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Abstract

Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and
between many different regions of the brain. Several computational mechanisms have been proposed to account for such
isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of ‘‘dynamical relaying’’ –
a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter
mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an
unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and
computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By
systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally
connected pair – a ‘‘resonance pair’’ – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in
the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad).
Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-
lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and
neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic
inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the
elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the
conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.
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Introduction

The study of large-scale brain dynamics, and the cortical

networks on which they unfold, is a very active research area,

providing new insights into the mechanisms of functional

integration and complementing the traditional focus on functional

specialization in the brain [1,2]. Whilst progress towards

understanding the underlying network structure has been impres-

sive [3,4], the emergent network dynamics and the constraints

exerted on these dynamics by the network structure remain poorly

understood [5]. The problem is certainly not straightforward, as

the dynamics between just a pair of neural regions already depends

critically on the nature of the local dynamics and the nature of the

coupling between them [6]: Although non-trivial, a complete

description of nonlinear dynamics between a pair of nodes is

nonetheless typically possible [7]. However, aggregating such

duplets into larger arrays and introducing noise and time delays

leads to further challenges and prohibits an exact description of the

precise functional repertoire, motivating recourse to the broader

objective of finding unifying and simplifying principles [8].

Structural and functional motifs – small subnetworks of larger

complex systems – represent such a principle [9]. As depicted in

Fig. 1 a, they characterise an intermediate scale of organization

between individual nodes and large-scale networks that may play a

crucial role as elementary building blocks of many biological

systems [10]. Motif distribution in cortical networks has also been

shown to be highly non-random, with a small set of motifs that

appear to be significantly enriched in brain networks [9]. The

relative occurrence of 3-node motifs in three different anatomical

networks of the Macaque brain and cat cortex (Figs. 1 b–e) is

shown in Figs. 1 f–i. These motifs may play distinct roles in

supporting various computational processes. In this report we

examine the principles of neuronal dynamics that emerge on small

motifs and consider their putative role in neuronal function.

The mechanisms supporting zero-lag synchrony between

spatially remote cortical regions can be considered paradigmatic

of those mediating between structure and function. Since first

reported in cat visual cortex [11], zero-lag synchrony has been

widely documented in empirical data and ascribed a range of

crucial neuronal functions, from perceptual integration to the

execution of coordinated motor behaviours [12–16]. In particular,

zero-lag synchrony between populations of neurons (quantified

through synchrony between the local field potentials) may play a

crucial role in aligning packets of spikes into critical windows to
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maximize the reliability of information transmission at the

neuronal level [17], and to bring mis-aligned spikes into the time

window of spike-time-dependent plasticity [18]. The situation is

particularly pertinent in sensory systems, where precise differences

in the timing of inputs, between left and right cortex for example,

may carry crucial information about the spatial location of the

perceptual source [19]. However, the empirical occurrence of

zero-lag synchronization is at apparent odds with the observation

that two mutually coupled oscillators interacting through a time-

delayed connection do not, in general, exhibit zero-lag synchrony

[20]. Indeed, in many models of neuronal systems the presence of

a reciprocal delay has been found to introduce a ‘frustration’ into

the system such that zero-lag synchrony is unstable and out-of-

phase synchrony is instead the preferred dynamic relationship

[21]. In fact, this phenomenon occurs quite generally in systems of

oscillators with time-delayed coupling [21,22].

Complex dynamics in spatially embedded systems arise in a

broad variety of physical and biological contexts. Arrays of

coupled semiconductor lasers are a prominent example. Because

of their extraordinary internal speed, even small time delays due to

the finite speed of light are usually nonnegligible in arrays of

coupled lasers [23]. Detailed analysis of delay-coupled laser

systems has suggested that an intermediate and reciprocally

coupled relay node in a motif of three nodes could represent a

general mechanism for promoting zero-lag synchrony in delay-

coupled systems [24]. In previous work, it was also shown that

such motif arrangements also represent a candidate mechanism for

zero-lag synchrony in delay-coupled neuronal systems [25]. This is

encouraging because there exist several candidate neuronal

circuits in the mammalian brain which are characterized by

reciprocal coupling between an intermediate delay node, including

corticothalamic loops and the hippocampus [26,27]. There also

exist strong reciprocal connections in the visual system, such as the

heavily myelinated connections between primary visual cortex and

the frontal eye fields. Indeed, the corresponding motif occurs

disproportionally in mammalian cortex (Fig. 1), hence being

embedded in many cortical subsystems [9].

The presence of a node that drives two common-driven nodes

that reach zero-lag synchrony between them due to the driver’s

influence is intuitively appealing and finds anatomical support, for

example, by shared input through bifurcating axons [13].

Certainly, a common-driving input of sufficient intensity can

Figure 1. Motifs in cortical networks. (a) The thirteen different motifs of size 3. (b–e) Connectivity matrices, and (f–i) Structural motif counts for
each cortical network. Data (from the CoCoMac database [67,68]) and algorithms are available at the brain connectivity toolbox website [69].
doi:10.1371/journal.pcbi.1003548.g001

Author Summary

Understanding large-scale neuronal dynamics – and how
they relate to the cortical anatomy – is one of the key areas
of neuroscience research. Despite a wealth of recent
research, the key principles of this relationship have yet to
be established. Here we employ computational modeling
to study neuronal dynamics on small subgraphs – or
motifs – across a hierarchy of spatial scales. We establish a
novel organizing principle that we term a ‘‘resonance pair’’
(two mutually coupled nodes), which promotes stable,
zero-lag synchrony amongst motif nodes. The bidirectional
coupling between a resonance pair acts to mutually adjust
their dynamics onto a common and relatively stable
synchronized regime, which then propagates and stabiliz-
es the synchronization of other nodes within the motif.
Remarkably, we find that this effect can propagate along
chains of coupled nodes and hence holds the potential to
promote stable zero-lag synchrony in larger sub-networks
of cortical systems. Our findings hence suggest a potential
unifying account of the existence of zero-lag synchrony, an
important phenomenon that may underlie crucial cogni-
tive processes in the brain. Moreover, such pairs of
mutually coupled oscillators are found in a wide variety
of physical and biological systems suggesting a new,
broadly relevant and unifying principle.

Zero-Lag Synchronization in Cortical Motifs
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generate virtually perfect spike-time correlation, as long as the

time delay to both driven nodes is identical. However, this scenario

is not robust if the time delays lose symmetry or the coupling is not

sufficiently strong. The common-driving setup is nonetheless a key

prototype that offers insights into the synchronization between the

driven nodes and the roles of the dynamics of the nodes [28–32].

Here we consider dynamics on the 3-node motifs that occur

abundantly in large-scale networks of the brain (Fig. 1), adding

connections to the prototypical common-driving motif. We

confirm that common driving – a coupling arrangement that is

widely invoked in the literature – is an ineffective means of

inducing zero-lag synchrony in the presence of weak coupling (a

neurophysiologically plausible regime). However, the additional

incorporation of a single reciprocally coupled connection between

the driver and an edge node – which leads to synchrony between

that pair – is found to be a novel and efficient way of promoting

zero-lag synchrony amongst other nodes in these small motifs. We

demonstrate that this effect – which we term resonance-induced

synchrony – arises consistently in candidate computational models at

the neuronal, population and mesoscopic spatial scales and is

robust to mismatches in system parameters and even time delays.

Remarkably, we show that the resonance effects of a synchronized

pair are not necessarily localized, but may instead propagate

throughout the network. We hence propose resonance-induced

synchrony as a general and unifying mechanism of facilitating

zero-lag synchrony in the brain.

Results

We studied zero-lag synchronization – quantified as the average

zero-lag cross-correlation between two nodes A and B (CAB) – in a

variety of different motifs involving a common driving node. We

considered the dynamics of nodes expressing different neuronal

systems across a hierarchy of scales. At the microscopic scale, each

node was modeled to represent a single spiking Hodgkin-Huxley

neuron; at the circuit scale, each node was taken to represent a

population of 400 excitatory and 100 inhibitory randomly

connected neurons described by the Izhikevich model; and at

the mesoscopic scale each node was modeled as a neural mass

model with chaotic activity. This last model permits systematic

parameter exploration that is not possible with populations of

spiking neurons. In all the three modeling levels, coupling between

nodes was via excitatory chemical synapses (see Methods for

details on models and integration scheme). For the sake of

simplicity, we initially assumed homogeneous delays in the motifs,

i.e., all connections between nodes had the same time delay. We

later explored the robustness of the results when relaxing these

assumptions in the section ‘‘Mismatch in the conduction delays’’.

The notation we adopt for the motifs of three nodes follows the

notation of Sporns and Kötter (2004) [9] who denoted all 13

possible connected subgraphs (motifs) composed of three nodes,

denoted from M1 to M13 (Fig. 1). The genuine common-driving

motif (illustrated in Fig. 2) is designated M3. Node 2 is the

common driver whereas nodes 1 and 3 are the common-driven

ones. In particular, we pay special attention to the cross-

correlation between nodes 1 and 3. With the exception of

illustrative time traces and their corresponding analysis, the results

represent an average over 40 independent runs, unless otherwise

stated, with different random initial conditions and with error bars

given by the corresponding standard deviation. We characterize

the synchronization in other motifs that represent structural

variations of the M3 motif: the addition of one or more

connections (M6, M8, M9, M13), or the addition of connections

and nodes (e.g., M3+1). In particular, M9 is the prototypical

dynamical-relaying motif [24], which has been previously shown

to promote zero-lag synchronization in a variety of systems [33–

38], including neuronal systems [25–27].

Common-driving motifs without and with resonance
pairs

We first focus on the four motifs depicted in Fig. 2. The simple

common driving motif (M3), in which node 2 drives the dynamics

of nodes 1 and 3 was contrasted with three other motifs (M6, M9

and M3+1), which represent structural variations of M3. Because

motif M3 lacks any feedback or cyclical structure, the conduction

delay plays no role in the dynamics or in the synchronization

between nodes 1 and 3: Hence the outer nodes passively receive

the driver’s input. Onto this ‘‘backbone’’, motif M6 has a single

feedback connection added, forming a reciprocal connection

between nodes 1 and 2. Motif M9 has reciprocal connections

between node 2 and nodes 1 and 3. Motif M3+1 possesses an extra

node (4) reciprocally connected with node 2.

Motifs of Hodgkin-Huxley neurons. For the smallest-scale

system we consider, each node comprises a single excitatory

Hodgkin-Huxley neuron [39] weakly inter-connected with a

conduction delay of 6 ms. Each neuron receives independent

Poisson trains of spikes, representing background stochastic input.

Stimulated by such external input, neurons exhibit continuous

spiking behavior with average inter-spike interval of approximately

15 ms and are hence suprathreshold, regardless of the input from

the other motif neurons. When the neurons are coupled according

to the M3 motif, as shown at the top row of Fig. 2, spikes from the

center neuron 2 only sporadically trigger simultaneous spikes of

neurons 1 and 3 (following the common 6 ms delay). Panels a and

b illustrate an exemplar time trace of the neurons. As a

consequence of the absence of regular coincident spikes in the

outer neurons, the maximum of the cross-correlation between

nodes 1 and 3 is small, evident in both the single trial (Fig. 2 c), and

average (Fig. 2 d) results. Note in particular that the cross-

correlation function between the central neuron and an outer

neuron has a modest peak corresponding to the 6 ms time delay

(blue trace in third and fourth columns). The smaller peak at zero

lag (red trace) reflects this common time delayed peak from the

center to each of the two outer nodes. On the other hand, when

the neurons are coupled according to the structural variations of

the M3 motif (namely M6, M9 and M3+1), as shown in the second

to the fifth rows of Fig. 2, spikes from neuron 2 reliably trigger

simultaneous spikes in neurons 1 and 3. This is evident in the

exemplar time series as well as the single and average cross-

correlation functions. This is quite a striking change, given that all

other parameters of the model remain unchanged from M3.

The structural variations introduced in motifs M6, M9 and

M3+1 over the common driving M3 share an essential feature:

The driver node 2 is mutually connected and synchronized with at

least one other node. We denote this mutual connection resonance

pair: Its presence dramatically alters the dynamics and synchro-

nization properties of the driven nodes. Supplementary Fig. S1

compares the dynamics of two oscillators with different types of

time-delayed coupling. Synchronization between these pairs

appears exclusively when they are mutually coupled (in this

particular case the synchronization is in anti-phase at the slow

rhythm). Therefore, the resonance pair, identified by the red stars

in the motifs, is the source of resonance-induced synchronization,

leading to zero-lag synchronization between the outer nodes.

The emergence of zero-lag synchrony in motifs of coupled

Hodgkin-Huxley neurons shows a strong dependence on the time

delay, consistent with prior work [40]. This delay effect is crucial

to the dynamics of motifs containing a reciprocal coupling, but not

Zero-Lag Synchronization in Cortical Motifs
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for the common driving M3. To compare the dynamics of motifs

M3 and M6 it is instructive to analyze both the cross-correlations

between pairs of nodes and the regularity of the inter-spike

intervals (ISIs). To measure the irregularity of the inter-spike

intervals, we use the incoherence R, defined as the coefficient of

variation (CV) of the ISI, R~
STD(ISI)

SISIT
([41,42]), where STD

stands for the standard deviation. Large values of R indicate more

irregular patterns of ISIs. As shown in Fig. 3 a, the incoherence of

each node in M3 is independent of the delay and is larger for the

driver node. In contrast, the incoherence of each node is similar in

M6 and shows a strong effect on the time delay (top panels of

Figs. 3 b–d), increasing and decreasing with a period of

approximately half of the average ISI.
The bottom panels of Figs. 3 b–d compare the cross-correlation

between pair of nodes at zero-lag (continuous lines) against the

maximum across all time lags (dashed lines) for motifs M3 (black)

and M6 (blue). For motif M3, the maximum cross-correlation does

not depend on the time delay. The input from node 2 solely arrives

at nodes 1 and 3 after different latency times, but this delay does

not impact on the dynamics of the driven nodes. In contrast, for

motif M6 the maximum cross-correlations (blue dashed lines) vary,

with peaks that coincide with the minima of incoherence (top

panels). The synchronization in the Hodgkin-Huxley model,

which has only one oscillatory frequency, appears either in phase

or in antiphase. For neighboring nodes (1–2 or 2–3), phase

synchronization occurs when a peak of the maximum cross-

correlation coincides with a peak of the cross-correlation at zero

lag. Anti-phase synchronization occurs when a peak of the

maximum cross-correlation coincides with a minimum of the

cross-correlation at zero lag. Supplementary Fig. S2 illustrates

example time traces of Hodgkin-Huxley neurons in M6 for anti-

phase synchronization (t~6 ms), no synchronization (t~10 ms),

and phase synchronization (t~14 ms).
The delay in a resonance pair can either enhance or reduce the

synchronization. In motif M6 the driven nodes (1 and 3)

synchronize whenever the resonance pair (1 and 2) synchronizes,

whether this is in-phase or anti-phase synchrony. This corresponds

to a drop in the incoherence R of the driving node. Hence, the

synchronization between nodes 1 and 3 depends on the time delay

Figure 2. Synchronization in motifs of Hodgkin-Huxley neurons. Dynamics of common driving motif (M3) versus common driving motifs
with resonant sources (M6, M9 and M3+1) in motifs of excitatory delayed-coupled neurons with delay t~6 ms. First and second columns (panels a, b,
e, f, i, j, m, n, q, r) correspond to individual spiking time traces of neurons, whereas the third and forth columns (panels c, d, g, h, k, l, o, p, s, t)
correspond to the cross-correlation functions of the corresponding single time series and average over 40 trials respectively. Descending rows show
motifs M3, M6, M9 and M3+1, respectively.
doi:10.1371/journal.pcbi.1003548.g002
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in the resonance pairs because the synchronization between the

resonance pair (1 and 2) – and thus the incoherence – also depends

on the time delay. It therefore appears that synchronization

between the reciprocally connected nodes leads to a more regular

(less incoherent) output from the master node which then

facilitates synchronization between this node and the other slave

node.

Motifs of neuronal populations. To investigate whether

these results translate to neuronal activity at the next spatial scale,

we exploited the computational parsimony of the neural model of

Izhikevich [43,44] to study populations of spiking neurons, each

node comprised a population of (400) excitatory and (100)

inhibitory randomly interconnected neurons [27], with each

neuron in these populations receiving an independent Poisson

spike train. Neurons of the same populations were synaptically

coupled without conduction delay and with a latency of 15 ms for

(exclusively) excitatory inter-population connections. We focused

on the dynamics of the ensemble mean membrane potential SVT
of all neurons within each population. As shown in the time traces

of Fig. 4, the activity of each population consists of two time scales,

a higher frequency (&25 Hz) brief network spikes and a lower

frequency fluctuation (&3 Hz) on which these transients typically

recur. Notably, the dominant (low frequency) time scale – which

does not occur in the single neuron system – is much longer than

the conduction delays. Despite discrepancies in the time scales and

nature of the dynamics, the zero-lag synchronization reported in

Fig. 4 largely resembles that shown in Fig. 2. Dynamics on the

common driving motif M3 between the central and outer nodes

show a moderate time delayed cross-correlation (C12*0:4) at

approximately 20 ms and a corresponding weak to moderate zero-

lag synchrony between the outer nodes (C13*0:3). However

zero-lag synchrony is substantially stronger on the motifs

possessing at least one resonance pair (M6, M9, M3+1). Notably,

the anti-phase relation between node 2 with respect to nodes 1 and

3 appears solely at the faster time scale, comparable to the delay

period.

Similar to motifs of Hodgkin-Huxley neurons, synchronization

of populations of spiking neurons also shows a dependence on the

delay time between nodes in the presence of a resonance pair.

Supplementary Fig. S3 shows that the incoherence (here using the

inter-burst interval instead of the inter-spike interval) and cross-

correlations in motif M3 do not depend on the delay (panel a).

However, they vary considerably for motif M6. Supplementary

Figs. S3 b–d show that large incoherence values for motif M6

correspond to the transition between the regimes of phase and

anti-phase synchronization for neural populations. Supplementary

Fig. S4 illustrates two cases of synchronization with one dominant

oscillatory frequency (one in phase with t~8 ms, and another in

anti-phase with t~32 ms), and one case (t~20 ms) of synchro-

nization with two oscillatory frequencies that is in phase for the

slow rhythm and in anti-phase for the fast rhythm. For any time

delay, the synchronization between 1 and 3 is enhanced for motif

M6 when compared to M3, and the synchronization between

nodes 1 and 3 largely resembles the maximum synchronization

between first neighbors (nodes 1 and 2, or 2 and 3).

Motifs of neural mass models. To further study the

robustness of the relationship between motifs and synchronization

with respect to the underlying dynamical systems, we next utilized

a neural mass model, which represents a reduced model of cortical

dynamics. A neural mass model is a parsimonious representation

of the dynamics of a very high-dimensional system, and replaces

thousands of equations for each population of neurons with a small

Figure 3. Synchronization dynamics and incoherence in Hodgkin-Huxley neurons. (a) Incoherence in motif M3 does not depend on time
delay. Colors indicate the different nodes. (b–d) Top panels show incoherence for M6, where colors represent different nodes, and bottom panels
show crosscorrelations for M6 (blue) and M3 (black). Continuous lines indicate the cross-correlation coefficients at zero time lag, and dashed lines
indicate the maximum cross-correlation coefficients for all time lags. Panels b, c and d represent pairs of nodes: 1–2, 1–3, and 2–3 respectively. Phase,
anti-phase synchrony, and asynchrony can be found in motif M6 depending on the time delay t (see exemplar time traces in supplementary Fig. S2).
Results are averaged over 40 trials.
doi:10.1371/journal.pcbi.1003548.g003
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number (here only three) of nonlinear equations per node. These

represent the dynamical behavior of the essential summary system

statistics (here mean firing rate) and hence a reduced represen-

tation of spontaneous cortical dynamics. Here we employ a

population representation of conductance-based model neurons

[5,6,45,46], as has been previously used to elucidate important

features of large-scale brain dynamics [47,48]. This system also

breaks from the previous two scales studied above in that

irregularity is dynamically generated (through endogenous chaotic

dynamics within each mode) rather than introduced through

external stochastic spikes.

The dynamics of these delayed-coupled neural masses shows

chaotic oscillations fast dynamics (&100 Hz) superimposed on

slower return times of about 110 ms [6]. As shown in Fig. 5, the

dynamics in this system clearly replicate those observed above,

namely that zero-lag synchrony between nodes 1 and 3 was

strongly and exclusively expressed in the motifs with resonant

sources (M6, M9, M3+1). It can be seen that within the resonance

pairs, node 2 is in anti-phase synchrony with nodes 1 and 3.

Notably, however, the anti-phase relation typically occurs at a

much slower time scale (110 ms) than the coupling delay (10 ms).

Despite the dissimilarities between the neuronal systems at

different scales, synchronization and incoherence of the neural

mass model also exhibits a dependence on the time delay in the

presence of a resonance pair (see supplementary Fig. S5). To better

understand synchronization dynamics in this system – which has

multiple internal time scales – it is necessary to study the

combination of time delays and coupling strength: For weak

coupling strength (c = 0.01), phase synchronization is not reached.

However, as illustrated in supplementary Fig. S6, rich dynamics

can arise, including anti-phase synchronization at the slow

(t~0 ms) or fast (t~75 ms) time scales, or an asynchronous state

(t~35 ms). In contract, when the coupling is stronger (Supple-

mentary Figs. S7, S8, left), phase synchronization emerges for very

short time delays. In the cases of stronger coupling, for example

c = 0.05 or c = 0.15 (Figs. S7, S8, right), zero-lag synchronization

between nodes 1 and 3 is also more stable for long delays.

Mismatch in the conduction delays
Biological systems are naturally diverse, and therefore, any

relevant behavior should not be highly dependent on the fine-

tuning of the delay – and particularly its symmetry. We next tested

Figure 4. Synchronization in motifs of populations of Izhikevich neurons. Panels (a–t) as per Fig. 2, for populations of 500 (400 excitatory
and 100 inhibitory) spiking neurons and delay t~15 ms.
doi:10.1371/journal.pcbi.1003548.g004
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the generality of the zero-lag synchronization between nodes 1 and

3 with respect to delay mismatch in the different motifs containing

the resonance pair. The connections preserved the conduction

delay of t except for a single feedback connection to the driver

node 2 in motifs M69, M99 and M3+19 in which we introduced a

variable conduction delay in one direction (t’), as illustrated in

Fig. 6 a. The three motifs exhibited zero-lag synchronization that

was substantially larger than that of motifs M3 (black line) or even

M3 plus a unidirectional input (yellow line) across a large region of

the parameter space (Figs. 6 b–d). In the motifs of Hodgkin-

Huxley neurons (Fig. 6 b), the behaviors of all three motifs are

similar for t’vt. In contrast, for t’wt zero-lag synchrony decays

in a similar way for motifs M69 and M3+19, whereas synchroni-

zation in motif M99 is virtually independent of t’ for up to fivefold

t (not shown in the plot). Supplementary Fig. S9 shows the

analyses of the dynamics of motif M69 in more detail: It shows that

synchronization arises in M69 only when the delay mismatch t’
yields synchronization with the same phase relation as t, which –

in the case of t~6 ms – is anti-phase synchronization between

neighboring neurons (see Fig. 3). The motifs of neural mass models

show a systematic consistency of synchronization across t’ for a

biologically plausible range of delays (Fig. 6 c). However, a

behavior similar to that observed in motifs of Hodgkin-Huxley

neurons occurs for greater delay mismatches (Fig. 6 d). Such

differences in the time scales are consistent with the different time

scales of these systems: The Hodgkin-Huxley neurons oscillate

with periods of about 15 ms, whereas the neural masses oscillate

with periods of about 110 ms.

Characterizing the dynamics of the motifs
From herein, we focus on motifs of neural masses, exploiting

their relative computational parsimony to gain deeper insight into

the mechanisms of the resonance pair. In particular we studied the

robustness of our findings with respect to the most salient

parameters of the system, namely the coupling strength and the

delay. As shown in Fig. 7, the strength of the synchronization in

the motifs with a resonance pair, but not M3, show an increase as

a function of coupling strength (panels a, b). Although an expected

feature of the model [49], the emergence of synchrony even at

very weak coupling (c*10{3) is somewhat surprising for a

biological system. There are, however, some regions of complex

dynamics (evidenced as large error bars) in which there is not a

unique solution, thereby entailing significant trial-to-trial variabil-

ity. At relatively weak coupling (c = 0.01), zero-lag synchronization

between nodes 1 and 3 holds across a broad regime of

physiologically plausible time delays (Fig. 7 c). Analysis of longer

Figure 5. Synchronization in motifs of neural mass models. Panels (a–t) as per Fig. 2, but for neural mass models with coupling strength
c = 0.01, and delay t~10 ms.
doi:10.1371/journal.pcbi.1003548.g005
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coupling delays (supplementary Fig. S10) reveals an influence on

synchronization that resembles the system of Hodgkin-Huxley

neurons (Fig. 3), albeit weaker and at a much longer time scale.

These analyses suggest a partition of the common-driving motifs

into three distinct families: (i) The simple common-driving motif

(M3) where synchronization at zero lag is not achieved in the

weak-coupling regime, independent of the time delay; (ii) A ring of

three mutually coupled systems (M13) or a common-driving motif

that also contain direct coupling between the driven nodes (M8)

require a relative strong coupling and negligible delay in order to

promote synchronization (Figs. 7 d–f), because of the existence of

frustration; and (iii) Common-driving motifs enhanced by active

resonance pairs (e.g., M6, M9, M3+1) which exhibit zero-lag

synchronization even for very small couplings, irrespective of the

time delay (up to t~20 ms). It is clear in these analyses that the

increase in zero-lag synchrony in motifs with a resonance pair is

not due to the additional coupling introduced by the backward

connection, but rather through the placement of the additional

edge. For example, the motifs with the greatest number of edges

(M8 and M13) are amongst the most difficult to achieve zero-lag

synchrony with an increase in coupling. Closing the outer nodes

with two additional edges (going from M9 to M13) leads to a

substantial decrease in zero-lag synchrony.

Propagation of the effect of the resonance pair
The preceding analyses show that the effect of the resonance

pair can influence the common driving motif even when it is

placed outside the motif itself (e.g. M3+1). Here we further

investigate the propagation of the resonance pair effect by

considering larger structures in which the resonance pair is distant

from the driver node (2). This procedure is schematically shown in

Fig. 8 a, and illustrated for a particular network of N = 7 nodes in

Fig. 8 b. We are particularly interested to understand if the effects

of the resonance pair are strictly local, and, additionally, on how

the polysynaptic distance to the resonance pair influences the

dynamics and synchronization.

We observe that zero-lag synchronization between the driven

nodes 1 and 3 is virtually independent of the distance along a

polysynaptic chain from the resonance pair (Fig. 8 c). For a fixed

motif length (N = 7), we also characterized the zero-lag synchro-

nization of different pairs of nodes that did not interact directly,

but interacted indirectly through a common neighboring mediator

(see Fig. 8 d). Apart from pairs 5–7, all such pairs correspond to a

strict flux of information flow, mandated by the direction of the

coupling. Thereby, the synchronization decreased with the

distance from node 7, unless the system was set with a specific

coupling (see arrow in Fig. 8 d) that gives rise to global

synchronization. This corresponds to identical synchronization

between nodes 2, 5 and 7, which are anti-phase synchronized to

nodes 1, 3, 4 and 6 occurring at this particular coupling strength.

Finally, to highlight the influence of the resonance pair in the

dynamics, we removed the feedback connection to node N (results

shown as thin dotted lines in Figs. 8 c and d). By means of this

control simulation, we find that: (i) Zero-lag synchronization

between 1–3 is consistently reduced (Fig. 8 c); and (ii) Zero-lag

synchronization between 5–7 (Fig. 8 d) completely disappears in

the absence of a resonance pair.

Characterizing active resonance pairs
We have denoted an active resonance pair as two mutually

connected nodes that synchronize in the presence of appropriate

time delays and coupling strength. This effect propagates through

the motifs because the driven nodes show a strong tendency to

synchronize with the driver node (hence promoting zero-lag

synchronization between driven nodes). That is, the emergence of

Figure 6. Robustness of the synchronization with respect to mismatch in the delays. The top schemes (a) illustrate the motifs of neurons
considered. Motifs M69, M99 and M3+19 have one connection with delay t’, and all the other connections have delays of 6 ms. The bottom panels
show the zero-lag crosscorrelation between nodes 1 and 3 in motifs of Hodgkin-Huxley neurons (b) and in motifs of neural mass models with c = 0.01
(c) averaged over 40 trials for varying t’. Panel (d) shows the same as (c) but across a broader range of t’. Plot colors correspond to motifs as per panel
a.
doi:10.1371/journal.pcbi.1003548.g006
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synchronization between the resonance pair then stabilizes

synchrony amongst unidirectionally coupled nodes. The same

phenomenon underlies the propagation down a polysynaptic chain

(Fig. 8). Interestingly, the impact of the resonance pair extends

beyond this propagation, giving rise to other dynamical effects for

coupling delays in which anti-phase synchrony between neighbors

prevails. Geometrical frustration is an example: In some motif

configurations, anti-phase synchrony between pairs of mutually

connected nodes (potential resonance pairs) is simply not a stable

solution. In the case of motif M13 (illustrated in Fig. 7), for example,

anti-phase synchronization between any pair is frustrated because

the third node cannot be simultaneously synchronized in anti-phase

with respect to the other two neighbor nodes. This situation

illustrates that frustration can disturb potential resonance pairs.

Large mismatches in the delays of the mutual connection between

the pair can also disturb the effects of a resonance pair. As depicted

in Fig. 6, both motifs M69 and M3+19 are similarly susceptible to

mismatches in the reciprocal latencies.

Transient behavior and the stability of synchronization in
resonance-pair motifs

Connectivity also plays a role on the onset of synchronization.

We studied the temporal onset of zero-lag synchronization in

neural mass models for different motifs by (1) examining the

transient dynamics following random initial conditions, and (2)

studying the response to a transient perturbation. An example is

shown in Fig. 9 a, in which dynamics on M6 begin from random

initial conditions, then approach synchronization between masses

1 and 3. The dynamics are then perturbed by a brief current from

800 to 1000 ms – that is distinct for each driven node – before

rapidly regaining synchrony after a few hundreds of milliseconds.

It is noteworthy that the approach to zero-lag synchrony in both

scenarios is approximately exponential, with an exponent c that

can be used as a numerical estimate of the stability of the

synchronous state (Fig. 9 b). In contrast, edge nodes on motif M3

remain unsynchronized. The dependence of the exponent c with

the coupling strength for the 1200 ms following offset of the

transient perturbation is shown in Fig. 9 c. Motifs with resonance

pairs (M6 and M9) showed a negative exponent, consistent with

stable synchrony, whereas the exponent associated with motif M3

was positive throughout. Interesting, the coupling strength

associated with the strongest synchrony (most negative exponent)

occurred for a relatively weak coupling strength of c = 0.01.

Fine-tuning and synchrony in the absence of resonance
pairs

Synchronization hence arises quickly in the presence of a

resonance pair. Is it possible to adjust the dynamics of the driver

Figure 7. Zero-lag crosscorrelation between neural masses 1 and 3 for different common-driving motifs. Top: Common-driving motifs,
labeled as per Sporns and Kötter (2004) [9], see Fig. c1 a. Bidirectional connections (red stars) indicate active resonance pairs. Top row panels compare
common driving (M3) to common driving with resonance pairs (M6, M9 and M3+1) for varying coupling (panels a and b) and varying delay (panel c).
Bottom row panels compare common driving (M3) to a ring of mutually coupled nodes (M13), and to common driving plus a bidirectional connection
between 1 and 3 (M8) as a function of coupling (panels d and e) and time delay (panel f). Curve colors correspond to the motifs depicted on the top
of the figure.
doi:10.1371/journal.pcbi.1003548.g007
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node without such reciprocal coupling to induce synchronization?

We next studied this possibility by fine-tuning the input current (I2
d

to the driver node (2) in motif M3, whilst keeping all other

parameters fixed. As shown in Fig. 10 a, introducing a slight

mismatch in the input current can indeed lead to large changes in

the zero-lag synchronization between nodes 1 and 3. Crucially,

careful fine-tuning of this current mismatch can lead to a near

complete synchronization in motif M3 (A), or at least lead to a

strong enhancement of synchronization (B and C). As depicted in

Fig. 10 b, the maximum synchronization (A) occurs when the

input current causes the driver node to exhibit the same oscillatory

frequency as the driven edge nodes. The other local maxima occur

when the driver node oscillates with a frequency that is an integer

multiple of the driven nodes (2:1 in B and 3:1 in C). In contrast to

this need for fine-tuning in motif M3, the resonance pair

guarantees that node 2 oscillates with the same frequency as the

driven nodes, with strong synchronization hence arising regardless

of the coupling strength, as shown in Fig. 10 c for motif M3+1.

Beyond resonance pairs
The effects of a resonance pair can enhance the synchronization

locally and even propagate in a polysynaptic way to influence

distant dynamics. Reciprocally connected nodes can also interact

in a way that disturbs the synchronization if they introduce

frustration as in motifs M8 and M13, as shown in Fig. 7. To more

deeply understand the role of reciprocally connected nodes and

loops, we studied resonance motifs that go beyond the resonance

pairs. Starting with a common driving motif M3, we added chains

Figure 8. Propagation of the effect of a resonance pair along a chain. (a) A resonance pair (nodes N and N-1) arbitrarily distant from a pair of
commonly driven neural masses (1 and 3). (b) A seven-node chain configuration with a common-driving motif at the edge. (c) Zero-lag cross-
correlation functions between nodes 1 and 3 for different chain sizes as illustrated in panel (a) are shown in solid lines. Thin dashed line represents
the chain of panel (a) without the feedback connection from node N-1 to node N. (d) Zero-lag cross-correlation functions between every other node
in the chain depicted in panel (b) are shown in solid lines. Thin dashed line represents the chain of panel (b) without the feedback connection from
node 6 to node 7.
doi:10.1371/journal.pcbi.1003548.g008

Figure 9. Fast transient behavior and onset of synchronization. (a) Example of time-trace synchronization following random initial conditions
(starting at time = 0) and consequent to a brief perturbing current (green bar) at time = 1000 ms in motif M6 with c = 0.01. (b) DV1{V3D averaged
over 400 trials with c = 0.01 in motifs M3 compared to M6. (c) Exponent c estimated from DV1{V3D averaged over 400 trials on the interval between
1200 and 2400 ms for varying coupling strengths in motifs M3, M6 and M9. Delay t~10 ms.
doi:10.1371/journal.pcbi.1003548.g009
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of bi- or uni-directionally coupled nodes of varying sizes as shown

in Fig. 11 a. Adding one node reciprocally connected to node 2

recovers the resonance pair, which is clearly a more effective way

of synchronizing the driven nodes than adding one extra

unidirectionally connected node (the blue dashed line of Fig. 11

b). The addition of two reciprocally connected extra nodes in a

closed loop (resonance triplet) had an effect that was analogous to

the resonance pair, and again far more effective than the

counterpart of two extra unidirectionally connected nodes in a

loop (green dashed line). The addition of three or more

reciprocally connected extra nodes in closed chain had a similar

effect to the resonance pair. However, the influence of the

unidirectionally coupled loops gradually approaches that of their

reciprocally connected counterparts, which have already attained

the ceiling effect (magenta dashed line). Hence, the interaction of

unidirectionally connected nodes in a loop gradually enhances the

synchronization of the driven nodes as the size of the loop

increases. Therefore, even in the absence of reciprocally connected

nodes, synchronization between 1 and 3 can be enhanced by a

loop of at least three extra nodes connected to the driver node.

Interestingly, the addition of a single resonance pair is the most

efficient means of achieving zero-lag synchronization compared to

loops of any size.

Effects of the common driving input at higher orders
Our final analysis concerns the synchronization properties of

commonly driven nodes with higher polysynaptic orders (Figs. 12

a–c). In particular, we study the synchronization of the symmet-

rically located nodes n2n9 for the different connectivity states of

the driver node A. Figure 12 a illustrates the case in which node A

was part of a resonance pair together with node B; Fig. 12 b

illustrates the case in which node A received a unidirectional input

from node B; Fig. 12 c illustrates the case in which node A did not

receive input from any neighboring regions. It can be seen in

Figs. 12 d–g that only the motifs with the resonance pair (red line)

yielded high correlation between nodes n and n9 (for n = 1,2,3,4).

Interestingly, when the coupling strength is fixed (c = 0.024) and

the number of elements further increased (Fig. 12 h), the cross-

correlation coefficient remained quite high for the chain contain-

ing the resonance pair. A similar behavior occurred for the

Figure 10. Fine-tuning can enhance synchronization. (a) Crosscorrelation averaged over 40 trials, (b) dominant oscillatory frequencies of neural
masses 1 (green) and 2 (magenta) as a function of the mismatch on the input current over node 2. (c) Dominant oscillatory frequencies of neural
masses 1 (green) and 2 (magenta) for varying coupling strength.
doi:10.1371/journal.pcbi.1003548.g010

Figure 11. Effect of resonance chains on the synchronization. (a) Loops of reciprocally connected versus unidirectional connected loops. (b)
Zero-lag cross-correlation between neural masses 1 and 3 with neural mass 2 connected to bidirectional or unidirectional chains of varying length.
Blue dashed line highlights the effect of the resonance pair, and green (magenta) dashed line highlights the effect of the resonance triplet (quad).
Red (yellow) curve represents the cross-correlation averaged over 40 trials for reciprocally (unidirectionally) connected loops. The coupling strength is
0.01, and delay 10 ms.
doi:10.1371/journal.pcbi.1003548.g011
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maximum cross-correlation coefficient (for all time delays) between

node A and node n (Fig. 12 i): Again, the resonance pair was

required for the propagation of synchronous activity.

Discussion

Zero-lag synchronization between distant neuronal populations

confers a number of important computational advantages, and

finds broad empirical support. Here we report that common

driving of passive nodes by a central ‘‘master’’ (motif M3), a

scenario that is broadly assumed to underlie zero-lag synchrony,

fails completely in the weak-coupling regime and is sensitive to

parameter mismatch. However, the addition of one or more

mutually coupled pairs fosters the emergence of zero-lag

synchrony in the outer nodes of triplet motifs, and beyond. We

find that this effect is robust to many of the particular details of the

system, the spatial scale and parameter asymmetry, and can

propagate through a multi-synaptic relay chain. In stark contrast,

the further addition of a reciprocal connection between the driven

nodes introduces frustration for delays that favor out-of-phase

synchrony and fails to promote zero-lag synchronization. The

disruptive effect of adding new edges that close the motif reinforces

the observation that it is the topology (not the total amount of

coupling) that determines the zero-lag synchrony. This is also

evident by the fact that an increase in the coupling over two orders

of magnitude in the unidirectional motif (M3) is less effective than

adding a single feedback connection (where the effective coupling

within that pair is simply doubled).

We have denoted this reciprocal pair a resonance pair because it

can induce zero-lag synchronization between outer nodes. We find

that an entire family of three- and four-node motifs exhibits zero-

lag synchronization in the presence of such a resonance pair.

Perhaps the archetypal motif in this family is M9 (see Fig. 1) also

known as the dynamical relaying motif [24–27,33–38,49]. This

motif contains two active resonance pairs (Fig. 1). Here we find

that one feedback connection to the driver node can be removed

(i.e., transforming the motif into M6) without compromising the

synchronization between the outer nodes (confirming a recent

observation in electronic circuits [50]). Similarly, the addition of

one extra node mutually connected to the driver node, M3+1

(thereby comprising a resonance pair) causes robust zero-lag

synchronization of the driven nodes where M3 alone fails. This

indicates that a necessary condition for nodes 1 and 3 to

synchronize is that the resonance-pair nodes also synchronize,

regardless of their exact phase relationship. The synchronization

of the resonance pair appears in turn to enhance its propensity to

synchronize the driven nodes because when the driving node is

synchronized its internal incoherence diminishes: This change in

the regularity of the master node in turn enslaves the unilaterally

driven node onto the synchronization manifold (Fig. 9). Thereby,

we propose that the mechanism that promotes zero-lag synchro-

nization in the dynamical relaying motif is indeed the resonance

Figure 12. Propagation of synchrony to pairs of nodes at higher orders of distance. Common driving to first (1,19), second (2,29) and n-th
(n,n9) order for the resonance-induced pair (a), a unidirectional input (b), and simple common driving (c). (d) to (g): Zero-lag crosscorrelation for the
different types of common driving from the first to the forth order versus the coupling strength. (h) Zero-lag crosscorrelations between pairs of nodes
(n,n9) as a function of the distance from the driver node A. (i) Maximum (non-zero-lag) crosscorrelations as a function of the distance from the driver
node A. Red, yellow and black curves represent the crosscorrelation averaged over 40 trials for the system depicted in (a), (b) and (c) respectively.
doi:10.1371/journal.pcbi.1003548.g012
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pair, in common to all other motifs in the broader family we

examined.

We observed the effect of the resonance pair in a variety of

different models (Hodgkin-Huxley neurons, populations of Izhi-

kevich neurons, and neural mass models) and scales: motifs of

neurons and motifs of cortical regions. The results are also robust

with respect to the delay, the coupling strength, the oscillatory

frequency band, and arise in autonomous, chaotic systems as well

as noise-driven excitable dynamics. It seems reasonable to propose

that resonance-induced synchronization will prove important for

other neuronal systems, such as dendritic oscillations in single-

neuron dynamics [51], and indeed other physical and biological

systems of any domain characterized by weak interactions.

Although the responses of neural populations to noisy inputs have

been well studied [52], it remains to be seen if our results prove

robust to further physiological details, including embedding

stronger synaptic inputs into the noisy background [53] and

stronger balanced background inhibitory and excitatory inputs

[30]. We also note that although our study focused mainly on

interactions with time delay, the resonance-induced synchroniza-

tion can also occur in systems with no time delay (Figs. 7 b and c,

and supplementary Figs. S3, S5, S7, S8 and S10).

Despite the robustness of the present effect in different classes of

models and dynamical regimes, the universality and extent of the

phenomenon remains to be clarified. Phase-resetting curves

(PRCs) can be useful to predict whether phase or out-of-phase

synchronization will arise [54]: This is a crucial factor in the

dynamics because frustration does not occur in the case of in-

phase synchronization. While usually studied in systems without

delay, PRCs can also be used in systems in the presence of

conduction delays [25,55]. Analysis of the PRC can also be

employed for formal stability analysis of synchronization of motif

dynamics [25]. A second caveat, at least in the model of

population of spiking neurons, is the type of dynamics studied –

namely that in the dynamical regime studied here, neurons spike

at least once per population cycle. An alternative approach would

be to analyze synchronization in motifs of populations of spiking

neurons in a sparsely synchronized regime [56] – that is when

individual neurons spike less often than the background ensemble

cycle. Further analysis is hence required to elucidate the extent to

which our results translate to other physical and biological systems,

perhaps focusing on canonical models that are more amenable to

mathematical analysis such as the Kuramoto system.

Computational studies of anatomically derived brain networks

have shown that motifs M9 and M6 are the first and second most

abundant of all three-node motifs in the macaque visual cortex [9]

and are among the most frequent motifs in other cortical networks

(Fig. 1). Moreover, they appear to be clustered around the core

‘‘rich club’’ backbone of the structural connectome [57]. The

presence of a resonant-pair in these motifs, and the robust zero-lag

synchrony that they confer, may provide a dynamical advantage

for these pairs. However, given the additional wiring cost, it is not

clear why motif M9 is more common than M6. A possible

explanation we provide derives from our observation that

synchronization on motif M9 is robust to longer delays in one

branch of the resonance pair in comparison to M6 (Fig. 6). Hence,

the gain in robustness might overcome the cost of maintaining this

extra feedback connection.

The influence of a resonance pair is not limited to local

synchronization dynamics but also, through propagation, to larger

networks, decaying only slowly with the polysynaptic distance (see

Figs. 8 and 12). In a sufficiently sparse network like the brain, the

number of neurons grows roughly exponentially with the inter-node

distance. The coexistence of the slow decay (long correlation length)

of the influence of the resonance pair, with rapid growth in the

number of affected elements as a function of synaptic distance

suggests that the zero-lag synchronization arising locally through a

resonance pair has the capability to impact globally on network

dynamics. Reframed in terms of a branching process, the slow decay

of zero-lag synchronization and rapid growth of neuronal connec-

tivity could lead to critical or supercritical propagation of zero-lag

synchrony, consistent with prior theoretical considerations [58], and

also suggesting a means for analytic extension of the present results.

The notion of motifs as fundamental building blocks of complex

networks has yielded considerable prior success [9,10,53]. Degree

distribution, the relative density of reciprocal synapses, conver-

gence, divergence, and chains of synapses have been shown to play a

crucial role in shaping the dynamics and synchronization properties

of large networks [59–62]. In contrast to these studies, which focus

on the global statistical features of large-scale networks, we have

focused on particular features of small motifs. Future work, aimed at

immersing these small motifs into larger networks, and focusing on

the role of reciprocal nodes on the global synchronization properties

of such networks, would be of significant interest. Our work

confirms that the interplay between structural, functional and

effective connectivity, while likely complex [63], may nonetheless be

reliant upon a small number of unifying principles.

Methods

We simulated neuronal motif dynamics at different scales, and

for different dynamical scenarios. First, representing the micro-

scopic scale, each node was taken as a single neuron. For this

endeavor we utilized the Hodgkin-Huxley model. Second, at the

circuit scale, we took each node as a large population of spiking

neurons. Third, at the mesoscopic scale, we considered a

simplified coarse-grained version in which each population was

taken as a neural mass model.

Hodgkin-Huxley neurons
Each node was modeled by the well-known Hodgkin-Huxley

equations [39]. The dynamics of the membrane potential depends

on sodium, potassium, leaky, and synaptic (intra-motif and

external) current components,

C
dV

dt
~{gNam3h(V{ENa){gK n4(V{Ek)

{gL(V{EL)zIsynzIext,

ð1Þ

where C~1 mF=cm2 is the membrane capacitance. The maximal

conductances of the channels occur for completely open channels,

with conductances given by gNa~120 mS=cm2, gK~36 mS=cm2,

and gL~0:3 mS=cm2, and ENa~115 mV, EK~{12 mV, and

EL~10:6 mV stand for the corresponding reversal potentials.

Generally, the voltage-gated ionic channels are not fully opened.

The probability of finding them open depends on the gating

variables. The Naz channel depends on the combined effect of

gating variables m(t) and h(t), whereas Kz depends on n(t). They

evolve according to the equations,

dm

dt
~am(V )(1{m){bm(V )m, ð2Þ

dh

dt
~ah(V )(1{h){bh(V )h, ð3Þ
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dn

dt
~an(V )(1{n){bn(V)n: ð4Þ

Hodgkin and Huxley set the empirical functions a and b to fit the

experimental data of the squid giant axon,

am(V )~
2:5{V=10

exp 2:5{V=10ð Þ{1
, ð5Þ

bm(V )~4 exp {V=18ð Þ, ð6Þ

ah(V )~0:07 exp {V=20ð Þ, ð7Þ

bh(V)~
1

exp 3{V=10ð Þz1
, ð8Þ

an(V )~
0:1{V=100

exp 1{V=10ð Þ{1
, ð9Þ

bn(V )~0:125 exp {V=80ð Þ: ð10Þ

The synaptic current due to the interactions between neurons of

the motifs are given by,

tsyn

dIsyn

dt
~{Isynztsynje

X
k

d(t{tk{tk), ð11Þ

where tsyn~0:4 ms, je~1 mA=cm2, and d stands for the Dirac

delta function. The summation over k stands for the spikes of the

presynaptic neurons (all excitatory). tk is the time at which the

k{th spike occurred. We varied the conduction delay tk~t. In

agreement with the literature [40], the delay t can shape the

synchronization (Fig. 3). The external current incoming to each

neuron is,

Iext~text jext

X
j

d(t{tj), ð12Þ

where text~1 ms, jext~20 mA=cm2, j runs over excitatory spikes,

and tj corresponds to the spike times, modeled by an independent

Poisson process for each neuron with rate r~40000 Hz. As shown

in supplementary Fig. S11, nearly identical results can be also

obtained by assuming the external current term as synaptic

contribution and including it as an extra term in equation (4) with

jext~50 mA=cm2, and text~tsyn. The equations were integrated

by the Runge-Kutta method of fourth order, with time steps of

0:01 ms. Initial transient dynamics were discarded.

Populations of Izhikevich neurons
For this large-scale circuit model, each node represented

populations of 500 randomly connected neurons described by

the Izhikevich model [43]. 400 neurons were excitatory and 100

neurons were inhibitory. The neurons were described by the

following equations:

dv

dt
~0:04v2z5vz140{uzIsyn,

du

dt
~a(bv{u), ð13Þ

where v represents the membrane potential, u represents the

recovery variable, accounting for the Kz and Naz ionic currents,

and Isyn is the total synaptic current. The neurons have a threshold

at 30 mV. Once this value is reached, v is reset to c and u to uzd.

Following [44], we added dispersion to these four parameters (a, b,

c and d ) to account for neuronal heterogeneity. Excitatory neurons

have (a,b)~(0:02,0:2), and (c,d)~({65,8)z(15,{6) s2, where

s is a random number drawn from a uniform distribution in the

interval [0,1]. Inhibitory neurons have

(a,b)~(0:02,0:2)z(0:08,{0:05) s, and (c,d)~({65,2).

Each neuron receives input from 80 neurons of the same

population and from 25 excitatory neurons of each afferent

population. The synaptic current is given by

Isyn~{v gAMPA(t){(65zv)gGABA(t), ð14Þ

where the dynamics of the excitatory and inhibitory synapses are

described by

tAMPA

dgAMPA

dt
~{gAMPAz0:5

X
k

d(t{tk{tk),

tGABA
dgGABA

dt
~{gGABAz0:5

X
l

d(t{tl): ð15Þ

d in the equations above stands for the Dirac delta function. The

summation over k (l) stands for the spikes of the presynaptic

excitatory (inhibitory) neurons. tk (tl ) is the time at which the

k{th excitatory (or l{th inhibitory) spike occurred. Conduction

delays tk~t, associated with excitatory long-range connections,

varied. We modeled short-range (intra-node) connections with

negligible delays. Synapses were modeled by exponential decay

functions [64], with time constants tAMPA~5:26 ms for excitatory

and tGABA~5:6 ms for inhibitory synapses. Each neuron was

subject to an external driving given by independent Poisson spike

trains at a rate of r~1600 Hz, which was also included in the sum

over excitatory postsynaptic contributions (k index) of the

equations above. With these parameters, individual neurons fire

spontaneously, although not periodically.

The equations were integrated using a fixed-step first-order

Euler method with time steps of 0.05 ms, starting with random

initial conditions. To avoid spurious synchronization at the onset

of simulations, neural populations were activated with random

noise in 600 ms sequential windows (with a 500 ms overlap). The

first transients of 1 s were discarded before further analysis.

Neural mass models
The preceding large-scale circuit model is a high dimensional

system. Whilst the dynamics are instructive, the large number of

parameters and equations preclude an intuitive perspective of the

system. We therefore additionally studied a reduced system [65],

which represents the large cortical scale that permits character-

ization of the system dynamics with respect to the most salient

Zero-Lag Synchronization in Cortical Motifs

PLOS Computational Biology | www.ploscompbiol.org 14 April 2014 | Volume 10 | Issue 4 | e1003548



parameters. In contrast to the previous models, the coupling is not

through discrete pulses, but by means of smooth sigmoidal rate

functions, which embody population-wide neuronal responses to

synaptic inputs in the presence of parameter and state dispersion

[66]. This also allows us to study the robustness of the resonance-

induced synchronization in relationship to the precise details – and

dynamical regime – of the models.

Each node represents the mean dynamics of an ensemble of

neurons, with spontaneous dynamics arising from the interaction

between excitatory and the inhibitory sub-populations. The model

is derived from the biophysical Morris-Lecar model [45], extended

to a neural mass model with passive diffusive chemical [46], then

synaptic interactions [6] and subsequently extended to large

networks to model whole brain activity [5]. We utilize this most

recent approach developed by Honey et al. [5,47] systematically

varying the features of the connectivity: architecture, coupling

strength, and delay.

This neural mass model comprises three state variables: The

mean membrane potential of the excitatory pyramidal neurons, V ;

the mean membrane potential of the inhibitory interneurons, Z;

and the average number of open potassium ion channels, W . Our

main focus is on the dynamics of the pyramidal neurons. Their

average membrane potential V depends on the passive leak

conductance, and on the conductance of voltage-gated channels of

sodium, potassium and calcium ions. The flow of current across

the local pyramidal cell membranes, assumed as capacitors,

governs its dynamics. In turn, the local activity of the inhibitory

interneurons is course-grained modeled; its dynamics is modulated

by the activity of the pyramidal cell. For each ensemble i, the

equations for the dynamics of the mean membrane potential of the

neurons are given by

dVi(t)

dt
~{fgCazrNMDAaee½(1{c)Qi

V (t)z

cSQ
j
V (t{t)T�gmCa(Vi(t){VCa){

fgNamNazaee½(1{c)Qi
V (t)zcSQ

j
V (t{t)T�g

(Vi(t){VNa){gK W i(t)(Vi(t){VK ){

gL(Vi(t){VL){aieZi(t)Qi
ZzaneI0

d ;

ð16Þ

dZi(t)

dt
~b(aniI

0
d zaeiV (t)Qi

V (t)): ð17Þ

The fraction of channels open mion are the neural-activation

function, whose shape reflects a sigmoidal-saturating grow with V

mion~0:5 1ztanh
Vi(t){Tion

dion

� �� �
: ð18Þ

The third differential equation of each node i stands for the

fraction of open potassium channels:

dW i(t)

dt
~

w½mK{W i(t)�
tW

: ð19Þ

The neuronal firing rates (Qi
V , and Qi

Z ) averaged over the

ensemble are assumed to obey Gaussian distributions, thereby

giving rise to the sigmoidal activation functions [66],

Qi
V (t)~0:5 QVmax 1ztanh

Vi(t){VT

dV

� �� �
; ð20Þ

Qi
Z(t)~0:5 QZmax 1ztanh

Zi(t){ZT

dZ

� �� �
: ð21Þ

Our simulations employ the previously published parameter

values: gCa~1:1, rNMDA~0:25, aee~0:4, VCa~1, gNa~6:7,

VNa~0:53, gK~2, VK~{0:7, gL~0:5, VL~{0:5, aie~2,

ane~1, I0
d ~0:3, b~0:1, ani~0:4, aei~2, TCa~{0:01,

TNa~0:3, TK~0, dCa~0:15, dNa~0:15, dK~0:3, w~0:7,

tW ~1, QVmax~1, VT~0, dV ~0:65, QZmax~1, ZT~0,

dZ~0:65 were set to physiological values taken from [6]. These

are associated with aperiodic fluctuations arising without external

noise, but rather due to homoclinic chaos [6]. Equation 16

includes the other important parameters in our analysis: the

presynaptic neighboring (afferent) regions of region i; c, the

coupling strength between cortical regions; t, the synaptic delay

between cortical regions. The model was simulated in Matlab

(Math Works) using the function dde23.

Supporting Information

Figure S1 Dynamics of pairs of neural mass models. (a),

(d) and (g) show the time traces of the average membrane potential

of the excitatory pyramidal neurons; (b), (e) and (h) show the auto-

correlation function of node A; (c), (f) and (i) show the cross-

correlation function between nodes A and B; respectively for a pair

bidirectionally connected, unidirectionally connected, and discon-

nected nodes. Parameters are c = 0.01, and t~10 ms.

(TIFF)

Figure S2 Example dynamics of Hodgkin-Huxley neu-
rons coupled on motif M6 for different time delays. From

left to right, panels show anti-phase synchronization (t~6 ms), no

synchronization (t~10 ms), and phase synchronization

(t~14 ms).

(TIFF)

Figure S3 Synchronization dynamics and incoherence
in populations of Izhikevich neurons. Panels (a–d) as per

Fig. 3 but for populations of spiking neurons. Phase, anti-phase

synchrony, and a state of phase synchrony at the slow rhythm and

anti-phase synchrony at the fast rhythm can be found in motif M6

depending on the time delay (see exemplar time traces in

supplementary Fig. S4).

(TIFF)

Figure S4 Example dynamics of populations of Izhike-
vich neurons coupled as motif M6 for different time
delays. From left to right, panels show phase synchronization

(t~8 ms), phase synchronization at the slow rhythm and anti-

phase synchronization at the fast rhythm (t~20 ms), and anti-

phase synchronization (t~32 ms).

(TIFF)

Figure S5 Synchronization dynamics and incoherence
in weakly coupled neural mass models. Panels (a–d) as per

Fig. 3 but for neural mass models with coupling strength c = 0.01.

Anti-phase synchrony at the slow or at the fast rhythms, and a

state of low synchrony can be found in motif M6 depending on the

time delay (see exemplar time traces in supplementary Fig. S6).

(TIFF)
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Figure S6 Example dynamics of neural mass models
coupled on motif M6. From left to right, panels show anti-

phase synchrony at the slow rhythm (no time delay), weak

synchrony (t~35 ms), and anti-phase synchrony at the fast

timescale (t~75 ms). The coupling strength is weak, c = 0.01.

(TIFF)

Figure S7 Cross-correlation for strongly coupled neural
mass models. Top panels show the crosscorrelations between

nodes 1 and 2 (a–b), and nodes 1 and 3 (c–d) as a function of the

delay for coupling strength c = 0.05. Bottom panels panels show

the cross-correlations between nodes 1 and 2 (e–f), and nodes 1

and 3 (g–h) as a function of the delay for coupling strength

c = 0.15. First and third columns correspond to a zoom of second

and forth columns respectively. Black (blue) lines represent results

for motif M3 (M6), and continuous (dashed) lines represent the

crosscorrelation at zero lag (maximum for all time lags). Phase

synchrony, and complex synchronous states can be found in motif

M6 depending on the time delay t (see exemplar time traces in

supplementary Fig. S8). Results are averaged over 40 trials.

(TIFF)

Figure S8 Example dynamics of neural mass models
strongly coupled as motif M6 for different time delays.
From left to right, panels show phase synchrony (t~0 ms), and a

transition from a state of anti-phase synchrony at the slow rhythm

to a state of out-of-phase synchrony (t~10 ms). The coupling

strength is c = 0.15.

(TIFF)

Figure S9 Incoherence and synchronization dependence
on the time-delay mismatch in Hodgkin-Huxley neu-
rons. (a–c) Top panels show incoherence: Colors represent

different nodes. Bottom panels show cross-correlations for motif

M69. Continuous lines indicate the cross-correlation coefficients at

zero time lag, and dashed lines indicate the maximum cross-

correlation coefficients across all time lags. Panels a, b and c

represent pairs of nodes: 1–2, 1–3, and 2–3 respectively. Results

are averaged over 40 trials.

(TIFF)

Figure S10 Zero-lag synchronization dependence on the
delay t in motifs of neural mass models. The curves are

color coded as in Fig. 7. In agreement with [40] the

synchronization depends on the coupling delay for long delays.

The coupling strength is c = 0.01. Crosscorrelation is averaged

over 40 trials.

(TIFF)

Figure S11 Kernel test in motifs of Hodgkin-Huxley
neurons. Nearly identical cross-correlation functions are ob-

tained when the external driving is considered identical to the

spikes within the motifs (see Fig. 2, panels d and h). Plot

corresponds to an average over 40 trials.

(TIFF)
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