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Abstract

The aging brain shows a progressive loss of neuropil, which is accompanied by subtle changes in neuronal plasticity,
sensory learning and memory. Neurophysiologically, aging attenuates evoked responses—including the mismatch
negativity (MMN). This is accompanied by a shift in cortical responsivity from sensory (posterior) regions to executive
(anterior) regions, which has been interpreted as a compensatory response for cognitive decline. Theoretical neurobiology
offers a simpler explanation for all of these effects—from a Bayesian perspective, as the brain is progressively optimized to
model its world, its complexity will decrease. A corollary of this complexity reduction is an attenuation of Bayesian updating
or sensory learning. Here we confirmed this hypothesis using magnetoencephalographic recordings of the mismatch
negativity elicited in a large cohort of human subjects, in their third to ninth decade. Employing dynamic causal modeling
to assay the synaptic mechanisms underlying these non-invasive recordings, we found a selective age-related attenuation of
synaptic connectivity changes that underpin rapid sensory learning. In contrast, baseline synaptic connectivity strengths
were consistently strong over the decades. Our findings suggest that the lifetime accrual of sensory experience optimizes
functional brain architectures to enable efficient and generalizable predictions of the world.
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Introduction

Aging is generally thought to be accompanied by reduced

neuronal plasticity and a loss of neuronal processes that accounts

for a loss of grey matter, which progresses gently with age [1–3].

Many concomitants of physiological aging have been studied. In

particular, studies of the mismatch negativity (MMN) speak to a

decline in sensory learning or memory [4,5]. For example, elderly

subjects show a significant reduction in superior temporal gyrus

responses, which has been interpreted as ‘‘an aging-related decline

in auditory sensory memory and automatic change detection’’ [6].

In this work, we examine the physiological basis of attenuated mis-

match responses using dynamic causal modeling in a large cohort

of human subjects. However, we motivate the present study using

an alternative – and slightly more optimistic – model of normal aging.

Our basic premise is that aging reflects a progressive refinement

and optimization of generative models used by the brain to predict

states of the world – and to facilitate an active exchange with it.

Evidence that the brain learns to predict its environment has been

demonstrated in the perceptual [7], motor [8] and cognitive

domains [9]. These studies are motivated by formal theories –

such as the free energy principle and predictive coding – that

appeal to the Bayesian brain hypothesis [10–14]. In this theoretical

framework [12], the quality of the brain’s model is measured by

Bayesian model evidence. Crucially, model evidence can be expressed

as accuracy minus complexity. This means that as the brain gets

older – and maintains an accurate prediction of the sensorium – it

can progressively improve its performance by decreasing its

complexity. This provides a normative account for the loss of

synaptic connections and fits intuitively with the notion that as we

get older we get wiser, more sanguine and ‘stuck in our ways’.

Formally, under the Free Energy Principle, the brain supports active

exchanges with the environment in order to minimize the surprise

associated with sensory inputs. Over time, learning optimizes brain

connectivity to support better predictions of the environment [15].

These ‘better’ models must conform to Occam’s razor by providing

accurate predictions with minimal complexity [16]. In Figure 1 we

illustrate model qualities prescribed by the Free Energy Principle,

potential age effects and their context or environmental sensitivity.

This formulation of Free Energy minimization is based on

hierarchical message passing and predictive coding. Neuronal

implementations of predictive coding have been proposed as the

mechanisms underlying the MMN [17,18]. In the present study, we

address the corollary of model complexity minimization; namely,

less reliance on Bayesian updating through sensory learning and

underlying neuronal plasticity. Mathematically, an attenuation of

Bayesian learning precludes overfitting of sensory data; thereby

minimizing complexity and ensuring that explanations for those

data generalize. In other words, as we age, we converge on an accu-

rate and parsimonious model of our particular world (Figure 1B) -

whose constancy we actively strive to maintain (Figure 1B). Its

neuronal implementation would be consistent with a large literature
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on synaptic mechanisms in aging and a progressive decline in

neuromodulatory (e.g., dopaminergic [19,20]) activity that under-

writes changes in synaptic efficacy [21].

The implications for the neurobiology of aging are that – over the

years – cortical message passing may become more efficient

(providing accurate predictions with a less redundant or complex

hierarchical model) and increasingly dominated by top-down

predictions. This is consistent with reports of age-induced shifts in

neuronal activation from sensory to prefrontal regions [22]. The

hypothesis addressed in the present study was that the Bayesian

updating implicit in the sensory learning of standard stimuli in the

MMN paradigm would fall progressively with age. In particular, we

predicted that changes in effective connectivity during the processing

of repeated stimuli (namely, changes in forward connections to

superior temporal cortex) would be attenuated as a function of age.

Here, we examined age-related attenuation of sensory learning

by quantifying synaptic coupling or effective connectivity changes

using the mismatch negativity (MMN) paradigm and dynamic

causal modeling (DCM). There is a large literature on DCM and

the MMN [23–25], where changes in coupling during repetition of

standard stimuli are revealed by differential responses to oddball

stimuli – producing the MMN (oddball minus standard) difference

in event related potentials that peaks around 150 msec. These

connectivity changes (plasticity) are expressed in both intrinsic

connections within auditory sources and in an increase in the

effective connectivity from auditory to superior temporal sources

during the processing of oddball relative to (learned) standard

stimuli [26]. These changes have been interpreted in terms of

predictive coding, in which bottom-up or ascending prediction

errors (under modulatory gain control) adjust representations at

higher levels in the cortical hierarchy – that then reciprocate

descending predictions to cancel prediction error at lower levels.

Recent studies of age-related changes in functional connectivity

provide evidence for changes in long-range coupling with age [27].

Our hypothesis rests on changes in (directed) effective connectivity

that produces the functional connectivity or dependencies in measured

activity [28]. To quantify changes in effective connectivity we used

DCM [29] to model magnetoencephalographic (MEG) recordings.

DCM uses forward models of evoked responses based on neuronal

mass formulations that account for the laminar specificity of forward

and backward connections [29]. These models have been previously

validated using animal [30] and human recordings [31], and pro-

vide subject-specific measures of intrinsic (within source) and extrinsic

(between source) synaptic coupling.

Results

Dynamic Causal Modeling of Sensory Evoked Responses
We measured event-related MEG responses in 97 subjects, aged

20 to 83 and applied DCM to quantify the underlying synaptic

coupling producing observed responses. We used an auditory

oddball paradigm to elicit the mismatch negativity or MMN [23].

Our stimuli comprised pseudo-random tone sequences, with stan-

dard (frequent) tones interspersed with infrequent oddball tones

(with a presentation frequency of 88% and 12% respectively).

Consistent with previous studies of MMN generation [32,33],

source localization revealed hierarchical responses (Figure 2A),

with large magnitude responses in auditory, temporal and inferior

frontal sources (p,0.05 family-wise error corrected; Figure 2A). A

prominent MMN (oddball – minus standard) was observed, as

expected, around 150 msec post stimulus (Figure 2B).

Following previous DCM studies of the MMN, we used a six–

source model to characterize age effects within the MMN network

(Figure 2C). For each subject, we inverted the ensuing DCM to

obtain subject-specific measures of (changes in) connectivity based

on their evoked responses to standards and oddballs. In this DCM,

auditory input enters bilaterally at Heschl’s gyrus (HG), these

primary auditory sources were connected via forward connections

to superior temporal gyrus (STG) sources, which in turn sent

forward connections to the inferior frontal gyrus (IFG). Reciprocal

backward connections were included to allow signal propagation

down the hierarchy from IFG to STG and from STG to HG

(Figure 2C). Each source was modeled with a neural mass model

comprising three neuronal populations, with distinct receptor

types and intrinsic connectivity [31]. Specifically, the model

contains synaptic parameters that encode the contribution of

AMPA, NMDA and GABAa receptor mediated currents in three

populations: comprising pyramidal cells, inhibitory interneurons

and granular-layer spiny-stellate cells. These populations are con-

nected intrinsically and receive extrinsic inputs according to their

laminar disposition: forward connections drive spiny stellate cells

and backward connections drive pyramidal cells and inhibitory

interneurons [29]. Crucially, we included stimulus-specific param-

eters that changed the strength of extrinsic connections when

responding to standard and oddball inputs. This enabled us to test

our hypothesis of age-related differences in connectivity changes.

Specifically, we hypothesized that the learning or repetition-dependent

increase in sensitivity to extrinsic forward afferents – conveying

prediction errors induced by the oddball events – would be atten-

uated in older subjects.

An analysis of model fits confirmed that DCM provided an

accurate account of the evoked responses (193 data sets were

inverted in total), accounting for 81%612% (mean 6 std) of the

empirical variance (for a representative example see Figure 3A). We

found no evidence for age-dependent differences in model fit (p.0.1,

Pearson correlation of age and proportion of variance explained).

Neuronal Parameters Predicting Age
Having established the accuracy of the DCM, we then asked

whether the subjects’ age could be predicted by neuronal parameters

that included: i) the strength of forward and backward extrinsic

connections, ii) changes in these connections during oddball

Author Summary

While studies of aging are widely framed in terms of their
demarcation of degenerative processes, the brain provides
a unique opportunity to uncover the adaptive effects of
getting older. Though intuitively reasonable, that life-
experience and wisdom should reside somewhere in
human cortex, these features have eluded neuroscientific
explanation. The present study utilizes a ‘‘Bayesian Brain’’
framework to motivate an analysis of cortical circuit
processing. From a Bayesian perspective, the brain
represents a model of its environment and offers predic-
tions about the world, while responding, through chang-
ing synaptic strengths to novel interactions and experi-
ences. We hypothesized that these predictive and
updating processes are modified as we age, representing
an optimization of neuronal architecture. Using novel
sensory stimuli we demonstrate that synaptic connections
of older brains resist trial by trial learning to provide a
robust model of their sensory environment. These older
brains are capable of processing a wider range of sensory
inputs – representing experienced generalists. We thus
explain how, contrary to a singularly degenerative point-
of-view, aging neurobiological effects may be understood,
in sanguine terms, as adaptive and useful.

Sensory Learning and Human Aging
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(compared to standard) tones, iii) the strength of intrinsic con-

nections within each source, iv) parameters controlling synaptic

adaptation; namely, time constants of AMPA, NMDA and GABAa

receptors, membrane capacitance, subcortical input strength and

axonal delays (37 parameters and a constant term see Table 1).

Electromagnetic lead field parameters were optimized for each

DCM but not included in this predictive analysis (see Methods).

Using a multiple linear regression, we found that the neuronal

DCM parameters could predict age with a high degree of

reliability (R2 = 0.56; F37,59 = 2.06; p = 0.006; Figure 3B). Post-hoc

t-tests were used to identify the parameters with the greatest

predictive ability. Across all regression coefficients, the largest and

only significant regression coefficient (correcting for 38 tests) was

associated with the learning dependent increase in forward connec-

tivity from the right primary auditory cortex to the right superior

temporal gyrus (b= 236.41; p,0.05 Bonferroni corrected,

Figure 3C). This increase was attenuated over the lifespan, speaking

to a reduced sensitivity of STG responses to ascending (prediction

error) afferents from primary auditory cortex. This was in contradis-

tinction to the latent connectivity strengths from right primary

auditory to superior temporal gyrus - that do not reflect learning –

which were consistent across the lifespan population (Figure 3D).

Complexity Minimization under the Free Energy Principle
The Free Energy Principle [11] provides a description of

neurobiological circuit processing that attributes specific compu-

tational roles to forward, backward, lateral (extrinsic) connections

and intrinsic connections and their neuromodulation [34]. Each

level of a processing hierarchy transmits predictions to the level

below, which reciprocates with bottom-up prediction errors. Bayes

Figure 1. Hypotheses – explanations for sensory input. A) The Negative Free Energy (F) is maximized by the brain (model, m) to ensure
homeo/allostasis. An optimal model can accurately predict incoming sensory signals s, (this accuracy term is the expected log-likelihood of the
sensory signal s, under the conditional density, q ie. Eq½ln p(s h,m,m)�j ) while ensuring generalization, when inferring new sensory causes (h
represented through their sufficient statistics m). This complexity penalty (KL½q(h m,m),p(h m)�)jj is revealed during the presentation of the oddball.
Given changes in synaptic efficacy of forward connections; i.e. learning the standard tone - the Kullback-Leibler (KL) divergence between the learned
prior, p and the posterior, q under these new (oddball) data will be high. These effects, indicating brittle models, were hypothesized to be less
pronounced in older subjects. B) An illustration of how model optimality depends on the environment. Left-most panels: In a constant environment
both young (top) and old (bottom) brains have connections that convey accurate predictions (blue arrows). The sensory input, s, will result in
prediction error messages (red arrows) that are cancelled by the appropriate prediction. A change in the environment (e.g., from a dog bark to a
human voice) will result in prediction error signals along the human voice pathway until human voice predictions are made and cancellation occurs.
This type of predictive coding scheme has been proposed as the mechanism underlying the mismatch negativity [17]. In this scenario, both young
and old brains generate accurate predictions with similar complexity. Centre Left panels: repeated sensory input from a specific human voice results
in new prediction and error pathways for that particular vocalization in a younger brain. For this environment, the younger brain is more accurate (at
the penalty of higher complexity) and may outperform the older brain in terms of model quality. Centre Right panels: on return to the original
environment, the older brain – that has maintained a less complex model – outperforms the younger brain. Right-most panels: In a novel
environment that persists, younger brains – that support more flexible Bayesian updating – will outperform older brains. In this context, the degrees
of freedom subtended by effective connections in the older brain are not sufficient to simulate the environment and provide accurate predictions.
doi:10.1371/journal.pcbi.1003422.g001
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optimal perception and action is achieved by maximising the

Negative Free Energy (F):

F(s,h,m,m)~ln p(s m){KL q(h mj ,m),p(h sj )½ �j ð1Þ

Maximising this functional at every point in time ensures homeo/

allostasis [12], by minimising the surprise (the negative log model

evidence f{ln p(s m)gj ) of incoming sensory signals s caused by

states of the world h, represented in the brain with their sufficient

statistics m. It renders the current prediction of states of the

environment; q(h mj ,m), close to the true probability of those states;

p(h sj ) (where the distance measure is the Kullback-Leibler

divergence KL). This process is dependent on the model the brain

instantiates, m. Rearranging this equation, we see that the quality

of this model can be decomposed into two components; repre-

senting accuracy and complexity.

Model Quality~Accuracy - Complexity

F (s,h,m,m)~Eq ln p(s h,m,mj )½ �{KL q(h m,mj ),p(h mj )½ � ð2Þ

In our connectivity analysis, the only consistent aging effect was

manifest in trial-by-trial updates and revealed during the presentation

of the oddball. This is represented mathematically as the KL-

divergence from the approximate posterior to the prior, ie. the

complexity penalty; which reduced over the lifespan (Figure 1).

Figure 2. Mismatch Network. A) Statistical parametric mapping of mismatch (standard – oddball) effect across subjects (p,0.05 FWE corrected)
sharing a color-coded F statistic on a semi-transparent canonical cortical inflated mesh. This SPM compares the power (in frequencies from 0–30 Hz,
over 60–300 msec of peristimulus time), evoked by oddball stimuli with the equivalent power evoked by standard stimuli. B) Auditory evoked
responses recorded at one MEG sensor over right frontal cortex. Plotted are the grand averaged evoked measurements across all sessions (shaded
areas represent their standard deviation) in response to standard tones (blue) and oddball tones (green). The difference in these responses
constitutes the mismatch negativity (MMN); seen here as the negative differences from 100–200 msec (white inset) – as predicted from the literature.
Both types of trials were fitted for each subject in the DCM analysis. C) In the DCM, we modeled the transmission of neuronal activity from primary
sensory to frontal regions using three sources reciprocally connected in each hemisphere; source location priors were as follows: left HG: x = 242,
y = 222, z = 7; right HG: x = 46, y = 214, z = 8; left STG: x = 261, y = 232, z = 8; right STG: x = 59, y = 225, z = 8; left IFG: x = 246, y = 20, z = 8; right IFG:
x = 46, y = 20, z = 8. Inputs entered Heschl’s gyrus bilaterally and were passed via forward connections to STG within each hemisphere. STG sent top-
down backward connections to HG. STG also sent forward connections up to IFG and received backward connections from IFG. Each source is
modeled in the DCM with a neural mass model. The parameters of synaptic interactions within each source, as well as the extrinsic connections
between sources were optimized during model inversion. The extrinsic connectivity was equipped with an additional parameter that allowed for
different connection strengths during standard or oddball stimulus processing.
doi:10.1371/journal.pcbi.1003422.g002
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Over-learning of the standard tone by younger subjects is indicative

of brittle models. These effects were significantly less pronounced as

our cohort (cross-sectionally) aged. In contrast, accuracy was

equivalent across the lifespan on a trial-average basis, since younger

subjects learned the standard tone; indicating poor predictions to

early standard and all deviant tones with better predictions to later

standard tones; while age induced greater baseline predictions

overall, that were generalizable to auditory deviants.

Discussion

These results are interesting for two reasons. First, the ability of

subject-specific DCM parameters to predict age in such a reliable

way suggests that the coupling estimates have a high degree of

predictive validity. Second, it is remarkable that the most pre-

dictive parameter encoded a sensory learning effect – as opposed

to a connection engaged by the predictive coding of standard or

oddball stimuli per se. Furthermore, the particular connection

implicated – the forward primary auditory afferent to STG – has

been found to increase in previous DCM studies of the MMN

[26]. The present study is the largest DCM study reported to date

and underscores a general point; namely, that biologically

grounded models of evoked responses can disclose important

associations between quantitative estimates of functional brain

architectures and the behavioral or clinical phenotype. In parti-

cular, we used our data to estimate the underlying causes of evoked

responses – and did not simply look for correlations between age

and a particular data feature (e.g., the MMN magnitude). This

means that we could account for a range of potentially age-related

confounds (e.g., intersubject differences in lead fields) that would

otherwise obscure structure-function relationships of interest.

In conclusion, our results suggest that effective connectivity in

the human brain does not undergo indiscriminate age-related

decline but shows a selective and specific attenuation of plasticity

Figure 3. Age Effects from DCM’s Neuronal Parameters. A) Representative example of data fit shown as a sensor space image for all MEG
channels (along the x-axis) over peristimulus time (0–300 msec along the y-axis). Data are normalized to arbitrary units according to color bar.
B) Subjects age as predicted by a linear regression on the DCM neuronal parameters. C) Left: Contribution of each parameter to the regression:
negative log p-value for all 38 regression coefficients (37 DCM parameters and a constant; Table 1) as assessed using the appropriate t-statistic. The
horizontal line depicts the Bonferroni-corrected significance level. One parameter has a significant p-value: this parameter encoded the difference in
forward connectivity to right STG, between oddballs and standard and had a negative correlation with age. Right: Red is the forward connectivity
parameter, illustrated within the DCM architecture, where age was predicted. D) Individual DCM parameter estimates. Left: the parameter controlling
changes in connectivity from right HG to right STG identified above, plotted according to an adjusted (for the effect of remaining parameters in the
regression model} age ranking. Right: a similar plot illustrating the latent connectivity strength from right HG to right STG, plotted according to age
rank, adjusted as above.
doi:10.1371/journal.pcbi.1003422.g003

Sensory Learning and Human Aging

PLOS Computational Biology | www.ploscompbiol.org 5 January 2014 | Volume 10 | Issue 1 | e1003422



in the face of short-term sensory learning or memory. In other

words, there were no systematic age-related changes in effective

connectivity when processing auditory stimuli per se. This is

consistent with the conjecture that older brains are more efficient

(less complex) models of the sensorium and are less predisposed to

short-term (Bayesian) updating.

The present study was motivated by recent perspectives

provided by theoretical neurobiology [12] that offer a principled

explanation for the reduction in connectivity (complexity) with

progressive optimization of the generative models the brain uses

for hierarchical Bayesian inference. A corollary of this complexity

minimization is decreased Bayesian updating and neuroplasticity

that we confirmed experimentally with a sensory learning (oddball)

paradigm. Our results may call for a reinterpretation of aging

neuroimaging studies; in particular, the compensation hypothesis that

has been provided as explanation for age-related changes in the

pattern of cortical activations [22,35,36]. Indeed, a reinterpreta-

tion has been offered from a cognitive perspective [37] where a

shift from bottom-up to top-down processing has been proposed to

explain better cognitive performance in older individuals [38].

These performance gains have been shown to accrue in uncon-

ventional (generalized) re-test circumstances; e.g. using distractors

that should have been ignored in one task, to complete later tasks

[39]. From the perspective of task performance, complexity

reduction would similarly support reliability, as exhibited by older

participants in a recent study of performance consistency across

multiple cognitive domains [40]. The complexity minimization

perspective may also account for de-differentiation in cortical

specialization [41–43] and cognitive structure [44,45] due to age - in

the sense that simpler generative models require fewer degrees of

freedom (functional specialization) to predict sensorimotor contin-

gencies. While our results focus on functional connections, struc-

tural changes commensurate with complexity reduction have

recently been demonstrated in a non-aged but practiced cohort of

ballerinas. In their study [46], highly trained ballet dancers - who

show improved stability in response to spinning - exhibited grey

matter reductions in cerebellar grey matter compared to controls.

Furthermore, controls showed enhanced vestibular perception that

was positively correlated with cortical white-matter measures, an

effect absent in the dancers, effects summarized by the authors as

‘‘training-related attenuation’’.

Interestingly, the schema presented in Figure 1 was supported by

learning effects in early sensory cortex. These were constrained to the

right hemisphere, where classical MMN effects are most pronounced

[47]. Complexity reduction could potentially evolve over the lifespan,

providing a balance of metabolic cost [48] to allow for an elaboration

of model components in multi-modal regions. It could also contribute

directly to the poor discriminability of (unimodal) sensory inputs

observed in older adults [49], which in turn may preface as a

‘common cause’, age-related cognitive disruption [50].

From a physiological perspective, predictive coding may provide

a useful process theory for neuronal computations in aging. For

example, simulations of the mismatch negativity paradigm predict a

rapid trial-by-trial suppression of evoked responses that rests on the

neuromodulation of superficial pyramidal cells reporting prediction

error. Previously, we confirmed this prediction empirically using

dynamic causal modeling and a placebo-controlled study of cholin-

esterase inhibition [18]. In a complementary simulation study of

Table 1. Neuronal parameters of the DCM – description and prior values presented in Figure 3C.

Parameter (Parameter
Index in Figure 3C) Physiological Interpretation Prior:

hi~mi exp(qi) Mean: mi Variance: qi*N(0,Cq)

S (2) Parameter controlling covariance
amongst states (optimized for all sources) m~s �

75 0:2 0:8
0:2 0:004 0

0:8 0 0:02

2
4

3
5

Cq~1=16

te=i~1
�

ke=i (3–8) Average synaptic time-constant AMPA-like
channels (optimized per source)

mte
~4m sec Cq~1=16

GABAa-like channels mti
~16m sec Cq~0

NMDA like channels mtNMDA
~100m sec Cq~0

G (9–14) Intrinsic Excitatory Connectivity
(optimized per source) mg~g �

0 0 0:5
0 0 1

0:5 0 0

2
4

3
5

Cq~1=16

A (15–18) Extrinsic Forward Connection mA~1=2 Cq~1=8

A (19–22) Extrinsic Backward Connections mB~1=4 Cq~1=8

B (23–30) Modulations of Extrinsic Connection mB~0 Cq~1=8

C (31–32) Input Strength of volley from Thalamus to
Left and Right Primary Auditory Cortex

mC~1 Cq~1=32

R1 (33) Controls the size of the input volley (a Gaussian
bump function) from the thalamus, onset: 64 msec

mR1
~128 Cq~1=16

R2 (34) Controls the duration of the input volley mR2
~1 Cq~1=16

d (35) Intrinsic conduction delay md1~2m sec Cq~1=16

(36) Extrinsic conduction delay md2~16m sec Cq~1=16

U (37) Background Synaptic Input mB~1=8 Cq~1=16

CV (38) Membrane Capacitance mCV ~8mF Cq~1=16

Note parameters are log-scaling parameters: (qi). These operate on variables with the following prior mean – and can be found in spm_fx_nmda.m, part of the
DCM_MEG toolbox in SPM (http://www.fil.ion.ucl.ac.uk/spm/).
(* indicates age-predictive parameter).

Sensory Learning and Human Aging
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frequency-based MMN, NMDA mediated synaptic plasticity has

been shown to underpin model reorganization at the predictive cell

population [17]. Given the therapeutic benefit of cholinesterase

inhibition [51], and the role of NMDA receptors [52] in dementia

further modeling of non-invasive psychopharmacological studies

may provide important insights into the synaptic basis of age-related

changes in perceptual processing.

Methods

Subjects
We studied 97 healthy volunteers, 55 female, who were cogni-

tively normal with no neurological or psychiatric illness or serious

medical history. Subjects were aged 20 to 83 and all completed the

recording paradigm.

Ethics Statement
Subjects were paid for their participation and consented to all

procedures, which were conducted in accordance with the Decla-

ration of Helsinki (1991). Protocols were approved by the South-

East Strategic Health Authority Regional NHS Ethics Committee.

Experimental Paradigm and MEG Data Acquisition
MEG recordings were made in a magnetically shielded room using

a 275-channel CTF system with SQUID-based axial gradiometers

(VSM MedTech Ltd., Couquitlam, BC, Canada). Recordings were

obtained during two sessions with a small rest period between

scanning, during which time subjects remained in the MEG scanner.

Head localisation was performed at the beginning of each session.

Auditory responses were elicited by stimuli comprising pure

tones presented binaurally over headphones. Two stimuli, at

500 Hz and 800 Hz were presented in a pseudo-random sequence

for 70 msec with 10 msec rise and fall times. The first tone served

as the standard and was presented on 88% of trials, while the

second, which served as the oddball, was presented on 12% of

trials. The sequence ensured that the minimal interval between

oddballs was 2 trials and the maximum was 25 trials. The ISI was

fixed at 1100 msec. Loudness was adapted to each subject’s

auditory threshold to be clearly audible binaurally – as measured

in a test run while in the scanner. We collected data over two

sessions for 96 subjects. For one subject we recorded just one

session. Sessions were 6 minutes in length.

Data Pre-processing and Source Localization
MEG data were first filtered off-line (band-passed from 0.5–30 Hz),

down-sampled (to 200 Hz), epoched (from 2150 ms to 350 ms peri-

stimulus time), baseline corrected to 0 ms peristimulus time, artefact

corrected (peak-to-peak threshold 5pF) and averaged to obtain event

related fields (ERFs). The analysis routines we used are available in

the academic freeware SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).

For source localization, multiple sparse priors were used to

estimate the cortical sources of the sensor recordings, using

standard settings [53]. Multiple sparse priors employs several

hundred patches of activation that are iteratively reduced until an

optimal number and location of active patches are found using a

greedy Bayesian search. A tessellated cortical mesh set in canonical

Montreal Neurological Institute (MNI) anatomical space – as

implemented in SPM8 – served as a brain model [54]. This dipole

mesh was used to calculate the forward solution using a spherical

head model. Source activity measures were then interpolated into

MNI voxel space and analysed using statistical parametric mapping

– at the between subject level – using an F test: A contrast of

standard vs deviant stimuli was computed at p,0.05 family-wise

error corrected (Figure 2) based on the evoked power over fre-

quencies from 0–30 Hz and from 60 to 300 msec peristimulus time.

Dynamic Causal Modeling
For dynamic causal modeling, we used source location priors as

described in previous DCM analyses of the mismatch negativity

(MMN) paradigm [23,25]. These included sources in Heschl’s

gyrus, superior temporal cortex and inferior frontal gyrus and were

consistent with the source localisation analyses. The MNI coordi-

nates were as follows: left HG: x = 242, y = 222, z = 7; right HG:

x = 46, y = 214, z = 8; left STG: x = 261, y = 232, z = 8; right STG:

x = 59, y = 225, z = 8; left IFG: x = 246, y = 20, z = 8; right IFG:

x = 46, y = 20, z = 8. These prior locations were optimised at an

individual level during DCM inversion using distributed dipoles and

the forward solution from the above source localisation [55].

In DCM, event related fields are modelled as the response of a

dynamic input–output system to exogenous (experimental) inputs [29].

The DCM generates a predicted ERF as the response of a network of

coupled sources to sensory (thalamic) input – where each source

corresponds to a neural mass model of three neuronal populations.

Our dynamic causal models comprised hierarchical sources with prior

locations as defined above, extrinsic input to primary sensory regions

and extrinsic connections of forward and backward type [56]:

MEG sensor data were fitted over 0–300 msec peristimulus

time, with the following model: auditory input (modelled as a

Gaussian bump-function, with a prior onset of 64 msec) entered

bilateral Heschl’s gyrus, which provided forward connections to

STG within each hemisphere. STG sent top-down backward

connections to HG. STG also sent forward connections up to IFG

and received backward type connections from IFG. To accom-

modate trial-dependent differences, stimulus specific parameters

were included for all extrinsic connections. The neural mass model

describing the activity of each source comprised three subpopu-

lations, each assigned to three cortical layers – which determine

how they receive external inputs [56]. Spiny stellate cells receive

input via forward and thalamic inputs and are located in layer IV.

Pyramidal cells and inhibitory interneurons are located outside of

layer IV. These receive inputs from backward connections. Extrinsic

output cells are the pyramidal cell subpopulation in each region.

The neuronal dynamics were based on a conductance based

model with intrinsic AMPA receptors (at all cell populations),

GABAa receptors (at pyramidal cell populations and inhibitory

interneurons) and NMDA receptors (at pyramidal cell populations

and inhibitory interneurons) [57] (specified as the ‘‘NMDA’’ model

in the SPM interface). The DCM generates a predicted ERF as the

response of the network of coupled sources to sensory input. This

input takes the form of a narrow (16 msec) Gaussian impulse func-

tion, which accounts for some temporal smoothing in thalamic volleys.

For computational expediency, DCMs were computed follow-

ing dimensionality reduction to eight channel mixtures or spatial

modes. These were the eight principal modes of a singular value

decomposition (SVD) of prior predictive covariance based upon

the prior source locations. Note that data are normalized prior to

model inversion and the forward model which accounts for source

transmission to the MEG sensors is also parameterised and

optimised during inversion.

Analyses of Conditional Model Parameters
Where data were collected over multiple trial runs (96 out of 97

subjects), DCMs were fitted for each run separately and post-hoc

conditional parameter means were computed using Bayesian

parameter averaging (BPA). These were used for the regression

models and lifespan correlation. BPA involves a weighted average

where each model’s posterior mean (in DCM.Ep) is weighted with
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its relative precision, where precisions are obtained from the

inverse of the posterior covariance.
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