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Abstract
The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated

vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of

HIV-1. The impact of vaccine-induced immune responses can be investigated through

sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients).

A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two

V2 amino acid sites that differed between the vaccine and placebo groups. Here we extend-

ed the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on indi-

vidual sites, k-mers and genes/proteins. We identified 56 amino acid sites or “signatures”

and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites

and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag,

and Pro). The nine signature sites in Env-gp120 were significantly enriched for known
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antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3)

overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to

CD4 binding site neutralization. The identified signature sites significantly covaried with

other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9)

(p< 0.0001), suggesting functional and/or structural relevance of the signature sites. Since

signature sites were not preferentially restricted to the vaccine immunogens and because

most of the associations were insignificant following correction for multiple testing, we pre-

dict that few of the genetic differences are strongly linked to the RV144 vaccine-induced im-

mune pressure. In addition to presenting results of the first complete-genome analysis of

the breakthrough infections in the RV144 trial, this work describes a set of statistical meth-

ods and tools applicable to analysis of breakthrough infection genomes in general vaccine

efficacy trials for diverse pathogens.

Author Summary

We present an analysis of the genomes of the HIV viruses that infected some participants
of the RV144 Thai trial, which was the first study to show efficacy of a vaccine to prevent
HIV infection. We analyzed the HIV genomes of infected vaccine recipients and infected
placebo recipients, and found differences between them. These differences coincide with
previously-studied genetic features that are relevant to the biology of HIV infection, in-
cluding features involved in immune recognition of the virus. The findings presented here
generate testable hypotheses about the mechanism of the partial protection seen in the
Thai trial, and may ultimately lead to improved vaccines. The article also presents a toolkit
of methods for computational analyses that can be applied to other vaccine efficacy trials.

Introduction
The HIV pandemic is responsible for more than 34 million deaths worldwide. Analysis of the
RV144 vaccine trial yielded an estimated efficacy to prevent HIV infection of 31%, with a 95%
confidence interval (CI) of 1% to 51% [1]. In this phase III efficacy trial, 16,402 Thai HIV-1-
negative volunteers were randomized to receive a prime-boost vaccine regimen that consisted of
four priming injections of a recombinant canarypox vector [ALVAC-HIV vCP1521: subtype B
gag, pro (from HIV-1 strain LAI) and CRF01_AE gp120 (92TH023)], and two booster injections
of a recombinant gp120 subunit vaccine [AIDSVAX B/E: subtype B (MN) and CRF01_AE
(CM244)]. Follow-up studies highlighted possible mechanisms behind the modest RV144 protec-
tion. Multiple sources of evidence indicated a role for vaccine-induced antibody responses target-
ing the V2 region of the envelope glycoprotein (Env): (1) the case-control study of immune
correlates of risk showed that the magnitude of IgG antibodies binding to the V1/V2 region of
Env was inversely correlated with risk of infection [2–5]; (2) the magnitude of binding of IgG anti-
bodies to linear peptides in the V2 loop was inversely correlated with risk of infection [3,6]; and
(3) sieve analysis targeted to the V2 region (described below) demonstrated vaccine pressure at
two sites [7]. The case-control correlates study also showed that IgA antibodies to envelope and to
the C1 region of Env were directly correlated with risk of infection [3]. In addition, among vaccine
recipients with low IgA antibody responses to Env, HIV-1 infection risk was inversely correlated
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with IgG Env antibody avidity, antibody-dependent cellular cytotoxicity, neutralizing antibodies,
and Env-specific CD4+ T cell responses [3], as well as with IgG to V3 linear peptides [6].

“Sieve analysis” is the statistical assessment of whether and how the efficacy of a vaccine de-
pends upon characteristics of the pathogen. Genomic sieve analysis compares breakthrough
HIV-1 sequences between the infected vaccine and infected placebo groups. A sieve analysis of
the HVTN 502/Step trial, with a vaccine inducing cytotoxic T-lymphocyte (CTL) responses,
found evidence of CTL epitope-specific variation [8,9]. Based on HIV-1 breakthrough in-
fections in the RV144 trial sequenced at the time of HIV-1 diagnosis, a sieve analysis that
focused on the V1/V2 region of Env identified two sites in the V2 loop (HXB2 amino acids
Env 169 and 181) at which the level of efficacy of the vaccine significantly differed depending on
whether the genome of the infecting HIV-1 virus matched the vaccine immunogen sequence at the
site [7].

Here we present a comprehensive genome-wide exploratory sieve analysis of the break-
through HIV-1 sequences of 109 of the 110 RV144 participants who were infected with
CRF01_AE (excluding one subject whose infection was epidemiologically linked and secondary
to another study participant’s infection [7]). Our investigation was based on a pre-specified
analysis plan, and included multiple sieve analysis methods, each of which evaluates a different
immunological hypothesis (Fig. 1). The analysis focused on amino acid (AA) site-, peptide-,
and protein-specific methods, with investigation of (1) differential deviation (vaccine versus
placebo) from the immunogen sequences at specific loci or in peptide regions that are relevant
to antibody binding; (2) differential vaccine efficacy versus HIV-1 sequences that do not match
immunogen sequences at individual sites and in each of several pre-specified antibody-relevant
protein regions; (3) differential codon selection, and differences in physico-chemical properties
across treatment groups; (4) greater or more rapid viral escape (vaccine versus placebo) at pre-
dicted class I and class II HLA-restricted T cell epitopes; and (5) differences in phylogenetic di-
versity of the breakthrough amino acid sequences or differential evolutionary divergence from
the vaccine immunogen sequences. The results of these analyses generate testable hypotheses
about the mechanisms underlying the modest protection induced by the RV144 vaccine
regimen and about potential paths to more effective HIV-1 vaccines to be investigated in future
research.

Results

Novel methods and discoveries
We applied an array of methods designed to evaluate distinct hypotheses regarding vaccine-in-
duced effects on the genetic sequences of the breakthrough HIV-1 viruses. The methods and
their relative merits are outlined in Fig. 1 and in the Materials and Methods section. All analysis
methods used here have been described previously except for the “Expected Gilbert, Wu,
Jobes” (EGWJ) method, the “Quasi-Earth Mover’s Distance” (QEMD) method, and the
“Physico-chemical Properties”method (PCP), which are described here for the first time. The
EscapeCount method was also developed for this analysis; it has been reported previously [10],
but is described more thoroughly here. This paper is the also first published application of the
PRIME method (http://hyphy.org/w/index.php/PRIME).

All results reported here have not been reported previously except for the V2 crown signa-
ture sites (Env 169 and Env 181) [7], and the V3 signature site (Env 317) [11]. In addition, one
epitope region found by the EscapeCount method (at the crown of the V2 loop) was reported
previously [10]. The SmoothMarks method has been applied to evaluate a related genetic dis-
tance, but as described below the results shown here are novel.
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Amino acid and peptide signatures in Env-gp120, Pro and Gag and in
non-vaccine proteins
Our dataset includes genome sequences from 109 of the 110 subjects previously identified
with HIV-1 CRF01_AE infections [7]. All sequences were obtained from the earliest available
sample for sequencing, and all were prior to the subjects’ initiation of antiretroviral therapy.
There were a median of 10 sequences available for analysis per subject in vaccine proteins
(S1 Table) and also a median of 10 in non-vaccine proteins (S2 Table). We found 19 signature
AA sites contained within the vaccine immunogens (Fig. 2) – 12 in Env-gp120, 3 in Gag and
4 in Pro – that showed a p-value� 0.05 in at least one of the three primary site-scanning meth-
ods (Table 1). In addition, proteins that were not included in the vaccine immunogens were
scanned for sieve effects versus the consensus CRF01_AE sequence (CON-AE) [12]: 37 sites
were significant by at least one of the primary methods, and these were distributed across all
non-vaccine proteins (Table 2 and Fig. 2; complete results in S1 Dataset). Four pairs of sites
overlap different proteins across reading frames: one pair in the immunogen region, three pairs
outside of the immunogen region. These overlapping sites are described in the “context” col-
umns in Tables S3 and S4. 10 of the 19 immunogen signature sites were more likely to match a
vaccine immunogen AA in the placebo group (a “vMatch” or “typical” sieve effect), and 10 of
19 in the vaccine group (a “vMismatch” or “atypical” sieve effect), with one site (Env 369) hav-
ing both a vMatch effect vs the CRF AE immunogen AA and a vMismatch effect versus the
subtype B immunogen AA, see Fig. 3; additional information about each site is provided in
S3 Table (see Figs. 4 and 5 and S4 Table for non-immunogen signature sites). In contrast to the
hypothesis-driven V1/V2 study, in this exploratory analysis we used uncorrected p-values at
the 0.05 significance level to identify putative signature sites, a strategy taken to maximize sen-
sitivity. To control for false positives, we used a conventional 0.20 false discovery rate (FDR)

Figure 1. Analysis methods.Methods evaluate (1) differential deviation (vaccine versus placebo) from the immunogen sequences at specific loci or in
peptide regions that are relevant to antibody binding; (2) differential codon selection, and differences in physico-chemical properties across vaccine and
placebo; (3) differential vaccine efficacy versus HIV-1 sequences that do not match immunogen sequences at individual sites and in each of several pre-
specified antibody-relevant protein regions; (4) greater or more rapid viral escape (vaccine versus placebo) at predicted class I and class II HLA-restricted T
cell epitopes; and (5) differences in phylogenetic diversity of the breakthrough amino acid sequences (vaccine versus placebo) or differential evolutionary
divergence from the vaccine immunogen sequences. T cell and tree images are from openclipart.org.

doi:10.1371/journal.pcbi.1003973.g001
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significance threshold [13], evaluated separately by gene for each analysis method. Only 1 of
the 19 signature sites within the immunogen region, Pol 51, had q-value< 0.20 (Table 1, Fig. 2).

The first of the three primary site-scanning sieve analysis methods, differential vaccine effi-
cacy (DVE), uses Cox survival analysis to test whether vaccine efficacy (VE) for preventing in-
fection by viruses that are AA-matched to the vaccine immunogen sequence at a particular
locus is significantly different from the VE versus mismatched infections, [14,15]. Point esti-
mates of VE associated with each mutation at which the DVE is significant show that VE can
be eliminated or greatly strengthened with the mutation of a single residue (Table 3 and Table 4).
Because this method evaluates all trial time-to-event data (including all randomized subjects
HIV negative at baseline) and yielded a p-value for differential VE close to that for testing
overall VE, the strength of evidence is comparable to the strength of evidence for overall effica-
cy, with the important caveat that multiple testing could lead to false discoveries due to chance
variation. The other two primary methods compare the AA distribution of breakthrough

Figure 2. Signature sites by HIV-1 protein. All sites with evidence for a different amino acid distribution in vaccine versus placebo sequences relative to a
reference residue (unadjusted p< 0.05) by any of the site-scanning methods DVE, GWJ, or MBS. Panel (A) depicts signature sites found in the full HIV-1
genome, including in vaccine-immunogen regions (relative to a vaccine immunogen sequence) and non-vaccine-immunogen regions (relative to the
consensus AE sequence) and (B) depicts a more detailed view of the vaccine immunogen regions in Gag, Pol, and Env. The blue horizontal lines above the
protein regions in panel (B) indicate the regions included in the vaccine immunogen sequences, and the blue lines below the Env protein region indicate the
positions of the variable loops. Signature sites are indicated by red vertical lines, with a red point that is placed on the line as an indicator of the magnitude of
the site’s test statistic using the GWJmethod, which is a t statistic comparing substitution weights across treatment groups. For sites with multiple reference
AAs, the red point indicates the largest magnitude of the multiple test statistics. The black dashed horizontal lines in the middle of the gene and protein
regions indicate the zero-point for the test statistic, so the farther away the point is from the center line, the more significant it was observed to be with this
method. Points above the dashed line indicate that a site was found to have a “vMatch” sieve effect, while points below the dashed line indicate “vMismatch”
signature sites.

doi:10.1371/journal.pcbi.1003973.g002
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infections at an individual site. Both methods employ numeric weights determined by the sub-
stitution frequency of the immunogen AA to the breakthrough sequence AA [16]. The Gilbert,
Wu, Jobes (GWJ) method compares these substitution weights across treatment groups [17],
and the Model-Based Sieve (MBS) method employs the weights in a Bayesian model com-
parison that is more sensitive to detect treatment effects that alter the distribution among
non-vaccine-matched amino acid categories [18]. These three primary methods evaluate a
single representative sequence (themindist sequence) per subject. This sequence, chosen as the
closest actual sequence to the consensus of a subject’s multiple sequences (S1 Text), is selected
to represent the founder of the subject’s infection. To more fully represent the viral popula-
tion, two secondary site-scanning methods utilize all available sequence data: the Mismatch
Bootstrap (MMBootstrap, or simply MMB) method, which compares the frequency of vaccine-
mismatched AAs in all of the subjects’ sequences across treatment groups (this is the method
employed previously in the V2-focussed analysis [7]), and the new Expected GWJ (EGWJ)
method that generalizes the GWJ method by replacing subject weights with weight averages
over a subject’s multiple sequences (Table 1 and Table 2). Only 9 of the 19 sites identified in
proteins represented in the vaccine were significant with all five scanning methods: five in Env
(19, 181, 317, 369, 424), along with site 11 in Gag and sites 12, 44 and 51 in Pro, reflecting the
variety of alternative hypotheses tested by the five methods (Fig. 1).

Table 1. Signature sites in vaccine proteins: 2-sided unadjusted p-values calculated by five methods.

Position1 Ref:AA2 DVE GWJ MBS EGWJ MMB

Env 6 92TH:(T) 0.027 0.026 0.011 0.72 0.027

Env 19 92TH:T 0.032 0.029 0.029 0.006 0.006

Env 169 BothAE:K 0.039 0.028 0.062 0.017 0.16

Env 181 All:(I) 0.027 0.02 0.02 0.049 0.042

Env 268 All:(E) 0.07 0.056 0.035 0.133 0.088

Env 317 All:(F) 0.04 0.038 0.027 0.034 0.037

Env 343 BothAE:K; MN:R K:0.89; R:0.15 K:0.73; R:0.084 K:0.040; R:0.008 K:0.38; R:0.061 K:0.82; R:0.26

Env 353 All:F 0.095 0.118 0.049 0.019 0.04

Env 369 BothAE:L; MN:(P) L:0.026; P:0.027 L:0.044; P:0.046 L:0.039; P:0.038 L:0.007; P:0.24 L:0.004; P:0.005

Env 379 BothAE:(R) ND3 0.048 0.053 0.047 0.04

Env 413 92TH:(T) 0.08 0.06 0.033 0.101 0.081

Env 424 All:I 0.013 0.018 0.022 0.005 0.011

Gag 11 LAI:G 0.032 0.009 0.018 0.011 0.017

Gag 30 LAI:K 0.065 0.034 0.016 0.022 0.04

Gag 482 LAI:(E) 0.04 0.026 0.526 0.057 0.072

Pol 12 LAI:K 0.026 0.04 0.042 0.014 0.032

Pol 44 LAI:A 0.051 0.049 0.052 0.018 0.038

Pol 514 LAI:(T) 0.014 0.002 0.003 0.003 0.004

Pol 66 LAI:(L) 0.056 0.072 0.042 0.108 0.22

1HXB2 numbering; all variable sites were analyzed, these included: Env [248 total; 235 92TH023, 200 CM244, 168 MN]; Gag [143], Pol [62]
2A sieve effect was detected for the indicated vaccine sequence; for Env positions, these are 92TH023, CM244, both of the CRF01_AE sequences, the

subtype B sequence MN, or all three. The corresponding vaccine amino acids are given after the colon. They are in parentheses if the effect was

“vMismatch” (with greater divergence from the vaccine AA among placebo recipients).
3The p-value for Env 379 was not calculable for the DVE method because one of the treatment groups (the vaccine-recipient group) exhibited no variation

at the site.
4The signature at Pol 51 was the only vaccine-protein site with site-scanning results that passed the pre-specified false discovery rate (FDR) q-value

threshold of 0.20: Pol 51 GWJ q = 0.15, MBS q = 0.16, EGWJ q = 0.195.

doi:10.1371/journal.pcbi.1003973.t001
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In a related analysis, we used 9-mer scanning (the KmerScan method as previously de-
scribed [8]) to compare all 9-mers in subjects’ sequences to the corresponding 9-mer in each
reference sequence (the vaccine sequences for immunogen proteins and the CRF01_AE con-
sensus sequence, CON-AE, for non-immunogen proteins). This analysis evaluates contiguous

Table 2. Signature sites in non-vaccine proteins: 2-sided unadjusted p-values calculated by five methods.

Positions Analyzed Position1 Ref:AA2 DVE GWJ MBS EGWJ MMB

Env: 165 Env 640 ConAE:(N) 0.03 0.022 0.011 0.089 0.011

Env 732 ConAE:R 0.005 0.004 0.012 0.005 0.008

Env 777 ConAE:(I) ND3 0.033 0.03 0.033 0.037

Env 829 ConAE:V 0.048 0.056 0.058 0.029 0.07

Nef: 93 Nef 19 ConAE:R 0.048 0.076 0.079 0.026 0.045

Nef 27 ConAE:(T) 0.012 0.019 0.02 0.079 0.017

Nef 56 ConAE:(V) 0.02 0.018 0.015 0.058 0.046

Nef 63 ConAE:E 0.045 0.073 0.076 0.011 0.038

Nef 120 ConAE:(F) 0.04 0.044 0.044 0.043 0.035

Nef 125 ConAE:Q 0.002 0.002 0.002 <0.001 0.004

Nef 156 ConAE:(D) 0.011 0.012 0.003 0.031 0.02

Pol: 170 Pol 297 ConAE:I 0.02 0.01 0.013 0.002 0.005

Pol 328 ConAE:I 0.399 0.528 0.01 0.28 0.4

Pol 497 ConAE:(Y) ND3 0.033 0.03 0.036 0.046

Pol 590 ConAE:V 0.076 0.043 0.081 0.039 0.075

Pol 816 ConAE:L 0.045 0.051 0.063 0.023 0.011

Rev: 81 Rev 7 ConAE:S 0.027 0.023 0.007 0.014 0.031

Rev 39 ConAE:K 0.007 0.007 0.007 0.005 0.004

Rev 55 ConAE:I 0.019 0.032 0.031 0.012 0.046

Rev 92 ConAE:(S) 0.078 0.028 0.069 0.054 0.034

Tat: 47 Tat 3 ConAE:(L) 0.029 0.03 0.029 0.32 0.011

Tat 17 ConAE:Q 0.024 0.035 0.058 0.009 0.052

Tat 36 ConAE:(L) 0.029 0.022 0.023 0.038 0.027

Tat 53 ConAE:K 0.054 0.052 0.037 0.028 0.06

Tat 64 ConAE:D 0.027 0.033 0.008 0.009 0.015

Tat 81 ConAE:P 0.027 0.042 0.021 0.008 0.007

Tat 101 ConAE:D 0.032 0.053 0.053 0.021 0.055

Vif: 76 Vif 31 ConAE:(I) 0.003 0.002 0.027 0.084 0.014

Vif 93 ConAE:K 0.47 0.354 0.029 0.068 0.18

Vif 130 ConAE:R 0.095 0.17 0.048 0.08 0.48

Vif 134 ConAE:E 0.027 0.029 0.031 0.009 0.11

Vif 190 ConAE:N 0.092 0.084 0.028 0.066 0.142

Vpr: 36 Vpr 8 ConAE:Q 0.032 0.025 0.028 0.008 0.01

Vpu: 51 Vpu 27 ConAE:(I) 0.056 0.068 0.046 0.079 0.18

Vpu 30 ConAE:(K) 0.001 0.001 0.029 0.006 0.001

Vpu 46 ConAE:(R) 0.04 0.042 0.025 0.067 0.101

1HXB2 numbering
2The sieve effect was detected for the CRF01_AE consensus sequence. The corresponding vaccine amino acids are given after the colon. They are in

parentheses if the effect was “vMismatch” (with greater divergence from the vaccine AA among placebo recipients).
3The p-values for Env 777 and Pol 497 were not calculable for the DVE method because one of the treatment groups (the vaccine-recipient group)

exhibited no variation at these sites.

doi:10.1371/journal.pcbi.1003973.t002
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amino acids that could be the target of a CTL response, but does so without incorporating sub-
ject-specific HLA information. For a given pair of 9-mers the similarity score was the sum of
HIVb similarity scores [16] over the nine sites. We compared the distribution of these scores
for all of the individual sequences between the infected vaccine group and the infected placebo
group. S5 Table lists 9-mers that had significantly different similarity to a vaccine immunogen
sequence 9-mer across treatment groups (38 9-mers) and S6 Table lists 9-mers outside of the
vaccine immunogen regions that significantly differed versus CON-AE (82 9-mers). Thirty
9-mers in Tat (involving sites 1–72) and one 9-mer in Vpu (sites 30–38) passed the pre-
specified 20% q-value multiplicity adjustment threshold. The significant 9-mers in Tat com-
prised seven distinct contiguous regions ranging in length from 9 to 25 AA. In four of these
seven regions there was a signature site that could explain the 9-mer scanning results (with
concordance of “vMatch” or “vMismatch” sieve effects) while in three of the regions at least
one of the 9-mers did not overlap a signature site.

No clear evidence that vaccine efficacy declined with genetic distances
to antibody-relevant regions of the immunogens, and increased
evidence for some vaccine efficacy
We sought to test the hypothesis that vaccine efficacy declined as a function of the distance
between the HIV-1 breakthrough viruses and the immunogen sequences. The SmoothMarks
method [19,20] (S2 Text) evaluates VE as a continuous function of each of several distances be-
tween themindist sequences and each immunogen sequence. In addition to distances corre-
sponding to all gp120 sites, we considered four of the pre-specified immunologically-relevant
subsets of gp120 amino acid sites: contactsites, contactsites-augmented, hotspots, EPIMAP
(Table 5). For all of these analyses the first 41 sites of Env were excluded, because they were not
present in CM244 and MN and the first approximately 30 sites corresponded to the signal pep-
tide, which is cleaved from the mature protein. S1 Fig. shows boxplots of the genetic distances
for the vaccine and placebo groups for the five sets of sites against the two CRF01_AE vaccine
sequences (92TH023 and CM244), computed using the HIVb substitution matrix. These dis-
tances are tightly correlated with Hamming distances (percent amino acid mismatch), with
Spearman rank correlations ranging between 0.91 and 0.95 across the 10 distances. The distances
are approximately equal when measured to the 92TH023 and CM244 reference sequences, and
all of the distances except hotspots are approximately equal across the sets, whereas the hotspots
distances tend to be lower. The median (range) number of amino acid mismatches to the refer-
ence sequences are 13.4 (4.3–24.6) per 100 sites for all of the distances except the hotspots dis-
tances, and are 9.2 (3.6–14.8) per 100 sites for the hotspots distances. The likely reason for the
closer hotspots distances is that the linear peptides used to measure antibody binding reactivity
included 7 distinct HIV-1 subtypes, indicating that hotspots sites are sites with cross-subtype-re-
activity, and such sites are expected to be relatively conserved because the vaccine can more
readily induce cross-reactive antibodies to more conserved peptides. While the hypothesis testing
analyses presented next are of main interest given they assess vaccine efficacy directly, we note
that the distances between HIV-1 breakthrough and immunogen sequences did not significantly
differ between infected vaccine recipients and infected placebo recipients.

Figure 3. Vaccine protein signature sites AA distributions. For the vaccine protein signature sites shown in Fig. 2, Fig. 3 shows distributions of amino
acids relative to the vaccine sequences for vaccine versus placebo recipient sequences: Each subject is represented by a bar. Bars all have equal height.
The vaccine sequence AA residue, in black, is shown above the midline. Within a bar, colors depict the fraction of the subject’s sequences with that AA
residue (or insertion or deletion, indicated by a “−“). The widths of the bars are scaled so that the total width of the vaccine-recipient part of the plot is the same
as for the placebo-recipient part.

doi:10.1371/journal.pcbi.1003973.g003
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Vaccine efficacy was estimated as a function of genetic distance v for each of the ten dis-
tances (Fig. 6 for contactsites, S2 Fig. for all ten distances). A similar analysis of a subset of
these antibody contact sites was previously reported in Gilbert and Sun [20], using a set of
monoclonal antibody contact sites that was current through 2011; here we analyzed distances
of Ab contact sites based on information that is up-to-date as of August 2014. The tests for dis-
tance-variability of vaccine efficacy were all non-significant (p-values> 0.20). These results
support no strong sieve effects but cannot rule out moderate sieve effects, as power calculations
showed that for the setting of the RV144 trial, the SmoothMarks method has only 50% power
to detect VE declining from 67% to 0%. However, these distance-based analyses contribute ad-
ditional evidence supporting the hypothesis that the vaccine regimen conferred some protec-
tion. In particular, overall vaccine efficacy against CRF01_AE HIV-1 ignoring the genetic
distances resulted in a p-value for positive VE of 0.026, whereas the tests of Gilbert and Sun
[20] for positive vaccine efficacy against at least one HIV-1 genotype (10 tests) gave p-values
ranging from 0.006 to 0.024, with median p = 0.013. This shows that accounting for the genetic
distances increased the evidence for positive vaccine efficacy against CRF01_AE HIV-1.

Combined impact of the Env-gp120 signature sites on vaccine efficacy
To complement the site-scanning sieve analysis that identified individual Env-gp120 signature
sites as potential discriminators of vaccine efficacy, we combined the signature sites into a glob-
al distance and assessed how the vaccine efficacy varied with this distance. In particular, the
global sieve analysis above was repeated for the distances calculated over just the 10 identified
Env-gp120 signature sites (listed in Table 1), excluding Env 6 and Env 19 because they are not
in the CM244 and MN inserts and they are part of the signal peptide. Because 5 of the 10 signa-
ture sites had “vMatch” sieve effects and 5 had “vMismatch” sieve effects, we do not expect the
vaccine efficacy curves to exhibit the “classical” sieve effect shape with vaccine efficacy highest
for smallest distances and waning to zero for the greatest distances; rather the vaccine efficacy
curves could take many shapes depending on the joint distribution/covariation of the amino
acids at the 10 sites, and the curves provide new information about the aggregate impact of the
non-contiguous decapeptides on vaccine efficacy.

S3 Fig. shows the distributions of the signature-site distances to 92TH023 and CM244 together
with the estimated vaccine efficacy curves. For 92TH023, the estimated curve is approximately
horizontal, indicating that the 5 “vMatch” and 5 “vMismatch” signature sites have a “balancing”
effect, with the net impact being that the combined decapeptide patterns do not associate with
vaccine efficacy. However, for CM244 the estimated VE peaks against HIV-1s with an intermedi-
ate number of mismatches to the vaccine (zenith at estimated VE = 59% for genetic distance 0.28,
an average of 2 mismatched residues) and declines to zero against HIV-1s with increasing distance
(estimated VE = 0% for genetic distance 0.53, an average of 5 mismatched residues). To help in-
terpret this relationship, S4 Fig. shows the signature site decapeptide AA patterns for each of the
109 infected subjects, aligned to the vaccine efficacy curve for reference. S4 Fig. indicates that the
“vMismatch” signature site Env 413 has the greatest influence to create the increasing VE curve in
the distance region 0.066 to 0.166 and the vMismatch signature sites Env413, Env 268, and Env
317 have the greatest influence to create the declining VE curve in the distance region 0.28 to 0.53.

Figure 4. Non-vaccine protein signature sites AA distributions: First half. For the first half of the non-vaccine protein signature sites shown in Fig. 2, Fig.
4 shows distributions of amino acids relative to the vaccine sequences for vaccine versus placebo recipient sequences: Each subject is represented by a bar.
Bars all have equal height. The vaccine sequence AA residue, in black, is shown above the midline. Within a bar, colors depict the fraction of the subject’s
sequences with that AA residue (or insertion or deletion, indicated by a “−“). The widths of the bars are scaled so that the total width of the vaccine-recipient
part of the plot is the same as for the placebo-recipient part.

doi:10.1371/journal.pcbi.1003973.g004
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Physicochemical property differences in Env-gp120, Pro, Gag and
non-vaccine proteins
To search for functional sequence differences in the vaccine and placebo groups, we evaluated
treatment-group differences in the physicochemical properties of amino acids in themindist
sequences. Unlike the methods with results presented in Table 1 and Table 2, which com-
pare divergences of breakthrough AA from a vaccine AA between treatment groups, the
physicochemical properties (PCP) method compares the sequences between groups directly,
without regard for the vaccine reference sequences, on a per-property basis. We evaluated each
of two different property scales: (1) the vector of ten indicator values determined by Taylor

Figure 5. Non-vaccine protein signature sites AA distributions: Second half. For the second half of the non-vaccine protein signature sites shown in
Fig. 2, Fig. 5 shows distributions of amino acids relative to the vaccine sequences for vaccine versus placebo recipient sequences: Each subject is
represented by a bar. Bars all have equal height. The vaccine sequence AA residue, in black, is shown above the midline. Within a bar, colors depict the
fraction of the subject’s sequences with that AA residue (or insertion or deletion, indicated by a “−“). The widths of the bars are scaled so that the total width of
the vaccine-recipient part of the plot is the same as for the placebo-recipient part.

doi:10.1371/journal.pcbi.1003973.g005

Table 3. Vaccine efficacy at the signature sites in the vaccine proteins.

Position1 Ref:AA2 DVE p-value VE vs Match
p-value

VE3 vs Match Estimate
(95% CI)

VE vs Mismatch
p-value

VE3 vs Mismatch Estimate
(95% CI)

Env 6 92TH:(T) 0.027 0.097 −71% (−94% to 28%) 0.005 44% (16% to 63%)

Env 19 92TH:T 0.032 0.005 43% (15% to 62%) 0.06 −83% (−98% to 28%)

Env 169 BothAE:K 0.039 0.004 48% (18% to 66%) 0.4 −30% (−70% to 39%)

Env 181 All:(I) 0.027 0.377 17% (−21% to 46%) 0.003 78% (35% to 93%)

Env 268 All:(E) 0.07 0.355 19% (−21% to 48%) 0.007 65% (23% to 85%)

Env 317 All:(F) 0.04 0.208 23% (−14% to 49%) 0.004 85% (32% to 97%)

Env 343 BothAE:K;
MN:R

K:0.887;
R:0.146

K:0.128;
R:0.034

K:37% (−13% to 66%); R:78%
(−2% to 95%)

K:0.103; R:0.102 K:34% (−8% to 60%); R:28%
(−7% to 52%)

Env 353 All:F 0.095 0.009 41% (12% to 60%) 0.26 −60% (−92% to 52%)

Env 369 BothAE:L;
MN:(P)

L:0.026;
P:0.027

P:0.200; L:0.003 P:−50% (−83% to 32%); L:47%
(18% to 65%)

P:0.004; L:0.229 P:46% (18% to 65%); L:−45%
(−80% to 33%)

Env 379 BothAE:(R) ND4 0.108 27% (−7% to 51%) 0.008 100% (−100% to 100%)

Env 413 92TH:(T) 0.08 0.231 23% (−15% to 49%) 0.01 71% (21% to 89%)

Env 424 All:I 0.013 0.002 49% (21% to 67%) 0.183 −46% (−78% to 26%)

Gag 11 LAI:G 0.032 0.005 43% (15% to 62%) 0.059 −83% (−98% to 28%)

Gag 30 LAI:K 0.065 0.006 64% (23% to 83%) 0.408 17% (−23% to 48%)

Gag 482 LAI:(E) 0.04 0.208 23% (−14% to 49%) 0.004 85% (32% to 97%)

Pol 12 LAI:K 0.026 0.003 47% (18% to 65%) 0.229 −45% (−80% to 32%)

Pol 44 LAI:A 0.051 0.007 42% (14% to 62%) 0.159 −67% (−93% to 40%)

Pol 51 LAI:(T) 0.014 0.393 16% (−21% to 44%) <0.001 94% (53% to 99%)

Pol 66 LAI:(L) 0.056 0.204 23% (−14% to 49%) 0.007 79% (26% to 94%)

1HXB2 numbering
2The sieve effect was detected for the indicated vaccine sequence; for Env positions, these are 92TH023, CM244, both of the CRF01_AE sequences, the

subtype B sequence MN, or all three. The corresponding vaccine amino acids are given after the colon. They are in parentheses if the effect was

“vMismatch” (with greater divergence from vaccine AA among placebo recipients).
3Symmetrized estimated vaccine efficacies (for hazard ratio (HR) above 1, symmetrized VE = [1 − hazard ratio (HR)]×100%; for HR below 1, symmetrized

VE = − [1 − (1/(HR))]×100%) to prevent infection with specific HIV-1 genotypes.
4The p-value for Env 379 was not calculable for the DVE method because one of the treatment groups (the vaccine-recipient group) exhibited no variation

at the site.

doi:10.1371/journal.pcbi.1003973.t003

Comprehensive Sieve Analysis of RV144

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1003973 February 3, 2015 13 / 37



Table 4. Vaccine efficacy at the signature sites in the non-vaccine proteins.

Position1 Ref:AA2 DVE
p-value

VE vs Match
p-value

VE3 vs Match Estimate
(95% CI)

VE vs Mismatch
p-value

VE3 vs Mismatch Estimate
(95% CI)

Env 640 ConAE:
(N)

0.03 0.786 7% (−35% to 43%) 0.002 62% (28% to 80%)

Env 732 ConAE:R 0.006 <0.001 61% (33% to 77%) 0.557 −16% (−54% to 34%)

Env 777 ConAE:(I) ND3 0.13 26% (−9% to 50%) 0.005 100% (−100% to 100%)

Env 829 ConAE:V 0.048 0.005 45% (16% to 64%) 0.321 −40% (−78% to 40%)

Nef 19 ConAE:R 0.048 0.005 45% (16% to 64%) 0.321 −40% (−78% to 40%)

Nef 27 ConAE:
(T)

0.012 0.39 −26% (−63% to 32%) 0.001 54% (25% to 72%)

Nef 56 ConAE:
(V)

0.02 0.378 17% (−21% to 46%) 0.002 79% (38% to 93%)

Nef 63 ConAE:E 0.045 0.004 46% (17% to 65%) 0.35 −36% (−75% to 39%)

Nef 120 ConAE:
(F)

0.04 0.208 23% (−14% to 49%) 0.004 85% (32% to 97%)

Nef 125 ConAE:Q 0.002 <0.001 68% (39% to 83%) 0.603 −13% (−49% to 32%)

Nef 156 ConAE:
(D)

0.011 0.988 0% (−39% to 39%) 0.001 66% (34% to 82%)

Pol 297 ConAE:I 0.02 0.004 45% (17% to 63%) 0.034 −86% (−98% to 14%)

Pol 328 ConAE:I 0.502 0.021 42% (7% to 64%) 0.472 23% (−36% to 61%)

Pol 497 ConAE:
(Y)

ND4 0.13 26% (−9% to 50%) 0.005 100% (−100% to 100%)

Pol 590 ConAE:V 0.076 0.006 45% (15% to 64%) 0.496 −27% (−71% to 45%)

Pol 816 ConAE:L 0.045 0.004 46% (17% to 65%) 0.351 −36% (−75% to 39%)

Rev 7 ConAE:S 0.047 0.004 45% (16% to 63%) 0.209 −57% (−89% to 40%)

Rev 39 ConAE:K 0.01 0.001 58% (30% to 75%) 0.537 −18% (−56% to 35%)

Rev 55 ConAE:I 0.019 0.002 50% (22% to 68%) 0.322 −33% (−70% to 33%)

Rev 92 ConAE:
(S)

0.078 0.126 27% (−9% to 51%) 0.011 89% (13% to 99%)

Tat 3 ConAE:
(L)

0.029 0.456 −25% (−64% to 37%) 0.003 50% (21% to 69%)

Tat 17 ConAE:Q 0.024 0.003 48% (19% to 66%) 0.255 −41% (−77% to 33%)

Tat 36 ConAE:
(L)

0.029 0.283 20% (−17% to 47%) 0.003 81% (36% to 95%)

Tat 53 ConAE:K 0.091 0.007 42% (13% to 61%) 0.182 −75% (−97% to 56%)

Tat 64 ConAE:D 0.027 0.005 44% (16% to 63%) 0.097 −71% (−94% to 28%)

Tat 81 ConAE:P 0.027 0.004 45% (17% to 64%) 0.169 −55% (−86% to 31%)

Tat 101 ConAE:D 0.032 0.003 49% (20% to 68%) 0.439 −26% (−66% to 38%)

Vif 22 ConAE:N 0.046 0.005 46% (16% to 65%) 0.377 −33% (−73% to 39%)

Vif 31 ConAE:(I) 0.003 0.373 −24% (−58% to 28%) <0.001 62% (34% to 78%)

Vif 93 ConAE:K 0.47 0.132 55% (−23% to 84%) 0.075 31% (−4% to 54%)

Vif 130 ConAE:R 0.095 0.009 41% (12% to 60%) 0.259 −60% (−92% to 52%)

Vif 134 ConAE:E 0.027 0.004 45% (16% to 63%) 0.134 −62% (−90% to 30%)

Vif 190 ConAE:N 0.092 0.008 43% (13% to 62%) 0.41 −37% (−79% to 48%)

Vpr 8 ConAE:Q 0.032 0.005 43% (15% to 62%) 0.06 −83% (−98% to 28%)

Vpu 27 ConAE:(I) 0.056 0.176 24% (−12% to 50%) 0.007 83% (26% to 96%)

Vpu 30 ConAE:
(K)

0.001 0.424 −20% (−53% to 27%) <0.001 69% (43% to 83%)

(Continued)
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[21], indicating the presence or absence of ten particular physicochemical properties for each
amino acid; and (2) the vector of five “z scales” for each amino acid, principal components of
observed physicochemical properties used to determine quantitative structure-activity relation-
ships between peptides [22–24]. We scanned the sequences at individual sites (S7 and S8 Table)
as well as at contiguous 3-mers (S9 and S10 Table) and 9-mers (S11 and S12 Table) across the
HIV-1 proteome, comparing counts of each of the ten Taylor properties and five z-scale com-
ponents across treatment groups (complete results are included in S1 Dataset). The results of
this method can help interpret the physicochemical and structural differences between the
vaccine and placebo viral populations.

Of the 19 vaccine immunogen signature sites shown in Table 1, only Pol 51 was also found
to have site-specific significant PCP results (S3 Table), and of the 37 out-of-immunogen signa-
ture sites shown in Table 2, eight coincided with site-specific PCP results (S4 Table). A total of
16 individual sites were significant at the p� 0.05 level (S7 and S8 Table), two of which with
q-values below 0.2: Pol 51 as noted above (property z3, q = 0.19) and Vpu 30 (hydrophobicity,
q = 0.10). These two sites were also the only locations with q-values below 20% in the scanning

Table 4. (Continued)

Position1 Ref:AA2 DVE
p-value

VE vs Match
p-value

VE3 vs Match Estimate
(95% CI)

VE vs Mismatch
p-value

VE3 vs Mismatch Estimate
(95% CI)

Vpu 46 ConAE:
(R)

0.04 0.32 19% (−19% to 47%) 0.004 74% (30% to 90%)

1HXB2 numbering
2The sieve effect was detected for the CRF01_AE consensus sequence. The corresponding vaccine amino acids are given after the colon. They are in

parentheses if the effect was “vMismatch” (with greater divergence from the vaccine AA among placebo recipients).
3Symmetrized estimated vaccine efficacies (for hazard ratio (HR) above 1, symmetrized VE = [1 − hazard ratio (HR)]×100%; for HR below 1, symmetrized

VE = − [1 − (1/(HR))]×100%) to prevent infection with specific HIV-1 genotypes.
4The p-values for Env 777 and Pol 497 were not calculable for the DVE method because one of the treatment groups (the vaccine-recipient group)

exhibited no variation at these sites.

doi:10.1371/journal.pcbi.1003973.t004

Table 5. Immunologically relevant subsets of sites.

Subset No.
Sites

Definition

Env-immunogen 248 Alignable sites in a vaccine sequence, with sufficient variability

Gag-immunogen 143 Alignable sites in LAI sequence, with sufficient variability

Pol-immunogen 62 Alignable sites in LAI sequence, with sufficient variability

Contactsites 99 Contact residues for monoclonal antibodies [54,55]

nAb-sites 37 Additional sites known to affect antibody neutralization from published
literature [54–56]

contactsites-
augmented

112 Union of contactsites and nAb-sites

Hotspots 96 Antibody binding reactivity for RV144 vaccine recipients based on
peptide microarrays [6]

EPIMAP 37 Structural biology predictions of conformational antibody epitope
contact sites [7]

Focus 40 Intersection of hotspots and contact sites-augmented

For each site set we provide a brief description with references, as well as numbers of sites in each set that

were alignable, sufficiently variable, and that corresponded to a vaccine immunogen sequence locus.

doi:10.1371/journal.pcbi.1003973.t005
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of 3-mer peptides (Peptide starting at Pol 49: property z5, q = 0.024; Peptides starting at Vpu
28, 29 and 30: hydrophobicity, q = 0.050). Additional sites had q-values below 20% when scan-
ning 9-mer peptides, all of which were located in the non-immunogen proteins, concordant
with the KmerScan 9-mer results. A negatively charged region in the vicinity of Nef 150 differed
between the treatment groups (q = 0.059) as did component z4 in the vicinity of Tat 73 (q = 0.19).
In addition, hydrophobic residues in the vicinity of Vpu 30 spanning positions Vpu 25 through
Vpu 30 differed between the treatment groups (the q-values in this region ranged from a mini-
mum of q = 0.021 for the 9-mer starting at Vpu 25 to a maximum of q = 0.23 for the 9-mer
starting at position Vpu 29).

To further elucidate the role of selection for particular physicochemical properties, we con-
ducted a codon-based phylogenetic analysis that detected Env-gp120 sites at which natural
selection has operated to preserve or change one or more of five physicochemical properties:
chemical composition, polarity, volume, iso-electric point or hydropathy [25,26]. To do so, we
modeled the rate of nonsynonymous substitution from codon x to codon y, β(x, y) at a site as a
function of the difference in properties between x and y: β(x, y) = exp(−∑pcpdp[x, y]), where p
indexes the five properties. If cp is significantly different from 0 for a particular property p at a
site (measured by a likelihood ratio test, with 5-fold multiple testing correction at each site
using the Holm-Bonferroni procedure) along the vaccine-group lineages, then we conclude
that the property is preserved (cp >0) or driven to change (cp <0) by natural selection. Fig. 7
shows the sites found to have selection acting on one or more properties, along with signature
sites on a crystal structure of Julien et al.[27], and S5 Fig. provides an alternate viewing angle.
Notably, at several sites almost all physicochemical properties tested were under selection, in-
cluding Env 85–87, 353, 365, and 425 (S13 Table and S1 Dataset).

Immunological relevance of signature sites found in Env-gp120
Many of the signature sites described above are located in genomic regions of known functional
or immunological relevance. Specifically, those in HIV-1 Env-gp120 include sites in the anti-
body binding regions at the crowns of the V2 (Sites 169, 181) and V3 (Site 317) variable loops,
sites in the co-receptor binding site (Sites 317, 353), and in the CD4 binding loop motif (Site
369). We considered six pre-specified subsets of Env sites known to be immunologically rele-
vant (Table 5). We found that the Env-gp120 signature sites were significantly more likely to
be found in a subset of Env sites known for their relevance to neutralization potency (nAb-sites
set) (Fisher’s exact test p = 0.0035). Signature sites were also more likely to be part of the focus
set that includes only those sites that were identified as hotspots of antibody binding reactivity
in RV144 and are either in the known antibody contactsites set or are in the nAb-sites set
(p = 0.0049). Results for all six site sets are presented in Table 6.

Using tests for codon selection that identify important biochemical properties as discussed
above, as well as a method that estimates the ratio of non-synonymous and synonymous sub-
stitution rates (dN/dS) separately in internal and terminal branches of the tree connecting
these sequences [25], we found 91 sites in gp160 that were under differential selective pressure
between the vaccine and the placebo groups (54 among the 511 sites of gp120 and 37 among
the 345 sites of gp41, S13 Table and S1 Dataset), including signature sites Env 6 and Env 353.

Figure 6. Estimated vaccine efficacy as a function of distance to contactsites of the CRF01_AE vaccine sequences. SmoothMarks [20] estimates of
vaccine efficacy (VE) against acquisition with an HIV-1 CRF01_AE virus with genetic distance v from the 92TH023 or CM244 vaccine sequences, with 95%
confidence intervals, using Envmindist amino acid sequences and computed with the HIVb PAM substitution matrix[16] across the contactsites. For each
panel, the first p-value is for testing whether there is any VE against any virus genotype, and the second p-value is for testing whether VE declines with the
distance v. The PAM distances are directly proportional to Hamming distances, where a PAM distance of v approximately equals a Hamming distance of
0.85×v. Given that contactsites contains 176 residues, the span of contactsites distances 0.08 to 0.25 correspond to 13–39 amino acid mismatches.

doi:10.1371/journal.pcbi.1003973.g006
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Interestingly, a high proportion of these sites were located in V3 (8/54, significantly more than
the proportion of sites located outside of V3: Fisherʼs exact test two-sided p-value = 0.049).

Covariation was assessed within proteins between pairs of sites, both pooling over the vac-
cine and placebo groups and separately, together with a test for whether the degree of covaria-
tion differed for vaccine versus placebo, which could imply vaccine-induced functional or

Figure 7. Mapping of signature sites and sites under selection on an Env trimer structure. Trimer (PDB id: 4NCO [27]) is shown in surface
representation, with gp120 in grey and gp41 in dark grey. (a-e) Panels correspond to the five physico-chemical properties analyzed for evidence for property
importance: (a) chemical composition, (b) polarity, (c) volume, (d) isoelectric point or (e) hydropathy [25]. Signature sites identified in Env-gp120 are colored
in green, and sites that were under selection are colored from pink to red (corresponding p-values from 0.05 to< 0.0001). (f) Visualization of the major sites of
vulnerability on the HIV-1 Env.

doi:10.1371/journal.pcbi.1003973.g007

Table 6. Tests for enrichment of signature sites in biologically-defined subsets compared to all other sites.

Subset Signature sites found in the given subset, Fisher’s exact test

contactsites 5 inside (5 of 99); 7 outside (7 of 354), p = 0.15

nAb-sites 6 inside (6 of 37); 6 outside (6 of 416), p = 0.0001

contactsites-augmented 9 inside (9 of 112); 3 outside (3 of 341), p = 0.0003

Hotspots 7 inside (7 of 96); 5 outside (5 of 357), p = 0.0049

EPIMAP 3 inside (3 of 37); 9 outside (9 of 416), p = 0.07

Focus 5 inside (5 of 40); 7 outside (7 of 413), p = 0.0021

For each of the six pre-specified site sets, we compared the number of the 12 vaccine immunogen

signature sites in Env that are in the set to the number that are outside of the set, to test whether

membership in the set is independent of the “signature site” designation. For example, 7 of the 12 signature

sites are in the Hotpots site set, while 89 of the 441 tested non-signature sites are in that set.

doi:10.1371/journal.pcbi.1003973.t006
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structural constraints (S3 Text and S2 Dataset). Covariation was generally weak, and there was
no evidence that covarying site pairs were restricted to the vaccine group. Among gp160 resi-
dues, there were 630 covarying site pairs with p< 0.05 but only two had a q-value below 0.2:
between sites 276 and 343 (q = 0.10), and between sites 65 and 181 (q = 0.12). Both sites 181
and 343 were identified above as signature sites. An interesting pattern was seen when we con-
sidered how many associations (defined as treatment-arm-pooled covariation p< 0.05) linked
each residue. While most Env sites (n = 584) showed no association with any other site, 22 sites
interacted with more than five other sites (19, 169, 181, 276, 307, 308, 317, 332, 343, 347, 353,
360, 365, 369, 379, 412, 413, 424, 465, 564, 658, 822). Ten of these 22 sites were also signature
sites, and there is evidence for a hub of covariation in V2 (S3 Text).

Importantly, the signature sites identified showed significantly more associations with other
signature sites (mean = 32.13) than with non-signature sites (mean = 0.88) (p< 0.0001). This
difference was also significant if we considered only gp120 (p< 0.0001). Interestingly, there
were more associations between residues in gp120 (mean = 2.03), which corresponded to the
vaccine sequence, than in gp41, which was not included in the vaccine (mean = 0.63) (p = 0.10;
p = 0.001 if zero values are excluded).

Evidence of T-cell sieve effects at class I HLA-associated binding Env
epitopes
We have developed multiple methods to evaluate potential T cell-driven sieve effects based on
comparisons of computationally-predicted epitopes in sequences from vaccine and placebo
recipients. Results are shown in S14 and S15 Tables. For all methods, we begin by predicting
T cell epitopes in the vaccine and breakthrough sequences using the HLA haplotypes of the in-
fected trial participants.

First we evaluated each viral protein using the novel EscapeCount method (S4 Text), which
counts the number of high-affinity predicted epitopes in the vaccine sequence that bind with
much lower affinity to the corresponding k-mer in the subject’smindist sequence. Since the
power of this method is improved when there is more variability in the predicted epitope
binding affinities, for class I predictions we used the adaptive double threading (ADT) epitope
prediction software [28] rather than the more well-known NetMHCpan software [29] that
we used in this and previous applications of the EpitopeDistance method (discussed below).
Using the EscapeCount method, we found significant evidence of greater class I binding escape
among placebo recipients in Env versus the CM244 reference sequence than among vaccine
recipients (p = 0.031).

We also applied the EscapeCount method to evaluate individual k-mers for evidence of
greater class I (9-mers) and class II (15-mers) binding escape in vaccine versus placebo groups
(S14 and S15 Tables). Twelve 9-mers (ten in Env and two in Gag) showed an unadjusted
p-value<0.05 for differential binding escape, though none of these surpassed the q-value
threshold of 20% (0.24< q-value< 0.93). Seven 9-mers with a q-value< 0.5 were found in
Env-gp120 (start positions: 5, 128, 299, 328, 335, 363, 445). In S6 Fig. we show as an example
the V3 loop 9-mer “PSNNTRTSI” (PI9, HXB2 start position 299) at which there was a greater
number of HLA binding escapes in vaccine versus placebo recipients (p = 0.0084). Vaccine to
placebo differences are concentrated in the 9th position, site 307, which forms part of the core
of the V3 loop. Although site 307 did not qualify as a signature site, its DVE p-value was 0.065
and its EGWJ p-value was significant at 0.029. This site forms (with Env 308 and 317) the core
of the V3 loop and is a well-studied target of antibody binding [6,30]. Since also many of the
infected RV144 subjects had HLA types capable of binding the CRF01_AE vaccine sequence
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epitope, and the variation at site 307 abrogated class I HLA binding in vaccine but not placebo
recipients, the V3 sieve effect may be partially due to T cell mediated effects.

As the second of three methods, we applied the PercentEpitopeMismatch procedure, which
was applied previously to the HVTN 502/Step sieve analysis [8] (S14 and S15 Tables). This
method complements the EscapeCount method by considering any class I epitope that is pre-
dicted (for a given subjects’HLA type) in the vaccine sequence, regardless of whether it is also
predicted in the breakthrough sequence, and regardless of the number of changes between the
breakthrough and vaccine k-mers. The percent of vaccine-predicted epitopes for which there is
any change in the corresponding breakthrough sequence was computed for all of a subject’s
sequences and these were compared across treatment groups as previously described [8]
(S5 Text). Using the PercentEpitopeMismatch method, we found no evidence of T cell escape
in insert-relevant genes when using the NetMHCpan- or ADT-predicted epitopes.

For the third method we applied the EpitopeDistance procedure that was also previously
applied for the HVTN 502/Step trial [8]. This method compares the predicted epitopes in each
subject’s breakthrough sequences to HLA-matched epitopes estimated in the vaccine sequence
(S6 Text). In summary, we found no concordant evidence for a T cell-driven sieve effect across
Gag, Pro and Env (S14 Table) or the non-vaccine proteins (S15 Table). However, some signifi-
cant results were found in the V2 region of Env when binding affinities were considered
(CM244 p = 0.022; 92TH023 p = 0.047), although there was only a trend suggesting a differ-
ence between the vaccine and placebo groups when evolutionary distances were considered
(CM244 p = 0.058; 92TH023 p = 0.23).

Vaccine-recipient breakthrough Gag sequences trend to greater
phylogenetic divergence and diversity than placebo-recipient Gag
sequences
To analyze sequences at the gene/protein level, we assessed whether sequences from vaccine
recipients were (a) more phylogenetically diverse or (b) more divergent from the vaccine insert
sequences than sequences found in placebo recipients. For the phylogenetic diversity, we con-
structed maximum-likelihood phylogenetic trees using all amino acid sequences available for
each subject; we then subset the leaves of these trees to retain only themindist sequences. For
each tree, we then computed the differential amino acid phylogenetic diversity (PD) [31], de-
fined as the difference in the total branch length of two subtrees: one corresponding to placebo
recipients and the vaccine insert, and the complementary sub-tree corresponding to vaccine
recipients and the vaccine insert, and compared this to an estimated null distribution as de-
scribed in Methods. We found trending evidence of greater phylogenetic diversity in Gag for
the vaccine group compared to the placebo group (p = 0.089) (S17 Table).

In addition to the phylogenetic diversity, we also calculated the phylogenetic divergence
from the vaccine sequence based on the samemindist trees (S7 Fig. shows the distributions of
these distances to the CM244 reference sequence for each tree). We compared these values
across treatment groups for each tree, and found trending evidence of greater divergence
from the LAI sequence in Pro among placebo-recipient sequences (p = 0.059) (S18 Table), a
“vMismatch” result. We repeated this analysis using the median distance over the multiple
sequences available from each subject (n = 3–14) rather than themindist sequence distance (as
previously described [8]), and found that the results were consistent. When applying a variant
of this analysis using nucleotide sequence trees, we found a trend toward greater divergence of
vaccine recipient Gag sequences to the LAI insert sequence (p = 0.072) and no significant or
trending result in Pro.
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Insert-independent alignment score differentiates vaccine and placebo
recipient breakthrough sequences
In addition to the phylogenetic analyses, we also evaluated whether the pairwise alignment
similarity scores between all vaccine recipient sequences versus all placebo recipient sequences
were different than what would be expected under the null hypothesis that the vaccine and
placebo sequences came from the same distribution. We computed the Quasi-Earth Mover’s
Distance (QEMD) using BLOSUM90 [32] pairwise alignment scores and compared it to the
null distribution of the QEMD computed based on repeatedly permuting treatment assign-
ments; this approach does not use the vaccine reference sequences and does not depend on an
estimated phylogeny. While the PD analysis evaluates the across-group difference between
within-group phylogenetic diversity, the QEMD analysis evaluates the between-group se-
quence variation. We found significantly less QEMD similarity in Gag sequences than would
be expected under the null hypothesis (p = 0.041), consistent with the trend toward a sieve
effect found via the phylogenetic analysis. We did not find significant evidence for QEMD
dissimilarity for Pol (p = 0.16) or Env (p = 0.54).

Variable loop lengths, numbers of cysteine residues, and frequencies of
potential N-linked glycosylation sites are similar in vaccine and placebo
recipient Envelope sequences
We compared variable loop lengths, numbers of cysteines, and frequencies of potential N-linked
glycosylation sites (PNG sites) between vaccine and placebo recipient sequences. There were
no significant differences in themindist variable loop lengths in Env-gp120 between vaccine
and placebo recipients in any of the five variable loops (Wilcoxon rank sum p-values> 0.20).
Next, based onmindist sequences we compared the per-subject median number of cysteines in
gp120 between the treatment groups; this analysis was motivated by the finding in Vax004 that
20% of trial participants had atypical cysteine variants [33]. The distributions of per-subject
median numbers of cysteines were similar in the two treatment groups (average number of
cysteines = 19.45 in vaccine recipients and 19.73 in placebo recipients).

Next, we identified PNG sites by searching each breakthrough sequence for tripeptide mo-
tifs of the form N-X-S or N-X-T, where X is any amino acid other than proline [34]. We com-
pared the numbers of PNG sites between the treatment groups using themindist sequences as
well as with all sequences using the multiple outputation (MO) method [35], and found no sig-
nificant or trending difference. We also tested for a difference across treatment groups in the
distribution of PNG sites at each of the sites at which any subject had a PNG site, restricting to
sites with sufficient diversity (defined as at least 4 sequences with a PNG site and at least 4 se-
quences without a PNG site). Of the 75 sites tested, only one had an unadjusted Fisher’s exact
test p� 0.05 (site 186s, p = 0.04). S8 Fig. shows the percentage ofmindist sequences with a
PNG site at each alignment position that had one or more PNG site.

Discussion
Sieve analysis is a powerful tool for the evaluation of breakthrough infections in vaccine studies
and complements related studies of immune correlates of infection risk among vaccine recipi-
ents. Sieve analysis leverages the randomized design of the trial by comparing features of infec-
tions across treatment groups, and can further suggest testable hypotheses about the targets of
vaccine-induced immunity. By comparing HIV-1 breakthrough viruses that were isolated from
vaccine and placebo recipients in the RV144 trial, we identified HIV-1 genetic determinants
potentially associated with (unmeasured) vaccine-induced immune responses. Scanning across
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the HIV-1 proteome, we identified 19 signature sites in the vaccine proteins Env-gp120, Gag,
and Pro that differed between the vaccine and placebo groups. In addition, we identified 37 sig-
nature sites in parts of the proteome that were not included in the vaccine. Four pairs of signa-
ture sites overlapped in different proteins across reading frames, resulting in a total of 52
unique sites across the proteome. Because our exploratory study was designed to identify all
potential sieve effects, we reported all sites with unadjusted p-values below 0.05. Of the signature
sites identified in vaccine immunogen regions, only Pol 51 passed the q-value� 0.20 threshold.

Sieve analysis, by comparing breakthrough HIV-1 viruses across treatment groups, can test
some of the specific hypotheses generated by correlates of risk analyses, such as the Haynes et
al. [3] study that identified anti-V2 antibodies as a correlate of risk. For example, sieve analysis
can test whether the breakthrough infections in the vaccine group are less viable targets for the
vaccine-induced anti-V2 antibodies than the infections in the placebo group. The V1/V2 fo-
cused sieve analysis that identified V2 signature sites 169 and 181 [7] and follow-up studies
[36] lent support to the hypothesis that anti-V1/V2 antibodies were involved in a mechanism
of partial vaccine protection and that these sites are important for antibody binding. Confirm-
ing our previous study [7], the full proteome site-scanning analysis also identified signature
sites 169 and 181, although unlike the previous V1V2-focused analysis results, the exploratory
results reported here did not pass multiplicity correction, partly due to the much larger number
of analyzed sites (8 compared to 248 in Env alone). We hope that additional follow-up experi-
ments will further elucidate the role, if any, of the other newly-identified signatures in the par-
tial protection conferred by the vaccine regimen.

Among all the signature sites, some are worth singling out because they were found by mul-
tiple methods and/or there is biological evidence supporting their potential vaccine-associated
immunological relevance. In particular, Env 19, 169, 181, 317, 413 and 424 appear important
because they are known antibody contact sites or belong to functionally important regions of
the HIV envelope (S3 Table). The finding that Env signatures preferentially map to sites
known to have a role in antibody neutralization or binding supports the hypothesis that the
results are biologically meaningful. For example, the tridimensional structure of Env-gp120
showed that site 169 was in the vicinity of site 317. Env 169 is located at the crown of the V2
loop and was previously identified in the V1/V2-focused sieve analysis [7]. It is contained in a
linear binding antibody epitope hotspot for RV144 vaccine-induced antibodies, and is a known
contact site for neutralizing and binding antibodies. It is also part of a predicted HLA binding
hotspot in the MN vaccine immunogen for both class I and class II alleles. Furthermore, this
position is in the seventh position of a 9-mer that had significant treatment group differential
binding escape versus the subtype B immunogen sequence (MN), a surprising discovery that
motivated further analysis, leading to the finding that the differential vaccine efficacy at Env
169 was significantly associated with the class I HLA allele A�02 [10]. Env 317, identified by all
three of the primary site-specific sieve methods, is in the core of the V3 loop and is part of the
conserved co-receptor binding site. It is also known to be a contact site for neutralizing anti-
bodies (nAb-sites), is part of an antibody hotspot defined using antigen microarrays [6], and is
predicted to be on antibody interfaces using the EPIMAPmethod [7]. It exhibited a “vMis-
match” sieve effect, in that there was greater divergence from the vaccine immunogen AA
among the placebo recipient sequences than among the vaccine recipient sequences. It has
been shown previously that mutations in V2 can interact with V3, and thereby have an impact
on phenotypic changes such as co-receptor usage [37,38]. In addition, mutations in V3 can
modulate the neutralization sensitivity of the conserved V2 epitope that is recognized by
PG9/PG16-like antibodies. Interestingly, some antibodies isolated in RV144 vaccine recipients
mapped to the same V2 region as PG9/PG16-like antibodies, implying that the mutations that
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we identified in V2 and V3 may have a synergistic impact on the neutralization sensitivity of
breakthrough viruses [39].

Signature site Env 413 had the strongest influence on the variation of vaccine efficacy
against HIV-1 as a function of genetic distance to CM244 computed using the Env-gp120 sig-
nature sites, and exhibited a vMismatch sieve effect. Env 413 is close to the CCR5 and 17b
binding sites, and, together with signature site Env 424, it surrounds the binding motif RIKQ
(residues 419–422). Most importantly, Env 413 was linked to the breadth of neutralizing anti-
body responses in a study that compared subjects with strong or weak neutralizing antibody re-
sponses [40]: an increase in breadth was associated with asparagine (N) at position 413. Here
the consensus residue in CRF01_AE was T and the second most frequent residue found at that
site was asparagine (N), which creates a site for potential N-linked glycosylation.

The signature sites identified with the site-scanning methods were characterized by greater
amino acid covariation with other sites; there were more interactions with signature sites than
at other sites as well as more interactions in gp120 (in the vaccine) than in gp41 (not in the
vaccine). When across-protein interactions were considered, vaccine proteins showed greater
connectedness: they covaried with more proteins. We conjecture that a vaccine-induced con-
straint at a highly connected site would have a greater impact on viral fitness than a change at a
weakly connected site.

The differential vaccine efficacy (DVE) analysis allowed us not only to identify sites that
differed between the infected vaccine and infected placebo groups but also to estimate the site-
specific vaccine efficacy against viruses with a matched or mismatched residue to that present
in a vaccine reference sequence at this given site. In Env, the DVE analysis identified six sites
where estimated vaccine efficacy was increased to at least 43% (Env 19) and up to 85% (Env
317) against viruses with a specific residue at that site. Conversely, the vaccine efficacy was
abolished with a different residue at these sites (point estimates ranging from less than zero
percent to 17%). These results suggest that vaccine efficacy can essentially disappear with a sin-
gle mutation. Better evaluating the VE/mutation relationship is critical for our understanding
of vaccine immunity as it pertains to HIV-1. Knowing the genetic diversity of HIV-1, the disap-
pearance of vaccine efficacy with a point mutation raises important questions as to the future
efficacy of a successful vaccine. By analogy with drug-resistance mutations, we can envisage
that the broad usage of a vaccine may lead to the increased frequency of mutations such as
those that we found to be associated with null vaccine efficacy, and that such mutations would
rapidly be selected in the population, hence reducing the vaccine efficacy. This also emphasizes
that it may be necessary to have vaccines with multiple specificities in order to avoid the focus-
ing of immune responses, which may lead to more rapid escape from vaccine-induced immu-
nity, or that it may be important to include only essential protein sequences that cannot be
mutated without impacting viral fitness.

The SmoothMarks sieve analysis did not find significant evidence that vaccine efficacy
varied against HIV-1 genotypes with genotype defined by the genetic distance of breakthrough
viruses to the CRF01_AE vaccine inserts. However, we found evidence of global T-cell based
sieve effects relative to the CM244 and MN Env gp120 vaccine inserts using the EscapeCount
T-cell sieve method. These results are surprising, since CD8+ T-cell response rates of RV144
vaccine recipients were low overall; depending on the sample time point and the assay that was
used, 12–63% of vaccine recipients had a T-cell response to Env peptides, but these responses
were predominantly CD4 responses [1,41,42]. One explanation is that the vaccine primed nat-
ural infection and an anamnestic response caused earlier escape in the vaccine group. We also
note that these results were not found with the EpitopeDistance method. This may be due to
differences in the definition of a T-cell sieve effect by the two methods. The global effects found
here are also related to a V2-specific T-cell sieve analysis using the EscapeCount method that
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reported evidence of a T-cell sieve effect in the V2 region of the MN immunogen sequence
[10].

By employing methods that incorporate T cell epitope binding predictions, our analysis in-
dicates that vaccine-primed T cells and participants’HLA alleles may have played a role either
in early T cell escape or in modulating vaccine efficacy, even possibly at sites that are part of
known antibody binding epitopes, such as the tips of the V2 and V3 loops and the CD4 binding
site. Identification of potential sieve effects and vaccine-induced T cell epitopes motivates fur-
ther study both experimentally and computationally, including, for example, testing for amino
acid covariation within the PI9 peptide among infected participants (S6 Fig.). The putative ef-
fect within Env 299 PSNNTRTSI, along with those identified by the EscapeCount method in
other 9-mers (S16 Table), generates hypotheses that can be further investigated computational-
ly and tested experimentally with T cell assays. The suggestion of a trend toward greater phylo-
genetic diversity and divergence in Gag sequences for vaccine than placebo recipients could
reflect the genetic effect of some T-cell mediated responses, although the signal is weak and
there was no evidence of a sieve effect at predicted T-cell epitopes in Gag. In addition, our find-
ing of 30 9-mers in Tat with a T cell sieve effect (passing the 20% q-value multiplicity adjust-
ment) could possibly be explained by the fact that Tat is a viral regulatory factor for HIV gene
expression and CD8 T-cell responses have been shown to select for viral escape variants in Tat
during acute HIV and SIV infection [43].

It remains unclear whether the observed vaccine sieve effects are due to an acquisition barri-
er, reflecting the selection of viruses that managed to break through the protective effects of
vaccination by the RV144 vaccine regimen, versus reflecting early post-acquisition immune
pressures that affected within-host viral evolution after infection, or some combination of the
two. We note that significant results found using methods that focus on T cell epitopes are not
necessarily driven by T-cell pressure, and that signatures in Env may be driven by either T cell
pressure, antibody pressure, or by a combination of the two.

Given that one could expect that sieve effects would be restricted to the proteins included in
the RV144 vaccine, how can the 37 non-vaccine signature sites be interpreted? In addition,
how can we explain that there are an approximately equal number of “vMismatch” and
“vMatch” effects? Additionally, the physico-chemical property sieve effect sites tended to occur
in non-vaccine proteins, as did all thirty-one sieve effect 9-mers that were significant after mul-
tiplicity correction. While some of these signature sites and 9-mers are false positives, others
may be true effects. Certain non-immunogen sites/9-mers may be implicated because they are
in linkage with other mutations in vaccine sequences; for instance such sites could act as com-
pensatory mutations for vaccine-associated mutations that would be destabilizing. In addition,
certain residues that are matched to the vaccine may be required for HIV-1 to be infectious/
transmittable. Alternatively, some non-vaccine-immunogen signature sites/9-mers and
vMismatch effects could reflect true effects of post-acquisition immune pressure that affect vac-
cine recipients more strongly or more rapidly than placebo recipients.

This comprehensive whole-genome sieve analysis generates additional testable hypotheses
about the nature and mechanism of the vaccine’s partial efficacy, by identifying individual
sites, peptide regions and proteins at which the genomic sequences significantly differed be-
tween vaccine and placebo recipients. By using a variety of methods, each tailored to detect dif-
ferent types of signals, we both increased the chance of finding differences and provided means
for potentially explaining the differences. With additional support from independent analyses,
such as viral inhibition experiments based on individual amino acid substitutions, a subset of
the site-specific sieve effects identified here may prove to reflect vaccine immune pressure and
thus be significant for future vaccine design and analysis. Directions for future research include
experimental determination of vaccine-induced antibody binding in identified Env regions,
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evaluating functional consequences of the observed mutations, and further elucidating the ex-
tent to which differences in non-vaccine-immunogen regions of the breakthrough viruses
could be directly attributed to vaccination, or indirectly attributed to constraints on the virus
or to chance sampling variability.

The list of specific testable hypotheses includes evaluation of all of the signature sites for
evidence of vaccine-induced immune pressure targeting each site. While in the absence of an
additional efficacy trial it is not possible to directly evaluate the statement that “vaccine efficacy
can essentially disappear with a single mutation”, it is possible to test the hypothesis that the
vaccine-induced antibodies bind viruses differentially depending on individual mutations. This
has been done for V2-targeting antibodies by Liao and colleagues [36] as well as for V3-targeting
antibodies as reported by Susan Zolla-Pazner [11]) and could in principle be done for any of the
(Env) signature sites. Neutralization assays could also be applied to assess differential neutraliza-
tion, though the antibodies induced by RV144 appear to be non-neutralizing. More generally,
effector function assays (e.g., ADCC) could be applied to assess differential functional responses.

After over 30 years of effort to develop an effective public health vaccine to prevent infection
by HIV-1, the only vaccine to show statistically significant efficacy was the regimen used in the
RV144 Thai trial. The borderline significant p-value of this result leaves open the possibility
that the regimen had no overall efficacy. It would be possible for a vaccine with no overall vac-
cine efficacy to nevertheless have differential efficacy against different viruses. One example is
a balancing effect, in which the vaccine has both protective and harmful effects, depending on
the virus. Another possibility is that subjects who experience multiple exposures to HIV are
protected against some viruses but ultimately become infected despite this partial protection
(but later than they otherwise would have been); if the time delay is short (if the multiple expo-
sures are close together in time), this could lead to negligible overall efficacy despite true acqui-
sition sieve effects. In our view the strength of evidence for overall VE is increased by the
findings of this study, for example the SmoothMarks analysis provided smaller p-values for
overall VE by accounting for viral distances. However, experimental confirmation is still cru-
cial, both because we are not able to prove that the observed sieve effects are acquisition effects
and because of the expectation that many of these are false discoveries. Even if an effect is a
true discovery (in that the treatment group differences are not due to chance variation), it may
be an effect of vaccine-induced changes to the evolutionary course of the virus after infection
(post-acquisition effects) rather than effects to prevent infection (acquisition effects). There
were significant effects found in the sieve analysis of the Step 502 trial that are presumed to be
post-acquisition effects because the vaccine immunogen had no Envelope component (and no
evidence of antibody induction) and because the strongest effect was found at a known T-cell
epitope and was strongest in subjects with the necessary HLA types to target that epitope [8,9].
In the absence of confirmatory studies, the signature site analysis would not increase the
strength of evidence. However, the strength of evidence for overall efficacy has already been in-
creased, in our view, by the experimental confirmation of RV144-induced V2-targeting mAbs
that differentially bind depending on the amino acid at site Env 169, in conjunction with the
significant correlation of vaccine efficacy with induction of V2-targeting Abs.

It has become clear that future vaccine studies should be designed for a more rapid iterative
process, to maximize the information gleaned from each trial and ultimately to minimize the
time to an effective global intervention strategy [44,45]. The correlates and sieve analyses of the
RV144 trial demonstrate the importance of designing future trials with sufficient power to con-
duct such analyses. In particular, both types of analyses are improved by more precise resolution
of the timing of HIV infection (e.g., accomplished through more frequent visits for diagnostic
testing of HIV-1 infection that capture a sizable fraction of HIV infection events in the pre-
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seroconversion acute phase), which would allow use of statistical methods that can help tease
apart acquisition sieve effects from post-acquisition differential within-host viral evolution [19].

Materials and Methods

Ethics statement
The protocol was approved by the Institutional Review Boards of the Ministry of Public Health,
the Royal Thai Army, Mahidol University, and the US Army Medical Research and Materiel
Command. Written informed consent was obtained from all participants.

Study design
The study conduct and results have been published previously [1].

RV144 vaccine regimen
The vaccine regimen was a combination of HIV-1 subtype B and HIV-1 CRF01_AE: the prime
corresponded to HIV-1 Gag and Pro of subtype B LAI and the CRF01_AE HIV-1 gp120 (strain
92TH023) linked to the subtype B transmembrane domain of gp41 (strain LAI); the boost
corresponded to the CRF01_AE HIV-1 gp120 strain CM244 with the subtype B HIV-1 gp120
strain MN. (CRF01_AE is subtype E in the HIV-1 Env.) We aligned these three sequences to
the breakthrough sequences for analysis.

Trial data
Of the 16,395 participants who entered the trial HIV-1 negative [the modified intention-to-
treat (MITT) cohort], 125 acquired HIV-1 infection during the 3.5-year follow-up period. Of
the 125 MITT infected subjects, we analyzed the subset of subjects who were infected by HIV-1
CRF01_AE viruses, for whom we have sequence data, and who were not infected by another
trial participant (n = 109 subjects). Subjects infected with subtype B viruses (n = 11) were ex-
cluded because of the much larger HIV-1 genetic distances to the vaccine immunogen se-
quences compared to CRF01_AE, such that their inclusion would likely reduce statistical
power of the sieve analysis by contributing genetic variation unrelated to a sieve effect. Four
of the 125 infected subjects had no sequence data, three because the Sanger sequencing tech-
nology failed to deliver a result due to low HIV-1 viral load, and one because of drop-out. Fi-
nally, we excluded subject AA100 because this subject was the second to acquire HIV in the
AA118/AA100 transmission pair; excluding AA100 avoids complications arising from the
non-independence of these infections, and helps maintain plausibility of the ‘sieve conditions’,
which are sufficient assumptions to justify interpretability of observed genotype-specific vac-
cine efficacies and infected-case sequence differences as prospective, per-contact estimates of
genotype-specific vaccine efficacy [46]. The other linked transmission pair was subtype B, so
both of those subjects were excluded on the grounds of their infecting subtype. Note that while
most of the sieve analyses conditioned on infection (and therefore truly excluded from analysis
all subjects other than the 109), the estimates of genotype-specific vaccine efficacy and differen-
tial vaccine efficacy, as well as the SmoothMarks multi-site acquisition sieve analyses, were
time-to-infection analyses that included the entire MITT cohort (and right-censored, rather
than truly excluded, the infected subjects outside of the 109). The vaccine efficacy to prevent
acquisition of CRF01_AE HIV-1 (based on the MITT cohort and these 109 infections) was esti-
mated to be 35.2% (95% CI 4.8% to 55.8%, score test p = 0.026).
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HIV-1 sequencing
The RV144 HIV-1 sequencing methodology has been published previously[8], and further
information is provided in S1 Table and S2 Table. Sequences are available under GenBank
accession numbers JX446645–JX448316.

Representativemindist sequences
For each subject, we defined themindist sequence to be the closest actual sequence to the con-
sensus of that subject’s full-genome nucleotide sequences, as measured by the Tamura-Nei
‘93 (TN93) distance correction model [47]. A full description of ourmindist selection process
is presented in S1 Text. In short, subjects with a full-length nucleotide sequence that measured
closest to their consensus with TN93 had that sequence used and translated for allmindist pro-
tein sequences. For subjects with only right-half or left-half sequences that measured closest to
their consensus, the closest right- and left-half genomes were selected and thence translated
into the appropriatemindist protein sequences. Ties were broken by (a) excluding sequences
with the most ambiguous, incomplete or stop codons, (b) for right-half genomes, selecting the
sequence with the shortest env distance, and (c) for left-half genomes, selecting the sequence
with the shortest gag distance. Five ties remained after this procedure, which were broken
randomly.

Sieve analysis methods overview
Only the SmoothMarks and vaccine efficacy (VE) and differential VE (DVE) analyses utilize
the entire “Modified Intent-to-Treat” (MITT) cohort of the RV144 trial, including subjects
who did not become infected and subjects lost to followup. These methods are particularly
well-suited to detect acquisition sieve effects, because under fairly general conditions these
have been shown to be robust to post-hoc selection biases engendered by conditioning on in-
fection. The other methods only include in the analysis infected subjects (who by definition are
the only subjects with HIV-1 sequences available for analysis; see the Trial Data subsection of
Methods for details), and (while generally applicable) are best-suited to evaluate post-acquisi-
tion sieve effects. Because of the six-monthly sampling scheme employed in the RV144 trial,
the evaluated sequences are likely to have evolved between acquisition and sampling, and, of
the methods applied here, only the SmoothMarks method attempts to recapitulate the genetic
distance of the founder variant using missing-data methods. To our knowledge there is no ex-
isting method that can differentiate between acquisition and post-acquisition effects without
incorporating longitudinal sequence data, which are not available for this trial.

The DVE method is designed to detect acquisition sieve effects of differential VE by Match
vs. Mismatch of breakthrough sequences to the immunogen sequences, and the SmoothMarks
method is designed to detect acquisition sieve effects of differential VE by continuous genetic
distance of breakthrough sequences to the immunogen sequences. The other methods are de-
signed to detect post-acquisition effects such as weighted mutation rates at single sites (GWJ
uses a T-type test comparing AA substitution costs versus the vaccine immunogen, MBS uses a
Bayesian model of post-acquisition sieve effects), incorporate multiple sequences per subject
(SMMB and EGWJ), employ a phylogenetic model of sequence relatedness (divergence, diver-
sity, PRIME, and FEL), evaluate codons for selection pressure (dN/dS and PRIME), and/or
evaluate immunological hypotheses such as physico-chemical selection (PCP and PRIME),
T cell escape (EscapeCount, EpitopeDistance, and PercentEpitopeMismatch), and antibody
binding (signature site set enrichment, and SmoothMarks when applied to Ab site sets). The
application of these varied methods provides a comprehensive exploratory evaluation of the
effects of vaccination on breakthrough HIV-1 sequences.
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Phylogenetic diversity and divergence
Maximum likelihood phylogenetic trees were constructed (one tree per protein and per vaccine
immunogen sequence) using PhyML (version 3.0) [48], using the HIV-between (HIVb) PAM
substitution matrix[16], invariant sites, and four gamma-distributed rate categories. For each
tree, the differential amino acid phylogenetic diversity (PD) [31] was defined as the difference
in the total branch length of two subtrees (defined by holding the tree fixed and excluding a
subset of leaves corresponding to one treatment group): the subtree excluding placebo recipi-
ents (retaining only sequences from vaccine recipients and the vaccine immunogen sequence);
and the complementary subtree excluding vaccine recipients (but retaining the vaccine immu-
nogen sequence). We estimated a null distribution by randomly permuting vaccine/placebo la-
bels 10,000 times, and computed a (two-sided) p-value by comparing the observed difference
in PDs to this null distribution.

The phylogenetic divergence analysis computed shortest-path distances between each sub-
ject’s sequence(s) and the vaccine immunogen sequence. Formindist analyses we used the trees
computed for the PD analysis. For multiple-sequence-per-subject analyses, we constructed AA
trees as above using all available sequences, and we constructed nucleotide trees using the GTR
+ I + G nucleotide substitution model using PhyML (version 3.0) [48] implemented in DIVEIN
[49] (http://indra.mullins.microbiol.washington.edu/DIVEIN/diver.html). Tree-based dis-
tances were extracted from these trees using the NewickTermBranch algorithm (http://indra.
mullins.microbiol.washington.edu/perlscript/docs/NewickTermBranch.html) and the ape
package in the R computing language [50], and per-subject median distances were computed
to each reference sequence. These distances were compared between the vaccine and placebo
groups using a Wilcoxon rank sum test (one test per gene/reference combination).

Quasi-Earth Mover’s Distance (QEMD) comparison of whole-gene
pairwise alignment scores
We introduce a new application of the Earth-Mover’s Distance statistic to sieve analysis. The
QEMD statistic equals the maximum overW of ∑(S �W) where S is the n bymmatrix contain-
ing the pairwise alignment scores between vaccine and placebomindist sequences, � denotes
entrywise multiplication andW is an n bym weight matrix subject to the following constraints:
W> 0, every row sums to 1/n and every column sums to 1/m. Note that in this case the QEMD
statistic measures similarity (not distance). The QEMD hypothesis test reports two-sided “mid
p-values” [51] based on random permutation of treatment assignments. We applied this ap-
proach with n andm, the total number of vaccine and placebo recipient sequences, respectively.

SmoothMarks method
We used themindist sequence as an approximation of the founder virus, and we computed dis-
tances between the immunogen sequences and themindist sequence measured from blood
samples drawn at or before the HIV diagnosis date. The SmoothMarks method [19,46] was
used for estimation and testing of VE(v) over the range of distances v from 0 to 1, where the
vaccine efficacy against HIV-1 with distance v, VE(v), is one minus the distance v-specific
hazard ratio (vaccine/placebo) of HIV-1 infection multiplied by 100%. This method employs a
missing-data framework to analyze VE(v) as a function of the “true distance” v between the
transmitted founder sequence and the vaccine immunogen sequence. This can in principle im-
prove the analysis over the other analysis methods that analyze the “observed distances” of
available sequences that are measured weeks or months after infection; by not accounting for
post-acquisition evolution these methods may obscure acquisition sieve effects. Since we do
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not have longitudinal sequence data, we are limited in our ability to estimate the transmitted
founder sequence, so for the present analysis we defined “true” genetic distances as the HIVb-
computed distance between the immunogen sequences and themindist sequence measured
from blood samples drawn at or before the HIV diagnosis date, where the 10% of infected sub-
jects (11 of 109) with later sampled sequences were treated as missing data. See S2 Text for ad-
ditional details about the method and its implementation.

Vaccine efficacy (VE) and differential vaccine efficacy (DVE)
We assessed genotype-specific VE using the Cox proportional hazards model and score test as
described by [52], and we assessed differential VE (DVE) by genotype using the same model,
via the procedure described by Lunn and McNeil [14]. These were the primary analysis meth-
ods used previously [7]. Negative VE values are shown in symmetrized form (as the negative of
the VE value calculated with vaccine and placebo groups interchanged).

Other primary site-specific sieve analysis methods
Two additional primary site-scanning methods were used that assess at each site whether the
amino acid distances to a reference immunogen at that site differ for vaccine compared to pla-
cebo recipient sequences: a nonparametric weighted distance comparison test (GWJ) [17], and
a model-based method (MBS) [18]. Both of these methods were based on themindist amino
acid sequences. Code for these methods was published previously [7].

Physico-chemical property (PCP) analysis
We introduce the PCP analysis method, which compares counts of each of the ten Taylor prop-
erties [21], and five z-scale components [22–24] across treatment groups using parametric
two-sample pooled-variance two-sided t-tests. The analysis can apply to individual sites or to
arbitrary site sets (we evaluated 3-mers and 9-mers), in the latter case by summing counts over
sites. The resulting p-values are then Bonferroni-corrected across the properties for each of the
two property scales at each site (for all k-mers overlapping that site, separately for each value of
k).

Peptide microarray hotspots
Peptide microarrays designed to cover the entire gp160 consensus sequences for HIV-1 Group
M, subtypes A, B, C, D, CRF01_AE and CRF02_AG for a total of 1423 peptides (15-mers over-
lapping by 12 amino acids) were used to detect reactive regions for RV144 vaccine recipients.
Using the analysis method of Imholte et al. [53], four dominant responses were detected in the
C1, V2, V3 and C5 regions of gp120 [6]. These sites are listed in S3 Dataset.

Antibody contactsites
This is a set of known and published monoclonal antibody contact sites provided by Ivelin
Georgiev, Peter Kwong, Robin Stanfield, and Ian Wilson [54,55]. They are listed in S3 Dataset.

Neutralizing antibody nAb-sites
These are the sites identified as relevant to the neutralization activity of known neutralizing an-
tibodies in Wei et al. (2003) [54], Moore et al. (2009) [55], and Tomaras et al. (2011) [56]. They
are listed in S3 Dataset.
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Antibody contactsites-augmented
These are the union of sites in contactsites and nAb-sites.

EPIMAP predicted antibody contact sites
Potential antibody contact “patches” were calculated by the method described previously [7],
but considering all of the Env protein rather than only the V1/V2 region. Sites were sorted by
frequency of inclusion in these patches (by the mean of their frequency of inclusion in patches
versus the 92TH023 sequence and the maximum of their frequencies of inclusion in patches
versus the CM244 and MN sequences), as shown in S9 Fig.. The same threshold used previous-
ly [7] was used to select top-scoring sites. The EPIMAP site set contains the 71 sites that passed
this threshold, 38 of which overlap vaccine sequence sites. They are listed in S3 Dataset.

HLA-associated Sites: HLA-I and HLA-II epitope enrichment sites
We defined two sets of sites where selective pressure by T cells was putatively highest. These
analyses considered only the vaccine immunogen sequences (and the HLA types of the sub-
jects), and were conducted blinded to subject treatment assignment. They are listed in
S4 Dataset.

1. MHC-I predicted epitopes: We predicted vaccine epitope hotspots based on either a strong
(IC50<50nM) or weak (IC50<500nM) predicted MHC-I binding threshold. First, the HLA
binding affinity was predicted using the adaptive double threading (ADT) method [28] for
each 9-mer in the vaccine immunogen sequence and each class I HLA allele expressed by
any of the 109 relevant HIV-1-infected trial participants. Every 9-mer with IC50 less than
the strong (or weak) binding threshold was considered a potential vaccine epitope for each
person who expressed the restricting HLA allele. The total number of potential epitopes
overlapping each site, considering all 109 infected trial participants, was counted. If this
number was significantly greater than the number of epitopes that would be expected to
overlap the site by random chance alone, then the site was considered an epitope “hotspot.”
Significance was determined by counting the total number of predicted epitopes, summing
across all 4 HLA-A and HLA-B alleles for each and every participant and across the entire
protein. The null hypothesis is that these putative epitopes are uniformly distributed with a
per site probability equal to the number of predicted epitopes divided by the number of all
potential 9-mer epitopes (adjusted for the fact that each site is contained within 9 potential
9-mer epitopes). A two-sided binomial test was used to determine if the number of pre-
dicted epitopes overlapping a single site exceeded that expected under the null hypothesis.
The predicted T cell epitope set was defined using either Strong (<50nM) orWeak
(<500nM) binding thresholds, where sites significant using Both binding thresholds are
marked with a B (S, W, B notation is reported in S3 and S4 Table).

2. MHC-II predicted epitopes. Similar to the prediction of Class I epitopes, we predicted Class
II epitopes by predicting the binding affinity of MHC II with vaccine immunogen sequence
15-mers (using the NetMHCIIpan predictor [57]). The sites encompassed by 15-mers that
bind to the MHC II alleles of study participants were included in this set. Again, we defined
two versions of the set based on “strong binders” and on “weak binders,” as defined above.

Supporting Information
S1 Fig. Distributions of vaccine and placebo Env sequence AA distances to the 92TH023
and CM244 vaccine sequences. Distances for the contactsites, constactsites-augmented,
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hotspots, EPIMAP, and all Env-gp120 site sets were computed based onmindist amino acid
sequences computed with the HIVb PAM substitution matrix[16]. Box plots show the 25th per-
centile (lower edge of the box), 50th percentile (horizontal line in the box), and 75th percentile
(upper edge of the box).
(TIF)

S2 Fig. Estimated vaccine efficacy as a function of distance to Ab-relevant regions of the
CRF01_AE vaccine sequences. SmoothMarks estimates of vaccine efficacy (VE) against acqui-
sition with an HIV-1 CRF01_AE virus with genetic distance v from the 92TH023 or CM244
vaccine sequences, with 95% confidence intervals, using Envmindist amino acid sequences and
computed with the HIVb PAM substitution matrix[11]. For each panel, the first p-value is for
testing whether there is any VE against any virus genotype, and the second p-value is for testing
whether VE varies with the distance v. With 176 residues in contactsites, distances 0.08 to
0.25 correspond to 13–39 amino acid mismatches; with 194 residues in contactsites-augmented,
distances 0.10 to 0.27 correspond to 14–45 mismatches; with 196 residues in hotspots, distances
0.03—0.17 correspond to 7—26 mismatches; with 69 residues in EPIMAP, distances 0.03 to
0.29 correspond to 4—17 mismatches; and with 425 residues in all, distances 0.08—0.19 corre-
spond to 29—67 mismatches.
(TIF)

S3 Fig. Signature-Sites Env sequence AA distances to the 92TH023 and CM244 vaccine
sequences and estimated vaccine efficacy. (A) and (B) show distributions of amino acid
signature-sites distances based on themindist sequences and the HIVb PAM substitution
matrix[16]. Box plots show the 25th percentile (lower edge of the box), 50th percentile (horizon-
tal line in the box), and 75th percentile (upper edge of the box). Panels (C) and (D) show
SmoothMarks estimates of vaccine efficacy (VE) against acquisition with an HIV-1 CRF01_AE
virus with signature-sites distance v from the 92TH023 or CM244 vaccine sequences with
95% confidence intervals. With 10 residues in signature-sites, distances 0 to 0.66 correspond to
0—6 amino acid mismatches.
(EPS)

S4 Fig. Influence analysis of Env signature sites on vaccine efficacy. The upper panel shows
the AA patterns for the 10 Env signature sites for each of the 109 infected subjects. The
subjects’ AAs are shown in columns, sorted by genetic distance measured over these 10 sites.
Vaccine-recipient columns are shown in orange, placebo-recipient columns in yellow. The
lower panel shows the SmoothMarks-estimated vaccine efficacy (VE) curve as a function of the
signature sites distances to the CM244 vaccine sequence for each subject. Note that the dis-
tances have ties and are not equally spaced; see S3 Fig., panel D, for an undistorted representa-
tion. The initial increase in the VE curve must occur due to a greater proportion of placebo
than vaccine recipient mismatches versus CM244 at the 5 “vMatch” sieve effect sites and/or to
a greater proportion of vaccine than placebo group mismatches at the 5 “vMismatch” sieve ef-
fect sites. During the sharp period of initial increase of VE in the distance region 0.066 to 0.166,
the “vMismatch” signature site Env 413 has dominant influence, with 5 more vaccine than pla-
cebo recipients having a mismatched residue (10 vs. 5), and no other sites had a differential
number of mismatches for vaccine versus placebo recipients. Conversely, the declining VE
curve in the distance region 0.28 to 0.53 must occur due to a greater proportion of vaccine than
placebo group mismatches at the 5 “vMatch” sieve effect sites and/or a greater proportion of
placebo than vaccine group mismatches at the 5 “vMismatch” sieve effect sites. Env 413, Env
268, and Env 317 have the heaviest influence to create the declining VE curve in this region,
with 11 (26 vs. 15), 10 (15 vs. 5), and 9 (9 vs. 0) more placebo than vaccine recipients having a
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mismatched residue. Six of the other ten signature sites (4 “vMatch”, 2 “vMismatch”) also
influenced the declining curve in this region to a lesser extent (“vMatch”: Env 424 with 5 more
vaccine than placebo recipients having a mismatched residue; Env 169, Env 353, and Env 369
each with 3 more; “vMismatch”: Env 481 with 4 more placebo than vaccine recipients having a
mismatched residue and Env 379 with 1 more). Overall, these results suggest that, among the
signature sites, the “vMismatch” signature sites Env 268, Env 317, and Env 413 have the great-
est influence on vaccine efficacy.
(TIF)

S5 Fig. Mapping of signature sites and sites under selection on an Env trimer structure.
The panels are rotated 90° compared to Fig. 6. (a–e) Panels correspond to the five physico-
chemical properties analyzed for evidence of positive selection based on dN/dS: a) chemical
composition, b) polarity, c) volume, d) iso-electric point or e) hydropathy [25]. Signature sites
identified in Env-gp120 are colored in green, and sites that were under selection are colored
from pink to red (corresponding p-values from 0.05 to< 0.0001). (f) Visualization of the
major sites of vulnerability on the HIV-1 Env.
(TIF)

S6 Fig. Putative T-cell driven sieve effects in HIV envelope. For 9-mer “PSNNTRTSI” (PI9,
HXB2 start position 299), there was a greater number of HLA binding escapes in vaccine
versus placebo recipients (p = 0.0084, A). (B) Box plots indicate HLA binding affinities of the
“breakthrough” 9-mers aligned with PI9 isolated from placebo and vaccine recipients (red and
blue filled circles). Plots include only those participants who express one of the HLA alleles
that bind the vaccine 9-mer with high affinity (horizontal lines). (C) Within the 9-mer, amino
acid substitutions relative to the vaccine underlie the shifts in “breakthrough” binding affinity;
thus sieve effects appear to be driven by different substitutions in the vaccine and placebo re-
cipients’ sequences. Identification of potential sieve effects and vaccine-induced T cell epitopes
motivates further study both experimentally and computationally, including, for example, test-
ing for amino acid covariation within PI9 among infected participants. (D) Positions on the
grid indicate the quantity of scaled mutual information (M�, color scale) shared by the amino
acid variation at a pair of sites [58] and the associated unadjusted p-value (white annotation).
(TIF)

S7 Fig. Distributions ofmindist AA tree divergences. Box plots show the 25th percentile
(lower edge of the box), 50th percentile (horizontal line in the box), and 75th percentile (upper
edge of the box).
(EPS)

S8 Fig. Frequencies of potential N-linked glycosylation sites (PNG sites) in gp120 for vac-
cine versus placebo sequences. Frequencies of PNG sites at all gp120 sites (excluding sites at
which the multiple alignment was poorly resolved) formindist amino acid sequences. Blue bars
above the horizontal line are for placebo sequences and red bars below the line are for vaccine
sequences. There was no evidence of differences in PNG frequencies at any sites between vac-
cine and placebo sequences.
(TIF)

S9 Fig. Frequency of sites in potential antibody contact patches. The EPIMAP method used
by[7] was applied to estimate potential antibody contact patches of Env sites. Sites were sorted
by frequency of inclusion in these patches, showing that some sites are more likely to be on the
surface of the Env protein and other sites are more likely to be buried and inaccessible to
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antibodies.
(TIFF)
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(DOC)

S2 Table. Numbers of HIV-1 protein sequences measured from the n = 109 HIV-1
CRF01_AE infected subjects in the RV144 trial: Non-vaccine immunogen proteins.
(DOC)
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