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Abstract

Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly
and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are
governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking
neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an
eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-
fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate
dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the
transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.
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Introduction

Descriptions of neuronal spiking in terms of firing rates are

widely used for both data analysis and modeling. A firing-rate

description of neural data is appealing because it is much simpler

than the full raster of spikes from which it is derived. In much the

same spirit, firing-rate models are useful because they provide a

simpler description of neural dynamics than a large network of

spiking model neurons. Although firing rates are, at best, an

approximation of spiking activity, they are often a sufficient

description to gain insight into how neural circuits operate.

Toward these approaches, it is important to develop firing-rate

models that capture as much of the dynamics of spiking networks

as possible.

A number of attempts have been made to derive firing-rate

models as approximations to the dynamics of a population of

spiking neurons [1–5]. Inevitably, the resulting models involve

a compromise between accuracy and simplicity. Typically,

such models describe firing-rate dynamics as fluctuations

around a steady-state firing rate r?(x). Given a constant input

x, after a sufficiently long time, the firing rate will be given by

r?(x).

The subtlety in constructing a firing-rate model arises in

trying to describe dynamics; attempting to do so leads to two

questions. First, what are the dynamics of r(t) as it approaches

its steady-state value r?? Second, what are the dynamics in

response to time-dependent input, x?x(t)? To address the first

question, it is generally assumed that the approach to the steady-

state is exponential with a temporal rate-constant k (or time

constant 1=k), so that the time-dependent firing-rate is described

by

dr

dt
~k r?(x){rð Þ : ð1Þ

We will refer to equation 1 as the classic rate model. The most

straightforward approach to answering the second question,

what happens when the input is time-dependent, is simply to use

equation 1 with a time-dependent asymptotic rate r?(x(t)), even

though it was derived with a static input in mind.

To evaluate the validity of such a rate model, an appropriate

basis of comparison is the firing rate of a population of identical

spiking neurons, all receiving the same common input x ~ m and

each receiving independent ‘noise’ fluctuations with the same

variance s2. Under appropriate conditions, the classic rate model

of equation 1 can provide a reasonable approximation. For

example, the change in the firing rate of a population of uncoupled

integrate-and-fire model neurons responding to a step change in

their common input matches the results of equation 1 quite well

when the independent noise dominates their dynamics (Figure 1A,

red trace). However, when the dynamics of the same population of

integrate-and-fire neurons is dominated by the mean of the input

rather than the noise, the model neurons tend to transiently

synchronize their firing in response to a step change in m, resulting

in an oscillating firing rate that is not well described by equation 1

(Figure 1B, red trace). Similar results are obtained in response to

more general time-dependent common inputs (Figures 1C and D).

In the noise-dominated regime, these dynamics can be matched by

equation 1 (Figure 1C, red trace), but when the common input

dominates the noise, equation 1 fails to capture the large firing-

rate fluctuations (Figure 1D, red trace), even when k is chosen
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optimally (Methods). In this paper, we introduce a firing-rate

model based on a generalization of equation 1 to complex

numbers that can describe the firing rate in all of these cases

(Figure 1, blue traces). Our focus is on describing, within a rate

formulation, effects caused by partial spike synchronization that

cannot be considered in conventional rate models, rather than on

describing phenomena such as excitatory-inhibitory oscillations

that can and have been analyzed using conventional models.

A powerful method for analyzing spiking dynamics is to use the

Fokker-Planck equation to compute the probability density of

membrane potential values for a population of model neurons.

This approach has been used to analyze the synchrony effects

we consider [6–8], to study the impact of synaptic dynamics [8,9],

to compute linear responses [10,11], and to explore models

of zsensory processing [7]. Simulation of a network using the

Fokker-Planck approach requires integration of a partial differen-

tial equation. This can be done with reasonable computer power,

and previous work has suggested ways of simplifying the Fokker-

Planck analysis by approximating the results with a finite number

of modes [6,8,12]. Our work makes use of an extreme limit of this

approach and results in a model that directly describes firing rates

in terms of an ordinary differential equation. A firing-rate

description offers some computational advantages over the full

Fokker-Planck description but, more importantly, it opens up

possibilities for analytic studies based on stability analysis and

mean-field approximations [13].

Classic rate models fail to describe neuronal firing when noise is

insufficient to eliminate spike synchronization. The basic problem

is that firing-rate dynamics are not purely exponential with a

constant decay rate. The decay rate k in equation 1 can depend on

m and s. In addition, multiple exponentials and, as seen in

Figure 1B, oscillatory dynamics may be required. Two previous

studies of firing-rate models have addressed different aspect of this

problem by retaining equation 1 but replacing the simple equality

x(t) ~ m(t) with a differential equation that relates x(t) to m(t)
[4,5]. Shriki et al. [4] introduced a differential equation that

describes damped firing-rate oscillations such as those seen in

Figure 1B, but the decay rate of these oscillations is a constant

rather than changing as a function of the firing rate and spiking

variability as it does in spiking models. This analysis was based on

a comparison of their rate model with a conductance-based

neuronal model. Ostojic & Brunel [5] computed how the

relaxation time constant depends on r? by approximating the

linear response computed from the Fokker-Planck equation. This

analysis did not consider an oscillatory component in the approach

to the steady-state. Here, we aim to describe both the variability in

the rate of decay of the firing rate to its steady-state value and the

oscillations that may occur during this transition. Whereas firing-

rate models are typically thought to be inappropriate outside the

noise-dominated regime, we show that the resulting ‘complex-

valued’ firing rate model can still describe neural dynamics well

Figure 1. Firing-rate response of an uncoupled spiking population. A. Response to step in the common input current in the noise-
dominated regime. B. Response to step in the common input in the mean-dominated regime. C. Response to randomly fluctuating common input in
the mean-dominated regime. D. Response to randomly fluctuating common input in the mean-dominated regime. In A–D, top panel shows common
injected current; middle panel shows spike raster for 500 trials with an EIF neuron; bottom panel shows firing rate response of 10,000 EIF neurons
(black), the classic rate model (red), and the complex-valued rate model (blue). Background noise is constant, with A & C s ~ 5 mV, B & D s ~ 2 mV.
doi:10.1371/journal.pcbi.1003301.g001

Author Summary

Neuronal responses are often characterized by the rate at
which action potentials are generated rather than by the
timing of individual spikes. Firing-rate descriptions of
neural activity are appealing because of their comparative
simplicity, but it is important to develop models that
faithfully approximate dynamic features arising from
spiking. In particular, synchronization or partial synchroni-
zation of spikes is an important feature that cannot be
described by typical firing-rate models. Here we develop a
model that is nearly as simple as the simplest firing-rate
models and yet can account for a number of aspects of
spiking dynamics, including partial synchrony. The model
matches the dynamic activity of networks of spiking
neurons with surprising accuracy. By expanding the range
of dynamic phenomena that can be described by simple
firing-rate equations, this model should be useful in
guiding intuition about and understanding of neural
circuit function.

Complex-Valued Firing-Rate Model
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into the mean-dominated regime. Furthermore, we find that the

firing rates of the different spiking models we consider – the linear

(also called ‘‘leaky’’), quadratic and exponential integrate-and-fire

models (LIF, QIF and EIF, respectively) – can all be described

using a single, and therefore general, complex-valued firing-rate

model.

Results

As outlined in the Introduction, the classic rate model is limited

because it attempts to describe firing-rate dynamics using a single

exponential with a fixed decay rate. The previous extensions of the

classic model described in the Introduction focused on the

relationship between x in equation 1 and m, the common input

to the spiking neurons being modeled. We leave x ~ m, even in

the time-dependent case, and focus, instead, on modifying

equation 1. In general, considering dynamics composed of

multiple rather than a single exponential would result in a more

complicated model, but moving from a fixed to a varying decay

rate is simple –- we just allow k in equation 1 to be a function of m
and s. Extending the dynamics from exponential to oscillatory can

also be done easily by replacing k and r in equation 1 with

complex variables that we denote as k and n, respectively. The

actual firing rate is given by the real part of the complex firing rate,

and thus the complex-valued rate model is defined by

dn

dt
~k r?{nð Þ with r(t)~Re n(t)f g , ð2Þ

where k is complex-valued, and both r? and k depend on m and s
(we omit these dependencies for notational simplicity). To

complete the definition of the model, we must specify the

dependence of r? and k on the input parameters. The first of

these, r?, can be obtained either through first-passage time or

other analytic calculations or by fitting numerical results. Here we

focus on determining k using a Fokker-Planck approach.

The spiking neuron models we study are all based on the

equation

t
dV

dt
~w(V )zI(t) : ð3Þ

We consider three types of integrate-and-fire models, determined

by the form of w(V ). For the LIF model, w(V ) ~ V rest {V ; for

the QIF model, w(V ) ~ (V{VT )2=DT ; and for the EIF model,

w(V ) ~ V rest {VzDT exp((V{VT )=DT ). Here, V rest , DT and

VT are fixed parameters. All three models generate action

potentials when the membrane potential reaches a threshold value

H and are then reset to a potential V reset . The chosen parameter

values for all models are listed in the Methods. The input current

we consider is of the form

I(t)~m(t)z
ffiffiffiffiffi
2t
p

s(t)j(t) , ð4Þ

where m(t) gives the mean current at time t, s(t) determines the

trial-to-trial or neuron-to-neuron variability of the current, t is the

membrane time constant appearing in equation 3, and j
represents random white noise with first- and second-moment

averages Sj(t)T ~ 0 and Sj(t)j(t’)T ~ d(t{t’). The firing rate

we model is the spiking rate of this model neuron averaged over

many trials with independent draws of the white noise or,

equivalently, the average firing rate of a population of uncoupled

neurons described by equations 3 and 4 with the noise drawn

independently for each neuron. Later we consider coupled

networks.

The Fokker-Planck Approach
Firing-rate models attempt to characterize the action potentials

generated by a population of spiking neurons without accounting

in any way for further biophysical quantities such as the

membrane potentials of the neurons. An alternative approach is

to use the Fokker-Planck equation to compute the distribution of

membrane potential values across the population as a function of

time, and then to derive the firing rate from this distribution. This

can be done by expanding the distribution in a series of modes that

are eigenfunctions of the Fokker-Planck operator. In the Methods,

we show that equation 2 can be derived as a two-mode

approximation of the firing rate that arises from this eigenfunction

expansion and that, as a result, k in equation 2 is the negative of

the dominant nonzero eigenvalue of the Fokker-Planck operator.

This provides a way to compute k as a function of the common

input and input variance, m and s2. In using an input current

(equation 4), which is an approximation of the Poisson input that a

neuron would receive in a network in a form suitable for Fokker-

Planck analysis [9], we ignore both the conductance and temporal

filtering effects of synapses. The latter simplifies the Fokker-Planck

analysis by avoiding dynamic variables related to synaptic

transmission [8,9].

Determination of k
The computations of the dominant nonzero eigenvalue of the

Fokker-Planck operator for these models are described in the

Methods, and the results are shown in Figure 2. Rather than

expressing k as a function of the input parameters m and s, we use

an equivalent parameterization in terms of the output, expressing

k as a function of r? and the coefficient of variation (CV) of the

spiking models. The r?{CV space has a one-to-one mapping

with the m{s space [14], and working in this space allows us to

plot results for all three neuron models on comparable axes. In

Figure 2B–D, we show the imaginary and real parts of k along the

curves in the space of r?{CV values depicted by the different

colored traces in Figure 2A (these are curves of fixed s for the

exponential integrate-and-fire model, in particular s = 1, 2 and

4 mV).

The first thing apparent in Figure 2 is that the k values for the

models do not differ from each other very much over the range

shown, although the imaginary parts separate somewhat at low r?
values and the real parts deviate from each other at high CV

values. As shown in Figure 2B, the imaginary part of k is

approximately a linear function of r? for all three integrate-and-

fire models, with a slope of 2p. This dependence is not unexpected.

Going back to Figure 1B, we note that the oscillations following

the step increase in the common input are due to partial

synchronization of the spike times across trials. As a result, the

mean spacing between these peaks is equal to the interspike

interval of the spiking model neuron, so the frequency of these

oscillations is the steady-state firing rate r?.

The dependence of the real part of k on the r? and the CV

value is not as simple as that for the imaginary part but, as shown

in Figure 2C, the quantity Refkg=20r? depends on the coefficient

of variation in an approximately model-independent manner. For

CV values less than 0.75, CV2 provides a good fit to the data

(Figure 2C, black). Equivalently, the quantity Refkg=20CV2 is

approximately equal to r? unless both r? and CV are too large

(Figure 2D). Putting these two pieces together and noting that

20CV2 ~ (CV=0:22)2, the complete complex-valued firing rate

Complex-Valued Firing-Rate Model
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model consists of equation 2 with

k~r? (CV=0:22)2z2pi
� �

: ð5Þ

For CV values near 1 and above, Refkg is better fit by a power-

law dependence with a power greater than 2. However, in the

following, we focus on the parameter range where the effects of

spiking synchrony and the differences between the complex-valued

and classic rate models are largest, which is the region of smaller

CV values.

In evaluating differences between the integrate-and-fire models

and the accuracy of our fits (Figure 2), it is important to note that

the significance of such difference varies as a function of r? and

CV. In particular, for large values of either of these parameters,

the dynamics become fast, that is, Re(k) becomes large. We are

primarily interested in matching the dynamics of the complex-

valued rate model to the spiking models over a fairly low frequency

range. For this purpose, it makes little difference whether the

decay rate of the transients matches exactly, as long as it is fast. For

this reason, discrepancies are less concerning when Re(k) is large.

The results summarized in equation 5 come from a Fokker-

Planck analysis assuming time-independent input variables m and

s (Methods). If we redo the analysis allowing for time-dependence

in these variables, additional terms spoil the correspondence

between the truncated Fokker-Planck and rate-model approaches

[12]. However, comparison with populations of integrate-and-fire

model neurons convinced us that these terms are small unless the

input parameters vary extremely rapidly over wide ranges. Thus,

we follow the step often taken in deriving the classic firing-rate

model and discussed in the Introduction, which is to use the model

defined by equations 2 and 5, even when m and s depend on time,

simply by using the time-dependent values in these equations.

Classic firing-rate models are completely specified by the

function r? and constant k. The complex-valued rate model is

similarly specified by r? and the CV value. In the coupled

networks that we consider in a following section, CV may change

over time, but it can be determined easily as a function of the

network activity as the network state evolves.

The Complex-Valued Rate Model Reproduces the Firing-
Rates of Spiking Neurons

We have already shown in Figure 1 that the complex-valued

rate model does much better than the classic firing-rate model at

describing responses in the mean-dominated regime, and it

matches the performance of the classic model in noise-dominated

cases. We now extend these results by studying how faithfully the

complex-valued model predicts the firing rate of a neural

population receiving dynamic input overlaid on different levels

of background noise.

We compare the firing rate of a population of either EIF, LIF,

or QIF neurons to the classic and complex-valued rate models

responding to an input of the form of equation 4, with a time-

dependent common term and a range of time-independent

variances. For every level of noise considered, we determine and

use the optimal value of k for the classic rate model (Methods),

whereas we use equation 5 for the complex-valued model

throughout. Figures 3A and 3B illustrate the responses at

CV = 0.1 and CV = 0.8, respectively, of a population of EIF

neurons, the complex-valued rate model, and an optimally fit

classic rate model. When the level of noise is low, fluctuations in

the common input can generate much larger fluctuations in the

population firing rate than the classic model predicts, but the

complex-valued model accurately reproduces the response

(Figure 3A). The large firing-rate fluctuations arise in the EIF

Figure 2. The parameter k as a function of firing rate and CV. A. Curves through r?{CV space along which values in B–D are evaluated. B.

Imaginary part of k divided by 2pt. C. Real part of k=(20r?) versus CV. Black line corresponds to CV2 . D. Real part of k=(20CV2) versus r?. B–D show
k for the QIF (dotted lines), EIF (dashed lines), and LIF (solid lines), with the color indicating the corresponding line in r?{CV space shown in A.
doi:10.1371/journal.pcbi.1003301.g002

Complex-Valued Firing-Rate Model
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model from resonant dynamics due to partial synchronization. As

we show below, the complex-valued rate model captures this

resonant behavior, whereas the classic model does not. In the

presence of higher noise, common input fluctuations of the same

amplitude produce smaller firing-rate fluctuations and, as a result,

both the complex-valued model and the optimally chosen classic

rate model reproduce the response almost perfectly (Figure 3B).

We quantify the agreement between the activity of the spiking

models and the complex-valued rate model using a shifted

correlation coefficient. This is based on computing the cross-

correlation between the firing rate of an integrate-and-fire

population and that for the complex-valued rate model, but we

allow for a small shift between the times at which these two rates

are compared. As stated previously, we are primarily interested in

matching dynamics over relatively slow timescales. Because of this,

small temporal shifts are inconsequential. We therefore compute

the correlation coefficient between these two rates at the shift that

maximizes it. Figure 3C shows the maximal shifted correlation

coefficient between each integrate-and-fire population and the

complex-valued rate model. Also shown is the maximal shifted

correlation coefficient between the EIF population and two

different versions of the classic rate model – one in which k is

re-optimized for each choice of CV (Figure 3C, red), and one in

which k is fixed at a single value (the value optimal for CV = 0.8;

Figure 3C, dark red). As illustrated in Figure 3C, performance of

the classic rate model declines rapidly as the baseline CV

decreases, whereas the complex-valued rate model faithfully

approximates the neural population dynamics of all three neuron

models across the full range of noise levels. The two models have

similar accuracy for higher CV values.

The Frequency Response of the Complex-Valued Rate
Model

In the previous section, we suggested that the better perfor-

mance of the complex-valued rate model compared to the classic

model is due to its ability to capture resonant behavior in the

underlying integrate-and-fire model dynamics. To study this

further, we computed the linear response properties of the three

integrate-and-fire models and compared them to the linear

response of the complex-valued rate model. In particular, we

considered the responses of these models to an oscillating common

input m(t) ~ m0zE cos(vt) and computed them to first-order in E.
To this accuracy, the firing rate can be written as

r(t) ~ r?(m0)zEr
0

?(m0)G cos(vtzw), where the prime denotes

a derivative. The linear response is defined by the gain G and

phase w, expressed as functions of the frequency v. The linear

response of the classic firing-rate model is just that of a low-pass

filter with G ~ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zv2
p

and w ~ arctan(v=k), which clearly

exhibits no resonant behavior.

The linear response of the complex-valued rate model is given

by (Methods) G(v) ~ DDZDD and w(v) ~ Arg(Z), where

Z~1z
v2{ivRefkg

(Refkgziv)2zImfkg2
: ð6Þ

The results shown in Figure 4 are based on using the steady-state

rate r? of the EIF model to compute k, but the results are quite

insensitive to which neuron model is used to define r?.

At sufficiently low noise levels, all three spiking integrate-

and-fire models have a resonance at a frequency equal to their

Figure 3. Rate model accuracy as a function of input noise. The response of each rate model is compared to a spiking population receiving an
input with fluctuating common term and constant variance. The common input is composed of a baseline level and a fluctuating component
composed of equal-amplitude sinusoidal oscillations with random phases and frequencies of 61, 50, 33, 13.1, and 7.9 Hz. A–B. Response of EIF
population and both rate models to input with a CV of either 0.1 (A) or 0.8 (B). Top, middle, and bottom panels are as described in Figure 1. C. For
each spiking model and each CV value, the maximum of the shifted correlation coefficient is computed between the trial-averaged firing rate of the
spiking population and each rate model. The trial-averaged firing rate of a spiking population is computed from 300 repetitions of the same common
input and different instantiations of noise. Each point in C represents the mean + standard error of 10 different instantiations of the random phase
shifts in the common input. In most cases, error bars are smaller than the marker. The maximal shifted correlation coefficient between the complex-
valued rate model and the EIF, QIF, and LIF are shown in cyan, green, and blue, respectively. The same comparisons between the EIF and the classic
rate model either optimized for each CV value or just to CV = 0.8 are shown in red and dark red, respectively. Classic rate model comparisons to the
LIF and QIF produce similar results but are omitted for clarity.
doi:10.1371/journal.pcbi.1003301.g003

Complex-Valued Firing-Rate Model
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steady-state firing rate (Figure 4A and 4C). These models exhibit

similar behavior for frequencies below the first resonance peak, but

their high-frequency responses differ, as has been noted previously

[15]. The complex-valued rate model matches these responses

fairly well below and up to the resonant frequency, and then, at

higher input frequencies, matches the QIF model best over the

range of frequencies shown in Figure 4. However, in the high-

frequency limit, the gain of the complex-valued rate model scales

as 1=v, which matches the frequency response of the EIF model

[15]. At high noise levels, the resonance peaks disappear, and all

three spiking neuron models behave roughly as low-pass filters

(Figure 4B and 4D), as do the complex-valued and classic rate

models.

For the complex-valued rate model, the frequency dependence

of the linear response to s is identical to the response to m
(Equation 6, but in the equation for r(t), r’?(m0) is replaced by the

gain with respect to s). As with modulations in m, the response of

the complex-valued rate model to modulations in s will match the

response of spiking neurons at low frequencies, around the

resonance, and diverge from it at high frequencies.

As shown in the insets of Figures 4A and 4C, the complex-

valued rate model provides a reasonable approximation of the gain

and phase of the response near the primary resonance peak for all

three spiking models. As shown by Brunel & Hansel [16], network

stability is fully characterized by properties of the linear response

function. The similarity we see in the linear response therefore

suggests that a network of complex-valued rate units should have

stability properties similar to a network of integrate-and-fire

neurons. We examine this in the following section.

Excitatory-Inhibitory Networks
Thus far, we have shown that the complex-valued rate model

can reproduce the responses of uncoupled populations of spiking

neurons, but the real interest is, of course, in coupled networks. To

extend our results to this case, we consider two populations of

neurons, one excitatory and one inhibitory. Networks of excitatory

and inhibitory neurons have been a fruitful focus of study in both

rate [1,13,17–19] and spiking versions [12,20–23]. In the networks

we consider, the excitatory and inhibitory synaptic connections

onto excitatory neurons have strengths wE and w I , respectively.

Excitatory and inhibitory connections onto inhibitory neurons

have strengths xwE and xw I , respectively (Figure 5). We keep x
fixed at the value 0.5 and scan over different values of wE and w I .

We construct both spiking networks and firing-rate networks and

compare their activities.

The spiking networks we study are large, randomly-connected

networks of N excitatory and N inhibitory neurons, either QIF,

EIF, or LIF (Figure 5A). The connectivity is sparse, so that each

excitatory (inhibitory) neuron receives C excitatory synapses of

equal amplitude wE (or xwE for inhibitory neurons) and C
inhibitory connections of equal amplitude w I (or xw I for

inhibitory neurons), where C=N:s%1. For simplicity and to

Figure 4. Comparison of the linear response of the complex-valued rate model and integrate-and-fire models. A–B. Gain and C–D.
phase of the linear response of the QIF (red), EIF (green), LIF (blue) and complex-valued rate (black) models. A. and C. Baseline coefficient of variation
of 0.1. B. and D. Baseline coefficient of variation of 0.7. Insets in A and C show gain and phase, respectively, of response near the resonant frequency
of 50 Hz. In all cases, the baseline firing rate was 50 Hz.
doi:10.1371/journal.pcbi.1003301.g004

Complex-Valued Firing-Rate Model
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match what we assumed in the Fokker-Planck analysis underlying

the complex-valued rate model, we ignore the dynamics of

synaptic transmission, so that at the time of a presynaptic spike the

membrane potential of the postsynaptic neuron is instantaneously

augmented by an amount equal to the connection strength of the

synapse. Thus, w I and wE represent the integral of a synaptic

current and have units of volts | seconds. We include a white-

noise external input current with mean and variance chosen so

that the neurons have a baseline firing rate of 50 Hz and a CV of

0.1 in the absence of connectivity. The external noise provides

additional stability to the simulations, but including it is not

critical. We take N ~5,000 and s ~ 0:1.

We describe each population of the excitatory-inhibitory spiking

network by one complex-valued rate model given by equations 2

and 5. The functions r? and k for the excitatory and inhibitory

rate models are functions of the means and variances of the

currents into these two types of neurons, labeled mE , m I , sE and

s I . The networks are coupled through the dependence of these

Figure 5. Comparison of the phase portraits of excitatory-inhibitory networks. A. Architecture of the large network of spiking neurons. B.
Architecture of the network of two complex-valued firing-rate units. C–E. A sparse, randomly-connected network of QIF, EIF, or LIF neurons,
respectively. For each connection strength, 50 ms of the firing rate of the excitatory population is shown in black. Stability diagram of the
corresponding two-unit complex-valued rate-model network is superimposed on each panel, where orange indicates a stable limit-cycle, and white a
stable fixed-point. A constant external input was also included with mean m ext and variance s2

ext set to produce a baseline firing rate of 50 Hz and a
CV of 0.1 when wE and w I were zero. F. Sample excitatory (top, red) and inhibitory (bottom, blue) dynamics from both the spiking (dark) and rate
(light) EIF networks with w I ~ 20 and wE ~ 35 (green square in D). An exemplary spike raster of 50 neurons from each population (excitatory/
inhibitory, respectively) is overlaid on the firing rate curves of both networks. Horizontal scale bar = 10 ms. Vertical scale bar = 10 Hz. G. Power spectra
of excitatory (top) and inhibitory (bottom) units from both networks, with spiking network in darker shades and rate network in lighter shades, as in
F. Both networks have a dominant frequency near 50 Hz. Curves represent mean power spectra from all parameters in D for which both networks are
oscillatory (standard error comparable to line width). H. Cross-correlation between excitatory and inhibitory units for EIF spiking (dark purple) and
rate (light purple) networks. Both networks exhibit maximal correlation at a small positive phase shift, indicating that inhibitory oscillations follow
closely behind excitatory oscillations. As in G, curves represent means over all parameters producing oscillations in D, with standard error smaller than
line width.
doi:10.1371/journal.pcbi.1003301.g005
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variables on both firing rates (Figure 5B). We also include an

external source of current to each neuron with mean m ext and

variance s ext . The mean and variance of the recurrent input in

the spiking network can be calculated in terms of the firing rates

and synaptic strengths [20,24]. The mean inputs into the two

neuron types are

mE ~C wE rE {w I r Ið Þ and m I ~C xwE rE {xw I r Ið Þ : ð7Þ

The corresponding variances are

s2
E ~C w2

E rE zw2
I r I

� �
and s2

I ~Cx2 w2
I r I zw2

E rE

� �
: ð8Þ

From these, we compute r? and CV by interpolating from a table

of values recorded for each of the spiking models.

The firing rates of the excitatory population for each of the

integrate-and-fire model types (QIF, EIF, and LIF) are shown in

Figure 5C–E. Two types of behavior are evident in all three

spiking neuron models. When wE is relatively small and w I large,

the neurons fire asynchronously at a constant rate. Larger values

of wE or smaller values w I destabilize the asynchronous state

causing a transition along a fairly well-defined line, to more

synchronous firing with large spikes in the population firing rate.

We asked whether the complex-valued rate model could predict

these transitions as a function of wE and w I .

The stability of the asynchronous state, which is the state with

constant firing rates in the complex-valued model, can be

computed analytically using standard procedures (Methods). The

regions where the asynchronous, constant-firing-rate state is

unstable are shown in orange in Figure 5C–E, overlaid on the

results of the spiking network simulations. Within these regions the

firing rates predicted by the complex-valued model oscillate. For

the QIF, the transition boundary predicted by the rate model

analytics is remarkably accurate (Figure 5C, compare orange

boxes to synchronous activity). For the EIF (Figure 5D) and LIF

(Figure 5E), the complex-valued model provides a fair approx-

imation of the transitions, although with less accuracy than for the

QIF. For example, the complex-valued model predicts stable

asynchrony for a purely excitatory network of QIF, EIF, or LIF

units (along the horizontal axes in Figure 5, but this is only true for

the QIF model. Nevertheless, the transition between asynchronous

and partially synchronous firing in all three spiking models can be

predicted fairly well on the basis of a purely analytic calculation

using the complex-valued rate model.

The oscillations seen within the orange regions in Figure 5 arise

from spike synchronization; they are not the reciprocal oscillations

between the firing rates of excitatory and inhibitory populations

that have been analyzed in previous rate models [1,25]. Two

features of the dynamics of both the spiking and rate networks

make this distinction apparent. First, the oscillation frequency in

both networks is tightly tied to the baseline firing rate (Figure 5F

and 5G), as it must be for oscillations due to spiking resonance; this

is not a property of excitatory-inhibitory oscillations. Second, the

rates of the excitatory and inhibitory units in both networks

oscillate in phase (Figure 5F and 5H), rather than out of phase, as

occurs in excitatory-inhibitory oscillations. Furthermore, we

constructed an excitatory-inhibitory network with the architecture

of Figure 5B, but built with classic firing-rate units and found that

such a network is never oscillatory over the parameter range

shown in Figure 5.

Given that the oscillations we report are not due to excitatory-

inhibitory alternation, we might ask whether inhibition is needed

at all. Indeed, the exponential and linear integrate-and-fire models

can oscillate when the inhibitory weight is 0 (Figure 5D & E),

although the quadratic model (Figure 5C) and the complex-valued

rate model (Figure 5C–E) cannot. Using the approach of Brunel

and Hansel [16], the lack of oscillations in the purely excitatory

complex-valued rate model can be understood by examining the

linear response in Figure 4. A self-consistent solution requires the

phase shift to equal a multiple of 2p in a region where the gain is

greater than 1 [16]. However, as seen in Figure 4, the phase shift

of the complex-valued rate model is between 0 and {p, so a single

complex-valued rate unit with excitatory feedback cannot generate

stable oscillations. However, as seen in Figure 5, adding a small

amount of inhibition lifts this restriction.

Discussion

We have presented a simple firing-rate model that captures

effects caused by synchrony in networks of spiking neurons and

provides a general framework to describe neural dynamics. The

model, which applies generally to the class of integrate-and-fire-

type spiking models, is based on a two-mode approximation of the

Fokker-Planck equation. A number of researchers [6,8,12] have

noted that a small number of modes tend to dominate Fokker-

Planck dynamics. Our approach is an extreme example of this

approximation, keeping only the first non-static mode (see also

Ostojic, et al. [26]). As a result, this approach should fail when

other modes contribute appreciably to rate dynamics. In general,

the contribution of additional modes tends to increase with the

noise amplitude. The high-noise regime is also where our

approximation of the dominant nonzero eigenvalue is least

accurate. Nevertheless, the complex-valued rate model, like the

classic model, actually performs well in this regime. This is because

firing-rate dynamics are fast when the noise level is high, so

although multiple modes may be involved, they are all fast. The

good performance of the classic rate model at high-noise levels is

similarly fortuitous. For example, the dominant nonzero eigen-

value for the QIF model is always complex, no matter how much

noise is included. The classic rate model can approximate QIF

rates at high noise because the resulting oscillations decay so

quickly that ignoring them introduces minimal error. It should be

stressed, however, that this only works if a large value of k is used

in the rate model when the CV gets small, and this requires a

dynamically changing k in the classic rate model.

A number of limitations of our model should be acknowledged.

First, the model is only valid in the range of high input rates where

the Fokker-Planck approach is applicable. Second, we have

ignored synaptic dynamics, which can certainly play an important

role in the dynamics of network firing rates [8,9,25]. Third,

although the linear frequency response of the model matches that

of the EIF model at very high frequencies, it matches that of the

QIF model over the range relevant in most applications. This

means that some high-frequency oscillations that can be achieved

by networks of LIF neurons [25] may not be reproduced by our

model.

The range of noise values over which our complex-valued rate

model performs well depends on whether one desires quantitative

or qualitative accuracy. Higher noise in the input to a spiking

population tends to lead to smoother dynamics, which are more

easily matched by any firing-rate model, and our model is no

exception. However, as described above, smoother dynamics also

tend to have non-negligible contributions from a larger number of

modes, leading to a degradation in the quantitative accuracy of

our model. Summarizing these constraints, the complex-valued

rate model achieves quantitative accuracy describing spiking

dynamics with CVs between approximately 0.1 and 0.7. For

Complex-Valued Firing-Rate Model
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qualitative accuracy, on the other hand, the model performs well

for any CV greater than 0.1.

The two key novel aspects of the complex-valued rate model are

that it relates to spiking models in a general model-independent

manner, and that it continues to perform well in the low-noise

regime. The generality of k quantifies the intuition that on the

timescales of interest for typical firing rate dynamics, different

spiking models actually behave very similarly. Thus, when

studying such dynamics, the particular choice of spiking model is

inconsequential. Because the complex-valued rate model performs

well not just in the high-noise regime where rate models typically

operate, but also far into the low-noise regime, the model can

describe oscillations generated in the underlying spiking models by

partial spike synchronization. This is true whether they arise from

sudden changes in the input or due to interactions with other

neurons in a network. Firing-rate oscillations due to spiking

synchrony have been observed in a variety of sensory systems [27–

30]. This transient synchrony appears to be critical for the

propagation of information from the thalamus to the cortex [30].

Indications of the initial synchronous burst in thalamus appear to

be present in cortex as well, although at a diminished level [31].

This is presumably because noise levels in cortex tend to be high

(see, for example, London, et al. [32]), but they drop significantly

in the presence of sensory input [33]. Thus, accounting for

transient synchrony, which the complex-valued rate model can do,

is likely to be important for describing sensory responses.

Materials and Methods

Firing-Rate Dynamics from the Fokker-Planck Equation
The membrane potential probability density r(V , t) for a

population of integrate-and-fire neurons described by equation 3

with the input described by equation 4 evolves in time according

to the Fokker-Planck equation

t
Lr

Lt
~{

L
LV

(Fr(V , t)) , ð9Þ

with the flux operator

F:w(V )zm{2ts2 L
LV

: ð10Þ

The firing rate r(t) is given by the flux evaluated at the threshold
h,

r(t)~Fr(V ,t)jH~2ts2r
0
(H,t) , ð11Þ

with the prime denoting a voltage-derivative (r
0
~ Lr=LV ). In

the second equality of equation 11, we have used the fact that

r(H,t) ~ 0. For the QIF and EIF models, the true threshold for

spike generation is at infinity, so for these models the expressions in

equation 11 should be evaluated in the limit H??.

After crossing threshold, the membrane potential is reset to

V reset , which creates a discontinuity in the flux at this point:

r(t)~Fr(Vz
reset ,t){Fr(V{

reset ,t) : ð12Þ

The threshold is an absorbing barrier, so

r(V ,t)~0 for V§h : ð13Þ

Finally, because r must be a continuous function of V ,

lim
E?0

(r(V reset zE, t){r(V reset {E, t))~0,Vt : ð14Þ

To begin, we consider the case when m and s are independent

of time. The membrane potential density can be expanded in a

series of eigenfunctions of the Fokker-Planck operator [12],

r(V , t)~
X

n

an(t)rn(V ) , ð15Þ

where the eigenfunctions and corresponding eigenvalues are

defined by

{
L

LV
(Frn(V ))~lnrn(V ) , ð16Þ

and the coefficients obey

dan

dt
~lnan : ð17Þ

The eigenvalues l are functions of m and s. Because r is a

probability density, one of these eigenvalues, which we will label as

l0, is equal to zero, and all the other eigenvalues have negative

real parts. We label as l1 the eigenvalue with the least negative

(but nonzero) real part. If l1 is complex, there are a pair of such

eigenvalues, which are complex conjugates of each other. Either of

these can be defined to be l1, with the other l{1 ~ l�1.

The firing rate, expanded in terms of these eigenfunctions, is

r(t)~2ts2
X?

n~{?

an(t)r
0
n(H) : ð18Þ

Because l0 ~ 0, the mode with n ~ 0 describes the steady-state

properties of the neural population, and, normalizing the integral

of r0 to 1 sets a0 ~ 1, so the steady-state firing rate is given by

r?~2ts2r
0
0(H) : ð19Þ

The approximation that we use to derive the complex-valued rate

model is to keep only this mode and the mode corresponding to

n ~ 1, or to n ~ +1 if l1 is complex. Thus, we write

r(t)~r?z2ts2a1(t)r
0
1(H) ð20Þ

if l1 is real, or

r(t)~r?z2ts2 a1(t)r
0
1(H)za{1(t)r

0
{1(H)

� �

~r?z4ts2Re a1(t)r
0
1(H)

n o ð21Þ

if l1 is complex. These equations can be written as

r(t)~Re n(t)f g ð22Þ

if we define n~r?z2ts2a1(t)r
0
1(H) in the case of real l1, and

n~r?z4ts2a1(t)r
0
1(H) for complex l1. Using equation 17, it is

easy to see that, in either case,
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dn

dt
~l1 n{r?ð Þ : ð23Þ

This is equation 2 with, as discussed in the text, k ~ {l1.

We derived equation 23 assuming time-independent input

variables m and s. When these variables depend on time, additional

terms enter into equation 17 [12] and hence into equation 23.

As mentioned in the text, from various studies we concluded that

these terms are typically small enough to be ignored.

Parameters of the Integrate-and-Fire Models
The parameters used for each of the three neuron models

considered are listed in Table 1.

Computing the Fokker-Planck Eigenvalues for the LIF, QIF
and EIF Models

For the EIF model, we compute rn(V ) numerically by

integrating the Fokker-Planck equation [11]. The eigenvalues ln

correspond to the values of l such that rn(V ) satisfies the

boundary conditions equations 11–14, which determine a

characteristic equation for the eigenvalues. This characteristic

equation is solved numerically using a Newton-Raphson method.

A similar method was followed in Ostojic [34]. For the LIF model,

the functions r(V ,l) satisfying equation 16 can be computed

analytically for arbitrary l [20].

To compute the eigenvalues of the QIF, we take advantage of

the fact that this model can be transformed into a phase model

known as the theta model [35]. The resulting Fokker-Planck

equation has periodic boundary conditions, so it can then be

expanded in a Fourier series, as has been shown by Kanamaru &

Aihara [36]. Keeping around 100 terms in this expansion provides

an efficient way to compute the desired eigenfunctions and

eigenvalues.

Fitting k of the Classic Rate Model
We define the optimal k of the classic rate model for a given

choice of m and s as that which best approximates the dynamics of

a population of spiking neurons when m is changed from a lower

value to the desired value. For a given choice of m and s, we

average 100 repetitions of the simulated spiking popu-

lation dynamics. For this piecewise-constant input, we can

determine the response of the classic rate model analytically.

Finally, we compute the optimal k for the given parameter

values by minimizing the least-squared difference between the

spiking population firing rate and the computed rate-model

response.

Computing the Linear Response
For the LIF, QIF and EIF models, the linear response can be

computed using the methods described in Brunel & Hakim [20]

and [5,10,26]. For the LIF model, the linear response can be

computed analytically [10,20]. For the EIF model, the linear

response is computed by integrating the Fokker-Planck equation

numerically [11]. For the QIF model, the linear response can be

computed by transforming to the phase representation and

expanding in a Fourier series, as described above to compute

the eigenvalues [36].

The linear response of the complex-valued rate model can be

computed by separating the complex firing rate into its real and

imaginary components, n ~ rzin i , which satisfy

dr

dt
~k r (r?{r)zk i n i and

dn i

dt
~k i (r?{r){k r n i : ð24Þ

We consider an input with a fixed s and m~m0zE exp(ivt) and

compute all quantities to first-order in E. In this approximation,

r?(m) ~ r?(m0)zEr
0
?(m0) exp(ivt), where the prime denotes a

derivative. Calculating r to first-order in E is straightforward and

gives

r~r?(m0)zEr
0
?(m0)Z exp(ivt) , ð25Þ

with Z given by equation 6.

Computing the Stable States of Excitatory-Inhibitory
Networks

Stable asynchrony in the spiking network is analogous to a

stable fixed point in the firing rate network and, similarly,

stable synchrony in the spiking network is analogous to a

stable limit cycle in the firing rate network. We calculated the

stability of the fixed point in the firing-rate network. Inst-

ability of the fixed point results in the system finding a limit

cycle.

Stability of a fixed point in the rate model is assessed by

linearizing the dynamics around this fixed point. This involves

taking derivatives of the right side of equation 2 with respect to the

real and imaginary parts of the complex rate, nE and n I . The

resulting Jacobian matrix is

The requirement for stability is that the real part of the

eigenvalues of the Jacobian matrix are negative. These eigenvalues

can be computed easily for a given choice of parameters, yielding a

stability diagram of stable and unstable parameter regimes,

separated by a bifurcation line where the real part of either

eigenvalue becomes positive.

Table 1. Parameters of the integrate-and-fire models.

QIF EIF LIF

H (mV) ? ? 20

VT (mV) 0 10 -

Vrest (mV) - 0 0

Vreset (mV) {? 3 10

tm (ms) 10 10 10

t ref (ms) 0 2 0

DV (mV) 10 1 -

doi:10.1371/journal.pcbi.1003301.t001
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