
Likelihood-Based Gene Annotations for Gap Filling and
Quality Assessment in Genome-Scale Metabolic Models
Matthew N. Benedict1, Michael B. Mundy2, Christopher S. Henry3, Nicholas Chia2,4,5*, Nathan D. Price1,6*

1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 2 Center for Individualized

Medicine, Mayo Clinic, Rochester, Minnesota, United States of America, 3 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois,

United States of America, 4 Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America, 5 Department of Physiology and Bioengineering, Mayo

Clinic, Rochester, Minnesota, United States of America, 6 Institute for Systems Biology, Seattle, Washington, United States of America

Abstract

Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological
insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction
techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic
network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps
in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and
gap filling largely without considering genomic information. Here we develop an approach for applying genomic
information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show
that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks
than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are
used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To
validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding
that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling
approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and
genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these
findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout
lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative
solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All
described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly
available via API or command-line web interface.
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Introduction

Genome-scale metabolic models (GEMs) integrate available

information about metabolism to provide a basis for holistic

modeling and prediction of metabolic phenotypes [1]. GEMs have

been utilized broadly [2,3,4,5] across all three domains of life [6]

to accelerate research in such areas as network evolution [7,8,9],

synthetic biology [10,11], and the discovery of novel drug targets

[12]. However, achieving a sufficiently accurate metabolic model

to enable high utility currently requires a very time-intensive

manual reconstruction process, often taking many months or even

years to complete [13]. As the throughput of sequencing

technologies continues to increase and as research on microbial

populations produces more and more genomes [14], there is a

growing need for methods that automate high-quality metabolic

model reconstruction.

Since the advent of genome-scale metabolic modeling, protocols

[13], databases [15,16,17], algorithms [18,19,20] and toolboxes

[20,21,22] have been developed to help systematize the lengthy

and iterative process of collecting, curating, and integrating large

volumes of biochemical knowledge. There have also been previous

efforts to fully automate this process, including, notably, the

Department of Energy’s ModelSEED [20]. Despite these impor-

tant advances, significant barriers to high-quality automated

metabolic reconstructions still persist. Even with human curation,

ambiguous or incorrect annotations are still pervasive [23].

PLOS Computational Biology | www.ploscompbiol.org 1 October 2014 | Volume 10 | Issue 10 | e1003882

http://kbase.us
http://genomicscience.energy.gov/
http://www.dreyfus.org/awards/camille_dreyfus_teacher_award.shtml
http://mayoresearch.mayo.edu/center-for-individualized-medicine/
http://mayoresearch.mayo.edu/center-for-individualized-medicine/
http://minnesotapartnership.info/
http://kbase.us/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003882&domain=pdf


Incomplete annotations leave gaps in the metabolic networks that

need to be filled in order to make simulation possible [13,24].

Inaccurate annotations also give rise to the need to identify and

assess the merits of alternative annotations for genes, a process that

typically done manually as part of the model curation process [13].

An automated approach to model building that accounts for

alternative annotations would help expedite manual curation and

ensure that the draft models maximally account for alternatives

that can be identified based on available data.

Existing algorithms for filling gaps, or dead-end reactions, in

metabolic networks broadly fall into approaches based on network

topology [19,25], pre-defined pathways [26], or phenotype data

[27,28,29]. Parsimony-based algorithms such as GapFill identify

dead-end reactions in a metabolic network and identify the

minimum number of modifications to the network that can be

made to activate those reactions [19]. Variations of GapFill have

been developed that assign specific penalties based on thermody-

namics or database incompleteness [25]. Pathway-based algo-

rithms, such as that implemented in the PathwayTools [26],

automatically complete pre-defined pathways that have sufficient

representation in the draft model. Finally, several algorithms use

phenotype data to help choose gap filling pathways, including

OMNI, which maximizes model consistency with reaction rate

data [27], GrowMatch, which maximizes consistency with

experimental growth/no growth results [28], and MIRAGE,

which maximizes the co-occurrence and co-expression of con-

nected reactions [29]. Uniquely among these methods, MIRAGE

also automatically identifies gene candidates for optimal gap fill

solutions.

While existing methods capably activate the necessary reactions

to allow growth simulations, they often do so by fitting to

phenotype data. Such fitting may result in the inclusion of spurious

pathways which cause failures when testing the models against

independent datasets [30]. This is epitomized by a recent article

that showed that in some cases, pruning these spurious pathways

can lead to significant improvements in simulation accuracy [30].

Although genomic evidence may be incorporated after gap filling

through human curation of potential solutions [31], these solutions

are unlikely to fully reflect all the available knowledge of the

genome. Methods that addresses both the resolution of dead-end

metabolites and the identification of gene-reaction pairings for the

reactions added to the model during the resolution of the gaps in

the reaction network help researchers identify poorly-supported

solutions when building models, thus helping to reduce over-

fitting.

The goal of our work is to improve the quality of automatically

generated metabolic reconstructions and models by explicitly

incorporating alternative potential gene annotations and their

estimated likelihoods into the gap filling process. We have

developed a likelihood-based gap filling workflow that (1) assigns

likelihood scores based on sequence homology to multiple

annotations per gene and, from these, likelihoods for reactions in

a network and (2) identifies maximum-likelihood pathways for gap

filling using a mixed-integer linear programming (MILP) formu-

lation. We have also developed a workflow to iteratively identify

pathways that activates gene-associated orphaned reactions in a

network and assesses the likelihood of these pathways. Critically,

the likelihood-based approach makes the gap filling solution

genome-specific and provides users with putative gene-protein-

reaction relationships and confidence metrics for each result. We

show that our likelihood-based approach improves the quantity

and quality of new gene annotations compared to the existing gap

filling algorithm. The resulting models have comparable accuracy

when simulating high-throughput growth phenotype data, when

compared with previous parsimony-based gap filling algorithms.

The workflow tools are fully integrated within the Department of

Energy’s System Biology Knowledgebase (KBase), and are

publicly available via both a web-based command line interface

(available at http://kbase.us) and a web service API.

Results

Gap filling workflows using likelihood and parsimony-
based approaches

Confidence scores are useful for building models and assessing

the quality of the annotations, reactions and pathways therein

[13]. We have developed a quantitative likelihood measurement

for the evidence that a gene carries a specific annotated function

and a technique by which these likelihood estimates can be

converted into the likelihood of existence of a reaction in a cell’s

metabolic network (see Methods). Importantly, we simultaneous-

ly compute the likelihoods of multiple annotations for a single

gene, which both broadens the space of testable annotation

hypotheses in gap filling solutions and helps mitigate possible

errors in the most likely annotation. We have also developed a

method by which these annotation likelihoods are converted into

likelihoods of metabolic reactions. These reaction likelihoods are

useful to evaluate confidence in the inclusion of individual parts of

a metabolic network.

In order to assess the efficacy of the likelihood-based gap filling

approach, we implemented four gap filling workflows (Figure 1
and Text S2). These four workflows use two gap filling algorithms

(parsimony-based versus likelihood-based gap filling) as applied to

two separate gap filling strategies (targeted versus iterative gap

filling). The goal of both algorithms is to alter the reaction network

by adding new reactions or altering existing reactions. Here, we

use the terms parsimony-based and likelihood-based to describe

the two gap filling schemes according to their core mode of

reaction addition. Both schemes can prioritize changes in

reversibility or add special consideration to edge cases such as

the addition of transporter reactions. However, in parsimony-

based gap filling, the overall goal of parsimony-based gap fill is to

make the least number of modifications in order to fill a gap. In

general, this means that the shortest reaction path is incorporated

Author Summary

Genome-scale metabolic modeling is a powerful approach
that allows one to computationally simulate a variety of
metabolic phenotypes. However, manually constructing
accurate metabolic networks is extremely time intensive
and it is thus desirable to have automated computational
methods for providing high-quality metabolic networks.
Incomplete knowledge of biological chemistries leads to
missing, ambiguous, or inaccurate gene annotations, and
thus gives rise to incomplete metabolic networks. Com-
putational algorithms for filling these gaps in a metabolic
model rely on network topology based approaches that
can result in solutions that are inconsistent with existing
genomic data. We developed an algorithm that directly
incorporates genomic evidence into the decision-making
process for gap filling reactions. This algorithm both
maximizes the consistency of gap filled reactions with
available genomic data and identifies candidate genes for
gap filled reactions. The algorithm has been integrated
into KBase’s metabolic modeling service, an automated
metabolic network reconstruction framework that includes
the ModelSEED automated metabolic reconstruction tools.

Likelihood-Based Method to Fill Metabolic Network Gaps

PLOS Computational Biology | www.ploscompbiol.org 2 October 2014 | Volume 10 | Issue 10 | e1003882

http://kbase.us


Figure 1. Gap filling workflows. We have developed four gap filling workflows and used them to generate the results in this paper: targeted
parsimony-based gap filling, targeted likelihood-based gap filling, iterative parsimony-based gap filling, and iterative likelihood-based gap filling. The
individual steps are described in detail in the methods, and the technical details of running them using the web interface are described in the
supplementary material. Green boxes represent inputs to the workflows. ‘‘Limit’’ is the user-defined time limit and tmax is a system-defined maximum
possible time limit for gap filling (currently one day) to prevent overloading the compute servers.
doi:10.1371/journal.pcbi.1003882.g001

Likelihood-Based Method to Fill Metabolic Network Gaps
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into a network. In contrast, likelihood-based gap filling weights

genomic evidence and takes into account how likely a reaction is to

be included in the network. Likelihood-based gap filling favors

reaction paths supported by evidence over paths without any

supporting evidence from the genome.

In targeted gap filling, which is the most commonly used in the

field, gap filling is used to activate one particular reaction in a

model such as the biomass reaction [19]. The target reaction is

activated either by adding new reactions to the model from a

universal reaction database or by changing the reversibility of

existing reactions in a model. A successful application of targeted

gap filling enables simulations to be performed on the resulting

model using an increasingly large suite of constraint-based analysis

algorithms [32,33].

In the second strategy, which we call iterative gap filling,

targeted gap filling is applied iteratively to all inactive reactions in

a network, hence maximizing the number of activated reactions in

a network. High-priority reactions such as those in central

metabolism are activated first (see Methods). One could imagine

such an approach would sacrifice specificity for sensitivity (while

targeted gap filling to achieve only biomass production would do

the opposite). In the iterative gap filling workflows, a post-

processing step is also used to reduce the redundancy resulting

from attempting to activate every gene-associated reaction, to

assess the value of each gap filled pathway in terms of how much of

the original annotated network is corrected by the pathway, and

optionally, to apply a cutoff to the cost of pathways added to the

model (see Methods and Test S2 and S3).

Likelihoods reflect a measure of confidence in predicted
function

As part of the model curation process, it is necessary to evaluate

the quality of each annotation and fix those which are found to be

problematic [13]. We have implemented a simple method to

estimate annotation likelihoods accounting for two sources of

ambiguity: (1) sequence divergence between query genes and the

genes in the reference database, and (2) inconsistencies in

annotation within the reference database (see Methods). We

characterized the utility of our reaction likelihoods by comparing

the gene-reaction links created using our automated likelihood-

based approach to those present in manually curated metabolic

networks of Escherichia coli K12 [2] and Bacillus subtilis str. 168

[25] (note that iJR904, an older E. coli model than the most

recent, was used because the ModelSEED database does not yet

link annotations to periplasmic reactions and the gap filling

implementation does not yet properly support compartmentalized

models). We found that highly likely gene-reaction links were

significantly enriched in the models compared to less-likely gene-

reaction links (Figure 2) indicating that a higher likelihood score

reflects higher confidence in the predicted function. We also

identified large numbers of high-likelihood gene annotations that

are not in the comparison models, which reflect promising

candidates for further investigation and possible inclusion in the

models.

Proof of principle for likelihood-based gap filling
Unlike the parsimony-based gap filling approach, the likelihood-

based approach is able to produce different solutions for different

organisms, even if the starting network is identical, based on the

organisms’ genetic content. To demonstrate the utility of this

approach in improving model quality, we identified a set of 32

reactions from the iBsu1103 genome-scale metabolic model of B.
subtilis [25] that were predicted to be essential for growth and

whose existence in the model was supported by literature evidence

[34]. This set of reactions represented a gold standard set of

reactions that should be incorporated into gap filling solutions if

they were missing. We then removed all 32 gold standard reactions

from the iBsu1103 model and applied the targeted parsimony-

based gap filling and likelihood-based gap filling algorithms to

restore biomass production in the knockout model.

In order to evaluate the effects of parameterizing each

algorithm, we performed a sensitivity analysis on the effects of

modifying penalties for adding transporters and for making

thermodynamically unfavorable reversibility changes (see Supple-

mental Material). Larger penalties for these types of changes make

it less favorable for the algorithm to pick them over other changes

to the network when fixing network gaps. Since the removed set of

reactions did not include transporters or reversibility changes,

higher penalties for transporters or reversibility changes led to

greater accuracy in the returned reactions. The penalty for

transporters that maximized the accuracy of the returned

pathways was higher for parsimony-based gap filling (55 or

greater - equivalent to adding about 7 intracellular reactions on

average) than for likelihood-based gap filling (25 or greater). The

penalties for thermodynamically unfavorable reversibility changes

that maximized accuracy were also higher for parsimony-based

than likelihood-based gap fill (40 and 12, respectively). Therefore,

likelihood-based gap filling reduced the need to have very large

penalties for these categories of network changes in order to obtain

accurate solutions.

Although both methods had the same number of tuning

parameters available, likelihood-based gap filling successfully

outperformed the parsimony-based method by replacing a

maximum of 31 of the 32 gold-standard reactions. Parsimony-

based gap filling only replaced only a maximum of 24 reactions,

regardless of the chosen penalties (Dataset S2). The failures in

parsimony-based gap filling were a result of picking shorter

pathways to fill certain gaps for which longer pathways are the

correct choice. For example, the synthesis of isopentyl diphosphate

(IPDP), a primary precursor for lipid synthesis, can occur by one of

two routes, the mevalonate pathway and the non-mevalonate

pathway [35]. B. subtilis uses the non-mevalonate pathway for

IPDP synthesis [36,37]. The mevalonate pathway contains fewer

reactions than the non-mevalonate pathway, and thus the

parsimony-based gap filling approach incorrectly used the

mevalonate pathway to restore IPDP production (Figure 3).

However, all of the knocked out reactions in the non-mevalonate

pathway had high estimated likelihoods. Hence, likelihood-based

gap filling correctly chose this pathway to restore production of

IPDP.

Given the extremely high magnitude of optimal penalties for

parsimony-based gap filling and the more moderate magnitude of

optimal penalties for likelihood-based gap filling, the optimal

penalties for likelihood-based gap filling were selected as the

defaults for the algorithm. These values were used for the

remainder of the results in this manuscript. They are also the

default parameters in the provided workflow script, though users

are able to modify them at will.

Likelihood-based gap filling produces more and higher-
confidence annotations than post-processing

One important step in curating gap filling solutions is identifying

genes in the genome that could be responsible for catalyzing the

gap filled reactions and assessing the quality of the genomic

evidence behind these assignments [31]. Mapping between genes

and reactions allows for a useful connection to genetic manipu-

lations, drug targets, and experimental validation. We have

compared the ability to identify genes with likelihood-based and

Likelihood-Based Method to Fill Metabolic Network Gaps
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parsimony-based gap filling by using the estimated Gene-Protein-

Reaction relationships (GPR) from our likelihood computations to

assign genes to reactions that are gap filled using each approach.

We found that likelihood-based gap filling produced significantly

more links between genes and reactions and more gene-associated

reactions than post-processing of parsimony-based gap filling

results (i.e. seeking for gene homology after reactions were gap

filled). This was true for both the targeted gap filling and iterative

gap filling approaches, though the effect was greater for iterative

gap filling (p,1026, Wilcoxon signed-rank test; Figure 4). By

virtue of the optimization formulation, the average quality of

annotation hypotheses generated from gap filling was also

significantly greater for likelihood-based gap filling, as measured

by computing the average likelihood of gene associations added

using the likelihood-based approach vs. post-processing parsimo-

ny-based gap filling solutions (p,0.01, Wilcoxon signed-rank test;

Figure 5). Therefore, the likelihood-based approach yields a

larger quantity of better-supported candidate annotations for

genes than simply searching for genes associated with parsimony-

based gap filling results post-hoc.

Likelihood-based and parsimony-based gap fill have
similar consistency with experimental phenotypes

One commonly-used method to verify the integrity of genome-

scale metabolic models is to compare their predictions with high-

throughput phenotyping data, such as knockout lethality screens

[13]. To test the impact of each of our workflows on the accuracy

of model phenotype predictions, we applied our workflows to

construct and fill gaps in genome-scale models for 22 organisms for

which either Biolog or gene knockout lethality data was available.

We then compared the predictions of these models to the

phenotype data, without fitting to the data (Table 1). There

were many differences in the pathways identified using likelihood-

based gap filling compared to parsimony-based gap filling:

between 5% and 30% of the reactions in a likelihood-based gap

filling solution were not found in the parsimony-based solution,

despite using the same parameters for each (see Text S1).

However, the use of likelihoods did not significantly affect the

phenotype predictions. For Biolog data, iterative gap filling

increased the aggregate sensitivity by 11% compared to targeted

gap fill, but decreased aggregate specificity (more false positives) by

10%–13%. The aggregate accuracy decreased by about 1% for

iterative compared to targeted gap filling.

Since gap filling only adds a small number of genes to the model

compared to the number in the draft model (about a 6% increase

for iterative gap filling), the sensitivity and specificity of knockout

lethality predictions were very similar for all four workflows. The

aggregate sensitivity was 84–86% for all four workflows while

aggregate specificity was 64–68%. We also examined the lethality

predictions specifically for genes added in gap filling (Figure 6).

The negative predictive value was essentially identical for all four

workflows at 40%. However, there was a notable improvement in

the positive predictive value in the iterative gap filling workflows

(80%) compared to targeted gap filling workflows (35% for

parsimony-based and 55% for likelihood-based gap filling). Taken

together, these results indicate that iterative gap filling mostly adds

Figure 2. ROC curve for annotations. We computed the likelihood of all possible gene-reaction pairings from the ModelSEED database and
compared the likelihoods of those pairings present in the iJR904 E. coli and iBSU1103 B. subtilis models (‘true positives’) to those which were not
(‘false positives’). Each point in the curve represents the percentage of true and false positive linkages remaining at different likelihood cutoffs
(labeled on each point). We found that there was a significant enrichment of true positives at high likelihood levels and false positives at low
likelihood levels.
doi:10.1371/journal.pcbi.1003882.g002

Likelihood-Based Method to Fill Metabolic Network Gaps
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genes predicted to be nonlethal knockouts, and that most of these

predictions are correct.

Discussion

An important feature of the likelihood-based gap filling

algorithm is that it can differentiate between genomes by assigning

organism-specific likelihoods for each reaction in a network. As a

direct result, the gap filling solutions resulting from this algorithm

are also organism-specific. This direct link back to evidence in the

genome directly enables the identification of pathways that are not

parsimonious, but that are most consistent with genomic data. We

have shown that the likelihood-based approach increases both the

quality and the quantity of hypothesized gene associations from

gap filling, especially when using the iterative approach to

maximize the number of activated reactions subject to evidence

constraints. Of course, when building a high-quality network

model, gap filled pathways should be evaluated by experts to

evaluate the evidence cited in the algorithm, to search for existing

experimental evidence in favor of or refuting the suggested

solutions, or to design new experiments to test the existence of the

hypothesized functions in the modeled organism [13,21]. The

reported confidence metrics for annotations and for reactions will

help curators target these curation efforts.

The likelihood-based gap filling methods described in this

manuscript use genomic evidence-based metrics for the confidence

Figure 3. Proof of principle: Gap filling highly-likely reactions in B. subtilis. B. subtilis synthesizes lipids via the non-mevalonate pathway
(blue) [37]. We removed this pathway from the B. subtilis genome-scale model and then tried to fill the gap using both the likelihood and parsimony-
based approaches. The parsimony-based gap filling approach instead filled the gap with the mevalonate pathway (red), which is shorter but not
supported by genetic evidence. The likelihood-based approach filled the gap with the correct pathway. Black indicates reactions that were not
knocked out (there was no explicit link to literature evidence in the B. subtilis model). The numeric labels are the computed likelihoods of gap filling
reactions.
doi:10.1371/journal.pcbi.1003882.g003

Likelihood-Based Method to Fill Metabolic Network Gaps
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that can be placed in annotations and reactions. The pathways

that result from maximizing confidence have a greater genomic

coverage and stronger evidence for inclusion of genes compared

with the common procedure of post-processing parsimony-based

solutions. Therefore, including likelihoods into the gap filling

procedure directly improves on the state of the art in evaluating

and selecting gap filling solutions.

Despite the significantly increased level of evidence for gap

filling solutions resulting from likelihood-based gap filling, we did

not observe a significant difference from existing approaches in the

accuracy of knockout lethality or growth (Biolog) predictions. This

result suggests that using phenotype data to filter gap-filling

solutions may not result in a more accurate metabolic network

(that is, one that better reflects biological evidence for the specific

components included). Indeed, validation metrics such as consis-

tency with knockout lethality predictions have a large number of

ways in which they could be fit to become consistent with

phenotype data, which can lead to decreases in observed accuracy

when the model is tested on new data not available during its

construction [30]. This tendency to overfit models makes the use

of reaction confidence metrics essential when evaluating discrep-

ancies between models and phenotype data.

Figure 4. Genes added to the model using likelihood-based and parsimony-based gap filling. Likelihood-based gap filling produced
more new gene annotations than post-processing gap filled reactions generated using the parsimony-based approach. The plot shows the number
of uniquely-added genes by likelihood-based and parsimony-based gap filling approaches (genes in common with both approaches are omitted for
clarity but tended to be more than those unique to either approach). A) Number of genes added after targeted gap filling to activate biomass
production. B) Number of genes added after iterative gap filling.
doi:10.1371/journal.pcbi.1003882.g004

Likelihood-Based Method to Fill Metabolic Network Gaps
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The proposed integration of likelihoods into gap filling can serve

as a tool for hypothesis generation in biology. An initial pool of

potential annotations with associated likelihoods can be generated

using many different methods such as protein co-localization or

co-occurrence [38,39] or from high-throughput ‘-omics’ datasets

such as metabolomics. This initial pool can be quite broad (many

alternative functions for each gene). The likelihood-based gap

filling approach we have outlined is sufficiently general to

incorporate likelihoods based on any type of evidence. The gap

filling algorithm then selects from this broad pool of hypotheses for

the new annotations that best explain a complex combination of

biological observations, providing insights into enzyme promiscu-

ity, adaptation, and evolution.

Finally, the KBase framework in which all of our workflows are

implemented helps address the need for a unified framework for

systems biology. In addition to gap filling, KBase includes

implementations of many other modeling and reconstruction tools

such as tools for the automatic generation of compartmentalized

community models [40] and phenotype reconciliation tools such as

the gap generation algorithm implemented as part of the

Figure 5. Likelihoods of gene-reaction associations added using likelihood-based and parsimony-based gap filling. The average
likelihood of links between genes and reactions that were added using likelihood-based gap filling tended to be greater than the average likelihood
of links resulting from post-processing the parsimony-based gap filling result. Note that it was not greater for all models (e.g., Pseudomonas
aeruginosa) because the likelihood-based gap filling approach maximizes likelihood of reactions, not annotations, and as a result picks fewer
reactions with 0 likelihood (no predicted gene associations). A) Targeted gap filling result. B) Iterative gap filling result.
doi:10.1371/journal.pcbi.1003882.g005

Likelihood-Based Method to Fill Metabolic Network Gaps
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Table 1. Average phenotype consistency across all test organisms for models gap filled using the four evaluated algorithms.

Biolog data Essentiality data

Sensitivity Specificity Sensitivity Specificity

Targeted parsimony-based 56% 69% 86% 67%

Targeted parsimony PP 56% 69% 84% 68%

Targeted likelihood-based 56% 69% 84% 67%

Iterative parsimony-based 66% 59% 86% 64%

Iterative parsimony PP 66% 59% 85% 64%

Iterative likelihood-based 67% 56% 85% 65%

Iterative gap filling greatly increased the sensitivity (more correct positive growth conditions) and reduced the specificity (more incorrect positive growth conditions) of
Biolog simulations. The use of likelihoods did not have a significant effect on the specificity or sensitivity of Biolog simulations. The overall model accuracy for
essentiality data was similar for all four algorithms because genes added due to likelihood-based gap filling represented only at most about 7% of the genes in the
model. See Figure 6 for the results of knockout simulations using only genes added to gap filling solutions. ‘‘PP’’ means post-processed to add genes to gap filled
reactions.
doi:10.1371/journal.pcbi.1003882.t001

Figure 6. Knockout lethality accuracy for genes added in gap filling. Gene knockout simulations were performed for models gap filled with
each of the four workflows to assess the consistency between lethality prediction and knockout lethality data for genes added in gap filling.
Likelihood-based gap filling was able to produce the most candidate gene associations, with high specificity and low sensitivity in lethality
predictions. The difference in accuracy between likelihood-based and parsimony-based gap filling was not statistically significant. A) Number of
positive growth predictions, B) Number of negative growth predictions.
doi:10.1371/journal.pcbi.1003882.g006
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ModelSEED framework [25]. We anticipate that the use of

likelihoods to guide solutions of these algorithms would also lead to

better-supported networks and improvements in the ability to

assess solution quality independently of the test data itself, thus

reducing the impact of overfitting. As systems biology expands to

incorporate a greater number of high-throughput biological

measures, the utility of computational frameworks for leveraging

this vast knowledge in toto becomes increasingly important.

Methods

We have developed four workflows in the DOE KnowledgeBase

framework: parsimony-based gap filling, likelihood-based gap

filling, iterative gap filling, and likelihood-based iterative gap filling

(Figure 1). We have included as part of the Supporting

Information detailed tutorials on the use of the KBase web-based

interface (Text S2) or the web service API (Text S3) to perform

each of these workflows.

Parsimony-based and likelihood-based gap filling attempt to

activate single inactive reactions in a network by some combina-

tion of reversibility changes and addition of reactions from a

universal reaction database. Parsimony-based gap filling assigns

costs for adding reactions or changing their reversibility based on

the source database for the reaction, the estimated standard Gibbs

free energy of reaction, and whether it is a transport reaction (see

Text S1). Likelihood-based gap filling modifies the cost of adding

reactions (but not the cost of reversibility changes) by incorporat-

ing an estimated likelihood of existence of a metabolic reaction in

an organism. Reaction likelihoods are computed based on an

estimate of the level of evidence for a gene annotation (e.g.

annotation likelihoods) and a mapping from annotations to

reactions (via protein complexes).

Iterative gap filling is the iterative application of either

parsimony-based or likelihood-based gap filling approaches to

activate the maximum possible number of reactions in a metabolic

network. The iterative gap filling workflows include a reaction

sensitivity analysis to prune redundant or poorly supported

reactions (‘‘non-contributing’’ reactions).

The following sections describe the parts of these workflows in

detail.

Building a genome object
The first step of each workflow (Figure 1) is importing an

annotated genome into a workspace in the KBase system. KBase

workspaces provide a way for users to store, share, and manage

data objects that they have uploaded or generated by running

KBase analyses. The genome data is imported into the workspace

as a Genome typed object, which is a standardized format

compatible with all KBase tools that expect genomes as input. All

results from subsequent analyses are also stored in a KBase

workspace as typed objects (of different types), and the methods

used to generate them are tracked to ensure data provenance.

Building a draft model
The annotations for genes in the genome are used to generate a

draft model using the ModelSEED algorithm as previously

described [20]. A description is available in Text S1.

Computation of annotation and reaction likelihoods
The computation of reaction likelihoods for likelihood-based

gap filling is achieved by first estimating the likelihood of multiple

annotations for each gene in the query organism based on

sequence similarity, and then by using mappings from annotations

to reactions found in the ModelSEED reaction database [20] to

convert these likelihoods into reaction likelihoods.

Calculating annotation likelihoods
Annotation likelihoods are computed in reference to a database

of genes with high-confidence annotations. For this purpose, we

compiled a list of the protein sequences for all proteins whose

function was either literature-supported or called as part of at least

one SEED subsystem [41]. Functional annotations in the SEED

subsystems are manually curated using multiple sources of

information such as sequence similarity, phylogeny and gene

context, and therefore represent a high-confidence reference set.

To minimize the amount of redundancy in the list of target

proteins, they were binned into organism taxonomic units (OTUs)

with roughly 97% 16S rRNA similarity [42]. The final target

database included at most one protein from each OTU for each

functional role. When possible, the representative protein was

chosen from the representative organism of the OTU, which tends

to be a better-understood organism with higher-quality annota-

tions such as Escherichia coli K-12. If the representative organism

for an OTU did not have a protein with that role in a subsystem or

with a literature backing, a representative protein was chosen at

random from another member of the OTU.

The computation of annotation likelihood scores was designed

based on the principle that genes with more similar sequences are

more likely to share the same function, but recognizing that these

relationships are far from perfectly predictive [43]. The compu-

tation thus attempts to quantify the uncertainty in relation to the

available database of high-confidence annotations by accounting

for both the similarity of the query gene to genes in the reference

database and the distribution of annotations of the reference genes

(Figure S3).

Annotation likelihoods were calculated by first running

BLASTP [44,45] with an E-value cutoff of 1025 against all of

the genes in the high-confidence gene annotation data set. A log-

score for each (query, target) pair was computed as:

Sij~{log(Eijzk)

Eij is the E-value for the BLASTP hit between the protein

products of genes i and j and Sij is the log-score between them.

The parameter k = 102200 was used to prevent the log E-value

from being undefined due to a reported E-value of zero. After

calculating log-scores for all (query, target) pairs, a likelihood score

that each gene i M GO, where GO is the set of genes in the organism,

is also a member of the set Aa of genes with annotation a was

computed as follows:

p(i[Aa)~

P
j[Aa

S2
ij

MP
j

S2
ij

M
zPC

Aa represents the set of genes with annotation a, M:max
i[GO

Sij the

maximum score of BLASTP hits from a gene in the query

organism to a gene in the high-quality database, and PC = 40 is a

pseudocount used to dilute the likelihoods of annotations for

annotations with weak homology to the query. The sum in the

numerator is over all BLASTP hits from gene i to genes with a

particular annotation a and the sum in the denominator is over all

BLASTP hits from gene i. Squaring the scores prevents large

numbers of weak hits from dominating the computed likelihood.

Likelihood-Based Method to Fill Metabolic Network Gaps

PLOS Computational Biology | www.ploscompbiol.org 10 October 2014 | Volume 10 | Issue 10 | e1003882



The pseudocount was chosen to set the likelihood of a gene

having moderately high homology (E = 1E-40) to a single protein

in the database to 50% and is a typical parameter used in tools

such as BLAST [45] to ensure that we offset for potentially

incomplete or biased database representations of gene families.

According to this formulation, p(i M Aa) will be high only if the

protein product of gene i possesses strongly significant sequence

similarity to reference proteins with annotation a and does not

possess similarly strong similarity to proteins with other annota-

tions. Therefore, the metric takes into account two different

sources of annotation ambiguity: divergence of sequence and

disparity of annotations for similar proteins in the target database.

Calculating reaction likelihoods
Annotation likelihoods are useful for evaluating individual

annotations, but must be converted into likelihoods for metabolic

reactions in order to use them in the context of evaluating a

metabolic network. Reaction likelihoods represent the confidence in

the inclusion of a particular reaction in a metabolic network. The

conversion from annotation likelihoods into reaction likelihoods

takes into account the facts that annotations can imply multiple

functional roles, a protein with a particular functional role could be

part of multiple protein complexes, and multiple complexes could

catalyze the same reaction. We used the ModelSEED reaction

database [20] as the source of all of these links.

The first step in computation of reaction likelihoods is the

conversion of gene annotations into functional roles, to account for

the possibility that an annotation implies multiple protein

functions. The likelihood that each gene i M GO also belongs to

the set of genes Rr with functional role r was computed as the sum

of the likelihood that gene i had each annotation that maps to role

r.

p(i[Rr)~
X

a:a?r=1

p(i[Aa)

Here the mapping aRr from annotations to roles is defined by the

ModelSEED database. This definition ensures that if a protein

could be multi or single-functional, the final reaction likelihoods

reflect each of those possibilities.

In the second step, the likelihood that at least one gene in GO

had role r was computed as the maximum likelihood of the role

across all genes in GO.

p(Rr\GO=1)~ max
i[GO

p(i[Rr)

The genes most likely to fulfill role r (within 80% of the maximum)

were retained and linked with an OR relationship to form a

Boolean Gene-Function relationship.

In the third step, the ModelSEED reaction database was used to

compute the likelihood of existence of protein complexes from the

likelihood of existence of functional roles. A protein complex

represents a set of protein functions that must all be present in

order to build a multi-subunit enzyme (for example, an ATP

binding subunit and a translocating subunit must both be present

to build certain ABC transporters). Since all of the subunits must

be present to perform the function, the likelihood of the existence

of a complex c in the cell was computed as the minimum likelihood

of the roles associated with it.

p(c)~ min
r:r?c=1

p(Rr)

The mapping rRc from roles to complexes is provided by the

ModelSEED reaction database. The sets of genes possessing each

function in a complex were linked with an AND relationship to

form a Boolean Gene-Protein relationship.

In the fourth step, reaction likelihoods were computed from

protein complex likelihoods using complex-reaction links in the

ModelSEED. Since multiple complexes can independently cata-

lyze a reaction, the likelihood of the existence of a reaction x in the

cell was computed as the maximum likelihood of the possible

complexes that could catalyze it.

p(x)~ max
c:c?x=1

p(c)

The complexes that could catalyze the same reaction were linked

with an OR relationship to form a Boolean Gene-Protein-

Reaction relationship (GPR) [46]. Only complexes with a

likelihood within 80% of the maximum complex likelihood

associated with a reaction were retained in the GPR for that

reaction. The computed GPR was used in simulations of gene

knockouts for gap filled reactions, and the reaction likelihoods

were used as weights in the objective function for likelihood-based

gap filling (see below)

Targeted gap filling to complete media
In all workflows, targeted gap filling is performed first in order

to activate the biomass equation and achieve growth on ‘complete’

media. Complete media consists of all compounds for which the

organism has transport reactions in the draft reconstruction, and

hence the solution to this gap filling problem represents reactions

that would be necessary for growth on any more limited media for

which the organism possesses transporters.

Targeted gap filling is performed using either the parsimony-

based or the likelihood-based approach. The parsimony-based gap

filling approach, used in the ModelSEED for auto-completing

models [20], has been described previously [19,25]. The

parsimony-based approach minimizes the number of additions

to a model. Penalties are added for use of less-confident

biochemical databases, adding reactions with ambiguous com-

pounds, adding of transport reactions, or making thermodynam-

ically unfavorable reversibility changes. Higher penalties make it

less favorable for the algorithm to make these types of

modifications. Detailed descriptions of the formulation and

penalties are available in Text S1.

The likelihood-based gap filling approach uses the same MILP

formulation as parsimony-based gap filling. However, likelihood-

based gap filling uses reaction likelihoods to re-weigh the objective

coefficients. To do this, the likelihoods of reactions p(x) are first

converted into costs C(x) by inverting them:

C(x)~max(1{p(x),0)

Then, modified gap filling objective coefficients lgapfill,x are

computed as follows:

lgapfill,x~C(x)½1zPKEGGzPStructurezPKnownDGzPRolezPTransporter�

zPUnfavored 12z
DG0m

x,EST

10

 !

where lgapfill,x is the objective coefficient in the gap filling

formulation for reaction x and the P-values represent the same

penalties as used in the existing parsimony-based approach (see
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Text S1). In our modified formulation, higher-likelihood reactions

are given lower costs (though the thermodynamic penalties for

adding a reaction in the wrong direction are not changed) and are

therefore favored in the optimization provided their benefit

outweighs costs of other reactions in a pathway. The numeric

parameters (12 and 10) in the equation make changing the

reversibility of a reaction with low estimated Gibbs energy

equivalent to adding (on average) one to two intracellular reactions

in a favorable direction, while changing a reaction with reaction

with an estimated Gibbs energy of 10 kCal/mol is equivalent to

adding three average intracellular reactions in a favorable

direction.

Due to the difficult nature of mixed-integer programs, obtaining

a solution can take a long time for certain problems. Therefore, we

have implemented a system in which a time limit is initially

imposed on solution time and automatically increased if solving

fails. An error is ultimately thrown if the solver fails to find a

solution within one day or if no solution exists.

Iterative gap filling
In iterative gap filling work flows, all reactions in the model that

are associated with one or more genes are targeted to enable flux.

Iterative gap filling is similar to the previously published gap find

and gap fill algorithms [19], but operates on inactive reactions

rather than dead-end or orphaned metabolites. This is accom-

plished by performing targeted gap filling on one reaction at a time

until as many reactions as possible are functional. These targeted

gap fillings can be performed using either the parsimony-based

approach (parsimony-based iterative gap filling) or the likelihood-

based approach (likelihood-based iterative gap filling).

The results of iterative gap filling depend on the order in which

the targets are processed. In our studies, the order was selected

based on the region of metabolism in which the reaction occurs.

Central carbon reactions were gap filled first to ensure that core

metabolism was functional. These were followed by reactions

involved in biosynthesis of essential metabolites (amino acids,

nucleotides, and cofactors), finally culminating in reactions

involved in peripheral utilization and degradation pathways.

After ordering reactions according to this priority, flux

variability analysis [47] was used to determine if each reaction

had a non-zero maximum flux. If the maximum flux was zero, gap

filling (likelihood or non-likelihood-based) was run to attempt to

activate the reactions with pathways from the ModelSEED

reaction database. If a gap filling solution was found, it was

integrated into the model before moving onto the next reaction in

the model. The final result was a set of pathways that activated a

maximum number of reactions in the model.

Reaction sensitivity analysis and deleting non-
contributing reactions

Since iterative gap filling attempts to fill the maximum number

of gaps in a model, solutions that fill different gaps in the model are

often redundant or very poorly supported. To solve this problem,

we have implemented a reaction sensitivity analysis that identifies

for each gap filled reaction (including reversibility changes for

existing reactions in a network): a) whether each gap filled reaction

causes other reactions in the model to become inactive when it is

removed and b) whether the gap filled reaction is predicted to be

essential for growth. After performing reaction sensitivity analysis,

any non-contributing reactions, which are non-essential gap filled

reactions that do not activate any other reactions in the network,

were removed from the model. For parsimony-based iterative gap

filling, reaction sensitivity was performed on all reactions in the

reverse order in which they were added, so that lower-priority gap

filling solutions would be tested for removal first. For likelihood-

based iterative gap filling, reaction sensitivity analysis was done in

order from lowest to highest likelihood so that gap filled reactions

that were unsupported by genetic evidence would be tested for

removal first.

Targeted gap filling to minimal media
In order to support simulations of Biolog data and achieve

greater completeness of the metabolic network, the models gap

filled on complete media are gap filled again to achieve non-zero

biomass production on a minimal media. In this study Carbon-D-

Glucose was used as the minimal media. This gap filling step can

be performed using either the targeted or likelihood-based

approach.

Phenotype simulations
To perform phenotype simulations, high-throughput data is

imported into the KBase workspaces and saved as PhenotypeSet

objects in the workspace. These objects contain links from

phenotype sets to specific media and genes in a genome, and

represent the results of Biolog or knockout lethality experiments in

a consistent format.

In this study, the ModelSEED algorithm [20] was used to build

a draft model for each of 22 organisms for which either gene

knockout lethality data (8 organisms), Biolog data (9 organisms), or

both (5 organisms) was available [48–60]. All four gap filling

workflows (targeted parsimony-based, targeted likelihood-based,

iterative parsimony-based, and iterative likelihood-based) were

independently applied to the draft model to build working models

of each of these organisms. The gap filled models were verified to

predict positive biomass production on Carbon-D-Glucose media

using flux balance analysis [61] before performing further

simulations.

To simulate gene knockout lethality phenotypes, the models

growing on Carbon-D-Glucose media were first further gap filled

(if necessary) to achieve nonzero biomass production on the media

in which knockout experiments had been performed (this was only

necessary for Mycobacterium tuberculosis). Subsequently, the

knockouts were simulated by evaluating the Boolean GPR rules

for each reaction and setting the maximum rate of each reaction

whose GPR evaluated to FALSE to 0. Flux balance analysis was

then used to maximize the biomass equation. The knockout was

considered lethal if the predicted biomass production rate was less

than 1029 hr21. For parsimony-based gap filling knockout

simulations were performed both before and after integrating

predicted gene protein reaction associations for gap filled reactions

into the model.

To simulate Biolog data, the models growing on Carbon-D-

Glucose media were modified to possess transporters for every

compound in every media in the Biolog array. After this

modification, growth on each media was tested by setting

exchange reactions for each compound not in the media to zero

and using flux balance analysis to predict the biomass production

rate. The model was considered non-growing if the predicted

biomass production rate was less than 1029 hr21.

Workflow implementation details
All gap filling for this manuscript was performed outside of

KBase using CPLEX under an academic license (IBM Corpora-

tion, version 12.5) [62]. Due to licensing restrictions, gap filling

performed on KBase servers is done using SCIP 3.0.2 [63].

Phenotype simulations and sensitivity analysis were performed

using GLPK version 4.43. The gap filling and likelihood

computations are implemented in the KBase framework with
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web service APIs and a web interface (http://iris.kbase.us).

Detailed descriptions of all steps in the workflow are available in

Text S2 and S3.

Wilcoxon signed-rank tests were performed using the signrank

function in MATLAB statistics toolbox version 7.1, using the

‘exact’ method and 2-tailed p-values.
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(XLS)

Dataset S2 Parameter sensitivity analysis using
iBsu1103. Sensitivity of targeted gap filling results to changes

in the unfavorable reversibility change and transporter penalties.

(XLS)

Dataset S3 Analysis of genes unique to particular
workflows. Likelihoods and phenotype predictions for gene-

reaction links specific to parsimony-based or to likelihood-based

gap filling.

(XLSX)

Figure S1 Likelihood of reactions added in gap filling.
Likelihoods of added reactions separated according to if they were
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