the sensorimotor loop. The dashed arrows are the ones
that we omit within our assumptions.
(TIF)

S3 Fig. Causal structure of a SML with internal state.HereWt, St, Ct, At are the states of the
world, sensors, internal variable, and actuators at the discrete time t.
(TIF)

S1 Video. Walking hexapod withm = 5. For the indicated value ofm, 100 CRBMs were
trained and the best one was chosen for presentation here. The right-hand side shows the walk-
ing behavior of two hexapods, of which one is opaque, while the second one is transparent. The
transparent hexapod is controlled by the open-loop sinusoidal controller and displays the tar-
get behavior that was used to train the CRBMs. The behavior of the trained CRBM is shown in
form of the opaque hexapod. We chose to include both behaviors in the video so that perfor-
mance of the trained CRBM can be directly compared with the target behavior. The left-hand
side in each video shows the internals of the CRBM. From top to bottom: The six squares with
the moving blue lines show the raw sensor values for each leg, i.e., the angular values for the
knee and shoulder joint over a period of 10 time steps (one second). Below, the activations of
the CRBM neurons are shown in the following order (from top to bottom): input layer, hidden
layer, output layer. A white box refers to an activation value of 1, while black refers to an activa-
tion of 0. The left-hand side is complete with the lower six squares which show how the binary
output units translate to motor commands. The orange lines in each square on to the bottom
show the motor commands for the knee and shoulder joint of one leg for 10 time steps (1 sec-
ond).
(MOV)
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S2 Video. Walking hexapod withm = 15. This video has the same layout as S1 Video.
(MOV)

S3 Video. Walking hexapod withm = 65. This video has the same layout as S1 Video.
(MOV)

S4 Video. Walking hexapod withm = 75. This video has the same layout as S1 Video.
(MOV)
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