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Abstract

Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) has been successfully used for
genome-wide profiling of transcription factor binding sites, histone modifications, and nucleosome occupancy in many
model organisms and humans. Because the compact genomes of prokaryotes harbor many binding sites separated by only
few base pairs, applications of ChIP-Seq in this domain have not reached their full potential. Applications in prokaryotic
genomes are further hampered by the fact that well studied data analysis methods for ChIP-Seq do not result in a resolution
required for deciphering the locations of nearby binding events. We generated single-end tag (SET) and paired-end tag
(PET) ChIP-Seq data for s70 factor in Escherichia coli (E. coli). Direct comparison of these datasets revealed that although PET
assay enables higher resolution identification of binding events, standard ChIP-Seq analysis methods are not equipped to
utilize PET-specific features of the data. To address this problem, we developed dPeak as a high resolution binding site
identification (deconvolution) algorithm. dPeak implements a probabilistic model that accurately describes ChIP-Seq data
generation process for both the SET and PET assays. For SET data, dPeak outperforms or performs comparably to the state-
of-the-art high-resolution ChIP-Seq peak deconvolution algorithms such as PICS, GPS, and GEM. When coupled with PET
data, dPeak significantly outperforms SET-based analysis with any of the current state-of-the-art methods. Experimental

validations of a subset of dPeak predictions from s70 PET ChIP-Seq data indicate that dPeak can estimate locations of

binding events with as high as 2 to 21 bp resolution. Applications of dPeak to s70 ChIP-Seq data in E. coli under aerobic and
anaerobic conditions reveal closely located promoters that are differentially occupied and further illustrate the importance
of high resolution analysis of ChIP-Seq data.
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Introduction

Since its introduction, chromatin immunoprecipitation fol-

lowed by high throughput sequencing (ChIP-Seq) has revolu-

tionized the study of gene regulation. ChIP-Seq is currently the

state-of-the-art method for studying protein-DNA interactions

genome-wide and is widely used [1–5]. ChIP-Seq experiments

capture millions of DNA fragments (150*250 bp in length) that

the protein under study interacts with using random fragmen-

tation of DNA and a protein-specific antibody. Then, high

throughput sequencing of a small region (25*100 bp) at the 5
0

end or both ends of each fragment generates millions of reads or

tags. Sequencing one end and both ends are referred to as single-

end tag (SET) and paired-end tag (PET) technologies, respectively

(Figure 1A). Standard preprocessing of these data involves

mapping reads to a reference genome and retaining the

uniquely mapping ones [6,7]. In PET data, start and end

positions of each DNA fragment can be obtained by connecting

positions of paired reads [8]. In contrast, the location of only the

5
0

end of each DNA fragment is known in SET data. The usual

practice for SET data is to either extend each read to its 3
0

direction by the average library size which is a parameter set in

the experimental procedure [7] or shift the 5
0

end position of

each read by an estimate of the library size [9]. Then, genomic

regions with large numbers of clustered aligned reads are

identified as binding sites using one or more of the many

available statistical approaches [6,7,9–11] (the first step in

Figure 1C).

Currently, the SET assay dominates all the ChIP-Seq exper-

iments despite the fact that PET has several obvious, albeit less
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studied, advantages over SET. In PET data, paired reads from

both ends of each DNA fragment can reduce the alignment

ambiguity, increase precision in assigning the fragment locations,

and improve mapping rates. This is especially advantageous for

studying regulatory roles of repetitive regions of genomes [12,13].

Although many eukaryotic genomes are rich in repetitive

elements, PET technology has not been extensively used with

eukaryotic genomes [8,14]. One of the main reasons for this is that

ChIP-Seq data is information rich even when the repetitive

regions are not profiled [15] and that the PET assay costs 1:5*2
times more than the SET assay. Put differently, given a fixed cost,

PET sequencing results in a lower sequencing depth compared to

SET sequencing.

In contrast to eukaryotic genomes, prokaryotic genomes are

highly mappable, e.g., 97:8% of the Escherichia coli (E. coli) genome

is mappable with 32 bp reads. This decreases the higher mapping

rate appeal of the PET assay for these genomes. In this paper, we

systematically investigate advantages of the PET assay from a new

perspective and demonstrate both experimentally and computa-

tionally that it significantly improves the resolution of protein

binding site identification. Improving resolution in identifying

protein-DNA interaction sites is a critical issue in the study of

prokaryotic genomes because prokaryotic transcription factors

have closely spaced binding sites, some of which are only 10 to

100 bp apart from each other [16–19]. These closely spaced

binding sites are considered to be multiple ‘‘switches’’ that

differentially regulate gene expression under diverse growth

conditions [17]. Therefore, identification and differentiation of

closely spaced binding sites are invaluable for elucidating the

transcriptional networks of prokaryotic genomes.

Although many methods have been proposed to identify peaks

from ChIP-Seq data (reviewed in [20]), such as MACS [9],

CisGenome [6], and MOSAiCS [10], these approaches reveal

protein binding sites only in low resolution, i.e., at an interval of

hundreds to thousands of base pairs. Furthermore, they report

only one ‘‘mode’’ or ‘‘predicted binding location’’ per peak. More

recently, deconvolution algorithms such as CSDeconv [21], GPS

[22] (recently improved as GEM [23]), and PICS [11] have been

proposed to identify binding sites in higher resolution. However,

these methods are specific to SET ChIP-Seq data and are not

equipped to utilize the main features of PET ChIP-Seq data.

Although a relatively recent method named SIPeS [24] is

specifically designed for PET data and is shown to perform better

than MACS paired-end mode [9], our extensive computational

and experimental analysis indicated that this approach is not

suited for identifying closely located binding events. To address

these limitations, we developed dPeak, a high resolution binding

site identification (deconvolution) algorithm that can utilize both

PET and SET ChIP-Seq data. The dPeak algorithm implements a

probabilistic model that accurately describes the ChIP-Seq data

generation process and analytically quantifies the differences in

resolution between the PET and SET ChIP-Seq assays. We

demonstrate that dPeak outperforms or performs competitively

with the available SET-specific methods such as PICS, GPS, and

GEM. More importantly, dPeak coupled with PET ChIP-Seq data

improves the resolution of binding site identification significantly

compared to SET-based analysis with any of the available

methods. Generation and analysis of s70 factor PET and SET

ChIP-Seq data from E. coli grown under aerobic and anaerobic

conditions reveal the power of the dPeak algorithm in identifying

closely located binding sites. Our study demonstrates the

importance of high resolution binding site identification when

studying the same factor under diverse biological conditions. We

further support our findings by validating a small subset of our

closely located binding site predictions with primer extension

experiments.

Results

Deeply sequenced E. coli s70 SET and PET ChIP-Seq data

The s70 factor is responsible for transcription initiation at over

80% of the known promoters in E. coli [25]. s70 combines with

RNA polymerase to bind promoter sequences typically containing

two consensus elements located at 35 bp and 10 bp upstream of the

transcription start site [18]; thus a s70 binding site spans about

40 bp upstream from the transcription start site. Many E. coli genes

contain multiple s70 promoters, and much transcriptional

regulation by oxygen as well as by other stimuli occurs by

selection of one or a subset of the possible promoters in concert

with binding of activators and repressors (e.g., ArcA and FNR for

regulation by oxygen [17,19]). Understanding such regulation

requires knowledge of precisely which promoters are used in a

given condition. Therefore, the highest possible accuracy of ChIP-

signal mapping will allow the best determination of promoter

binding by s70-RNA polymerase holoenzyme.

We generated both PET and SET ChIP-Seq data for s70 factor

from E. coli grown under aerobic (zO2) and anaerobic ({O2)

conditions in glucose minimal media on the HiSeq2000 and

Illumina GA IIx platforms. We used these experimental data for

comparisons of PET and SET assays and evaluation of our high

resolution binding site detection method dPeak throughout the

paper. Figure 1B displays PET and SET ChIP-Seq coverage plots

for the promoter region of the cydA gene under the aerobic

condition. The height at each position indicates the number of

DNA fragments overlapping that position. The cydA promoter

contains five known s70 binding sites separated by 11 to 84 bp
[25]. As evidenced in Figure 1B, coverage plots for PET and SET

appear almost indistinguishable visually. To further understand

the appearance of peaks that multiple binding events in this region

would result in, we simulated PET and SET data with parameters

matching to those of this region. Figures S1A, B, C in Text S1

display SET and PET coverage plots of this region when it harbors

one and three binding events. These plots support that when

binding events are in close proximity with distances less than the

Author Summary

Chromatin immunoprecipitation followed by high
throughput sequencing (ChIP-Seq) is widely used for
studying in vivo protein-DNA interactions genome-wide.
Current state-of-the-art ChIP-Seq protocols utilize single-

end tag (SET) assay which only sequences 5
0

ends of DNA
fragments in the library. Although paired-end tag (PET)
sequencing is routinely used in other applications of next
generation sequencing, it has not been much adapted to
ChIP-Seq. We illustrate both experimentally and computa-
tionally that PET sequencing significantly improves the
resolution of ChIP-Seq experiments and enables ChIP-Seq
applications in compact genomes like Escherichia coli (E.
coli). To enable efficient identification using PET ChIP-Seq
data, we develop dPeak as a high resolution binding site
identification algorithm. dPeak implements probabilistic
models for both SET and PET data and facilitates efficient
analysis of both data types. Applications of dPeak to
deeply sequenced E. coli PET and SET ChIP-Seq data
establish significantly better resolution of PET compared to
SET sequencing.

dPeak: High Resolution Identification of TFBS
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average library size, they appear as uni-modal peaks regardless of

the library preparation protocol (Figure S1C in Text S1). We next

evaluated two peak callers, MACS [9] and MOSAiCS [10], both

of which are specifically developed for SET data, on our SET and

PET experimental datasets (Table S1 in Text S1). Both methods

identified broad regions and the median widths of MACS peaks

were 5 to 10 times larger than those of the MOSAiCS peaks.

Detailed comparison of the MACS and MOSAiCS peaks revealed

that each MACS peak on average has 1:54 to 2:23 MOSAiCS

peaks (Table S2 in Text S1). Next, we evaluated the number of

annotated s70 binding events from RegulonDB [25] (http://

regulondb.ccg.unam.mx/) in each of the MACS and MOSAiCS

peaks and found that MACS peaks, on average, had 1:86 to 2:02
annotated binding events whereas MOSAiCS peaks had 1:47 to

1:48. Overall, we did not observe any differences in the peak

widths of the PET and SET assays with MOSAiCS whereas

MACS peaks from PET data tended to be wider than those of the

SET data. These findings indicate that the potential advantages of

the PET assay for elucidating closely located binding sites are not

simply revealed from visual inspection and by analysis with

methods developed specifically for SET data. Hence, deciphering

the advantages of PET over SET for high resolution binding site

identification warrants a statistical assessment. Next, we developed

a generative probabilistic model and an accompanying algorithm,

dPeak, that can specifically utilize local read distributions from

SET and PET assays. This algorithm enabled unbiased evaluation

of the SET and PET assays using our E. coli SET and PET ChIP-

Seq data.

Analytical framework of the dPeak algorithm
dPeak requires data in the form of genomic coordinates of

paired reads (for PET) or genomic coordinates of reads and their

strands (for SET) obtained from mapping to a reference genome.

For computational efficiency, dPeak first identifies candidate

regions (i.e., peaks) that contain at least one binding event and

considers each candidate region separately for the prediction of

number and locations of binding events (the first step of Figure 1C).

Either two-sample (using both ChIP and control input samples) or

one-sample (only using ChIP sample when a control sample is

lacking) analysis can be used to identify candidate regions. For this

Figure 1. SET and PET ChIP-Seq data structure and the dPeak algorithm. (A) Description of paired-end tag (PET) and single-end tag (SET)
ChIP-Seq data. Directions of arrows indicate strands of reads. (B) Promoter region of the cydA gene contains five closely spaced s70 binding sites. Blue
solid and red dotted curves indicate the number of extended reads mapping to each genomic coordinate in s70 PET and SET ChIP-Seq data,
respectively. Black vertical lines mark s70 binding sites annotated in the RegulonDB database. (C) Pictorial depiction of the dPeak algorithm.
doi:10.1371/journal.pcbi.1003246.g001

dPeak: High Resolution Identification of TFBS
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purpose, we utilize the MOSAiCS algorithm [10] which produced

narrower peaks than the MACS algorithm [9] in our ChIP-Seq

datasets (Table S1 in Text S1).

In each candidate region, we model read positions as originating

from a mixture of multiple binding events and a background

component (the third step of Figure 1C). dPeak infers the number

of binding events and the read sets corresponding to each binding

event within each region. It iterates the following two steps for

each candidate region. First, it assigns each read to a binding event

or background, based on the positions and strengths of the binding

events. Then, the position and strength of each binding event are

updated using its assigned reads. In practice, the number of

binding events in each candidate region is unknown a priori.

Hence, we consider models with different numbers of binding

events and choose the optimal number using Bayesian information

criterion (BIC) [26]. We constructed generative probabilistic

models for binding event components and a background

component for each of the PET and SET data by careful

exploratory analyses of multiple experimental ChIP-Seq datasets.

Diagnostic plots of the fitted models (Figure S3 in Text S1)

indicate that the dPeak model fits ChIP-Seq data well.

dPeak has two unique features compared to other peak

deconvolution algorithms (Table S3 in Text S1). First, it

accommodates both SET and PET data and explicitly utilizes

specific features of both types. Second, it incorporates a

background component that accommodates reads due to non-

specific binding. Consideration of non-specific binding is critical

because the degree of non-specific binding becomes more

significant as the sequencing depths get larger. An additional

unique feature of dPeak is the treatment of unknown library size

for SET data. As discussed earlier, to account for unknown library

size, each read is either extended to or shifted by an estimate of the

library size in most peak calling algorithms [20]. This estimate is

often specified by users [7,10] or estimated from ChIP-Seq data

[9,11]. Currently available algorithms with the exception of PICS

use only one extension/shift estimate for all the regions in the

genome. However, our exploratory analysis of real ChIP-Seq data

and the empirical distribution of the library size from PET data

(Figure S2A in Text S1) indicate that using single extension/shift

length might be suboptimal for peak calling (data not shown). In

order to address this issue, dPeak estimates optimal extension/shift

length for each candidate region. Comparison of empirical

distribution of the library size from PET data with the estimates

of the region-specific extension/shift lengths indicates that dPeak

estimation procedure handles the heterogeneity of the peak-

specific library sizes well (Figures S2B, C, D in Text S1). This

advancement ensures that dPeak is well tuned for deconvolving

SET peaks, which then enables an unbiased computational

comparison between the SET and PET assays.

dPeak outperforms competing methods in discovering
closely spaced binding events from SET ChIP-Seq data

We compared dPeak with two competing algorithms, GPS [22]

and PICS [11], for analysis of SET ChIP-Seq data. We did not

include the CSDeconv algorithm [21] in this comparison because

it is computationally several orders of magnitude slower than the

algorithms considered here. We utilized the synthetic ChIP-Seq

data which was previously used to evaluate deconvolution

algorithms [22]. In this synthetic data, binding events were

generated by spiking in reads from predicted CTCF binding

events at predefined intervals [22] without explicitly implanting

binding sequence motifs. Therefore, we also excluded GEM [23],

which capitalizes on motif discovery to infer positions of binding

events, from this comparison and used additional computational

experiments below to perform comparisons with GEM. The

synthetic data from [22] consisted of 1,000 joint (i.e., close

proximity) binding events, each with two events, and 20,000 single

binding events. We assessed performances of algorithms on these

two sets separately.

Figure 2A shows the sensitivity of each algorithm at different

distances between the joint binding events. Here, sensitivity is the

proportion of regions for which both of the two true binding events

are correctly identified. dPeak outperforms other methods across

all considered distances between the joint binding events and

especially for closely located binding events separated by less than

the average library size of 250 bp. When the distance between the

joint binding events is about 200 bp, dPeak is able to identify both

binding events in 80% of the regions whereas neither PICS nor

GPS can detect both binding events in more than 20%. Further

investigation indicates that PICS merges closely spaced binding

events into one event too often (Figure S4 in Text S1). We also

found that GPS estimates the peak shape incorrectly when ChIP-

Seq data harbors many closely located binding events (Figure S5 in

Text S1). Furthermore, the sensitivity of GPS also decreases

significantly when the distance between joint binding events

increases. A closer look at the results reveals that GPS filters out

too many predictions for joint binding events.

To ensure that increased sensitivity of dPeak is not a result of

increased number of false predictions, we evaluated positive

predictive value (fraction of predictions that are correct) of each

method. Specifically, we plotted the number of binding events

predicted by each algorithm at different distances between the

joint binding events in Figure 2B. Since there are two true binding

events in each region, two predictions at every distance correspond

to perfect positive predictive value. dPeak on average generates

more than one prediction and does not over-estimate the number

of binding events when the distance between joint events is less

than the average library size. This result confirms that the higher

sensitivity of dPeak in Figure 2A is not due to increased number of

predictions. In contrast, PICS and GPS on average generate only

one prediction for closely located binding events, which recapit-

ulates the conclusions from Figure 2A. In summary, dPeak

outperforms state-of-the-art deconvolution methods across differ-

ent distances between joint binding events, especially when the

distance between the binding events is less than the average library

size.

Next, we evaluated the sensitivity and positive predictive

value of the three methods on 20,000 candidate regions with a

single binding event using the additional synthetic data from

[22] (Table S4 in Text S1). Average number of predictions per

region with at least one predicted binding event and the

corresponding standard errors are as follows: dPeak 1:16 (0:42),

PICS 1:02 (0:16), GPS 2:72 (1:69). Overall, dPeak slightly over-

estimates the number of binding events for regions with a single

binding event, and hence PICS is slightly better than dPeak in

positive predictive value for these regions. However, as revealed

by our joint event analysis, this conservative approach of PICS

severely under-estimates the number of binding events when

multiple events reside closely. In contrast, GPS significantly

under-estimates the number of binding events for the regions

with a single binding event since it filters out too many

predictions and does not result in a prediction for 82% of the

regions. In addition, it over-estimates the number of binding

events across regions for which it produces at least one

prediction. Comparisons in these two scenarios with and

without joint binding events indicate that dPeak strikes a good

balance between sensitivity and positive predictive value for

both cases.

dPeak: High Resolution Identification of TFBS
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PET is more powerful than SET for resolving closely
spaced binding events

Once we developed dPeak as a high resolution peak detection

method for both SET and PET data, we implemented simulation

studies to evaluate the PET and SET assays for resolving closely

spaced binding events in an unbiased manner. Although SIPeS

[24] supports PET ChIP-Seq data, we excluded it from the

comparison of PET and SET ChIP-Seq datasets due to its poor

performance (Section 16 of Text S1). We generated 100 simulated

PET and SET ChIP-Seq data with two closely spaced binding

Figure 2. Sensitivity and positive predictive value comparisons of high resolution binding site identification algorithms and dPeak
performance on PET vs. SET data. (A, B) Comparison of dPeak with PICS and GPS in computational experiments designed for the GPS algorithm.
(A) dPeak has higher sensitivity than both PICS and GPS for SET ChIP-Seq data, especially when the distance between binding events is less than the
library size. (B) When there are two true binding events in each region, dPeak on average generates more than one prediction and results in a
comparable positive predictive value to those of PICS and GPS. PICS and GPS on average generate only one prediction when the distance between
binding events is less than the library size. Shaded areas around each line indicate confidence intervals. (C, D) Comparison of PET and SET assays with
dPeak. (C) For SET ChIP-Seq data, the sensitivity of dPeak significantly decreases as the distance between the locations of the events decreases. In
contrast, sensitivity from PET ChIP-Seq data is robust to the distance between closely located binding events. The sensitivity for both PET and SET
data also decreases as number of reads decreases. (D) dPeak on average predicts two binding events with PET ChIP-Seq data at any distance between
the two joint binding events and results in excellent positive predictive value. SET ChIP-Seq data predicts significantly fewer number of binding
events as the distance between binding sites decreases. In (C) and (D), n indicates number of reads corresponding to each binding event and n

2
DNA

fragments are used for PET data to match the number of reads between PET and SET data. (D) shows the case that 40 reads correspond to each
binding event and results are similar for other number of reads. Shaded areas around each line indicate confidence intervals.
doi:10.1371/journal.pcbi.1003246.g002

dPeak: High Resolution Identification of TFBS
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events and evaluated the predictions of these two data types with

dPeak (Section 11 of Text S1; Figure S7 in Text S1).

Figure 2C plots the sensitivity of dPeak as a function of distance

between the joint binding events and number of reads for both the

PET and SET settings. Note that we evaluated sensitivity up to the

distance of 50 bp because we used 20 bp windows to determine

whether a binding event is correctly identified and as a result,

results for the distance less than 50 bp could be misleading. When

Figure 3. Illustration of loss of information in SET assay compared to PET assay. (A) Concepts of invasion (top diagram) and truncation
(bottom diagram). In each diagram, the first and second lines indicate PET and SET ChIP-Seq data, respectively. Red horizontal line depicts estimated
library size in the SET data. Red circles denote the protein binding event that the read corresponds to. In the case of invasion, this read becomes
uninformative regarding the protein binding event whereas with truncation, the read provides incorrect information about the protein binding
event. (B) Probability of invasion as a function of distance between binding sites based on the dPeak generative model. (C) Probability of truncation
as a function of distance between binding sites based on the dPeak generative model. In (B) and (C), sigma(L) refers to estimated standard deviation
of the library size distribution in s70 PET ChIP-Seq data and sigma(L) * a indicates that the simulation uses standard deviation of sigma(L) * a to
generate library size. Unshaded areas depict typical range of library sizes.
doi:10.1371/journal.pcbi.1003246.g003

dPeak: High Resolution Identification of TFBS
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the distance between the events is at least as large as the average

library size (§150 bp), the sensitivity using PET and SET data are

comparable. However, as the distance between joint binding

events decreases, the sensitivity using SET data decreases

significantly. In contrast, PET ChIP-Seq retains its high sensitivity

even for binding events that are located as close as 50 bp. As the

number of reads decreases, sensitivity for both PET and SET data

decreases. When there are only 20 DNA fragments (i.e., 40 reads)

per binding event, sensitivity for PET data also decreases as the

distance between joint binding events decreases. However, even in

this case, sensitivity of PET data is still significantly higher than

that of SET data with much higher number of reads. Figure 2D

displays the number of binding events predicted by dPeak at

different distances between joint binding events when 40 reads

correspond to each binding event for both PET and SET data and

evaluates positive predictive value. Results are similar for higher

number of reads (data not shown). With PET ChIP-Seq, dPeak

accurately chooses the number of binding events by BIC out of a

maximum of five binding events at any distance between the joint

binding events. In contrast, SET ChIP-Seq predicts less than two

binding events when the distance between the events is less than

150 bp.

We present additional simulation results in Section 10 of Text

S1 (Figure S6 in Text S1). These simulations reveal that even for

cases with single binding events, PET has a slight advantage over

SET because it predicts the location of the binding event more

accurately. Specifically, PET data always provides higher resolu-

tion compared to SET data regardless of the strength of the

binding event, which we measure by the number of DNA

fragments associated with the event. For example, for a binding

event with 300 DNA fragments, the average distance between the

predicted and true binding events is 0:6 bp with a standard

deviation of 0:8 bp in the PET data whereas it is 7:6 bp with a

standard deviation of 11:8 bp in the SET data. Note that although

this simulation procedure is based on the assumptions of dPeak

model for PET data, our exploratory analysis and goodness of fit

(Figure S3A in Text S1) show that these assumptions hold well in

the real PET ChIP-Seq data and therefore, these results have

significant practical implications for real ChIP-Seq data.

Analytical investigation with the dPeak generative model
explains the difference in sensitivity between PET and
SET data

Lower sensitivity of the SET compared to PET data is mainly

driven by the loss of information due to unknown library size. We

describe this information loss by two concepts named invasion and

truncation (Figure 3A). Top diagram of Figure 3A depicts two

closely spaced binding events and a DNA fragment that is

informative for the first binding event (in red) in the PET data.

Invasion refers to over-estimation of the library size and extension

of the read to a length longer than the true one. Equivalently, in

the shifting procedure, this corresponds to shifting the read more

than necessary. As a result, the read extended to the estimated

library size covers both of the closely spaced binding events in the

SET data and becomes uninformative or less informative for the

binding event it corresponds to. Bottom diagram of Figure 3A also

depicts two closely spaced binding events and illustrates truncation

which we define as under-estimation of the library size. In this

case, the displayed DNA fragment is long and spans both binding

events (in red). Therefore, it contributes to estimation of both

binding events in the PET data. In contrast, the read extended to

estimated library size only covers the first binding event in the SET

data and, as a result, its contribution to the first binding event is

overestimated whereas its contribution to the second binding event

is underestimated. We evaluated the frequency by which

fragments with invasion and truncation arise in SET data with a

simulation study. Our results (Table S5 in Text S1) indicate that as

high as 76:8% and 25:5% of the fragments for a typical peak

region can be subject to invasion and truncation with the SET

assay.

Figures 3B, C display the probabilities of invasion and

truncation, respectively, of a DNA fragment as a function of the

distance between binding events and the variance of the library

size. The analytical calculations are based on the dPeak generative

model (Section 12 of Text S1). Probabilities of invasion and

truncation are higher for closely spaced binding events, especially

when the library size is shorter than the estimated library size

(150 bp in this case). In Figure 3B, the probability of invasion

decreases for very closely spaced binding events, i.e., when the

distance between two binding events is less than 75 bp. As the

distance between the binding events decreases, most DNA

fragments cover both binding events and the configuration in

the first diagram of Figure 3A is unlikely to occur. Hence, there is

already insufficient information to predict two binding events even

in PET data and relative loss of information (i.e., invasion) in SET

data is insignificant. These concepts describe how information on

binding events can be lost or distorted by the incorrect estimation

of the library size in the SET data. Analytical calculations based

on the dPeak generative model show that invasion and truncation

influence closely located binding events the most, especially when

the library size is not tightly controlled, i.e., exhibit large variation

(Figures 3B, C).

dPeak analysis of s70 PET ChIP-Seq data identifies

significantly more RegulonDB supported s70 binding
events than the analysis of SET ChIP-Seq data

We compared the performance of PET and SET sequencing for

s70 factor under the aerobic condition by generating a ‘quasi-SET

data’ by randomly sampling one of the two ends of each paired

reads in PET data and comparing binding events identified from

both sets. In order to match number of reads with SET data for

fair comparison, only the half number of paired reads was used to

construct PET data. Comparison with the quasi-SET data

controlled for the differences in the sequencing depths of the

original PET and SET samples in addition to the biological

variation of the replicates. We then evaluated the dPeak

predictions from the PET and SET analyses using the s70 factor

binding site annotations in the RegulonDB database as a gold

standard. Because a significant number of promoter regions lack

RegulonDB annotations, we evaluated the sensitivity based on the

regions that contain at least one annotated binding site. This

corresponds to 539 binding sites in 363 candidate regions that

MOSAiCS identified. Of these 363 regions, 240 harbor only a

single annotated binding event. For the regions with more than

one annotated binding event, the average distance between

binding events is 126 bp. dPeak analysis of the SET data identifies

only 38% of the 539 annotated binding events. In contrast,

analysis of PET data with dPeak detects 66% of the annotated

binding sites. Figure 4A displays average sensitivity as a function of

the average distance between annotated binding events for the

regions with at least two RegulonDB annotations. A linear line is

superimposed to capture the trend for both data types. Notably,

the lower sensitivity of SET compared to PET is mainly due to

closely located binding events.

We also compared prediction accuracies of the PET and SET

assays for the 240 regions that harbor a single annotated binding

event. Figure 4B displays resolutions, which we define as the

dPeak: High Resolution Identification of TFBS
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minimum of distances between predicted and annotated positions

of binding events, achieved by the PET and SET assays. Median

resolutions are 11 bp (IQR = 16:25 bp) and 28:5 bp

(IQR = 45:25 bp) for PET and SET, respectively. This result

indicates that positions of binding events can be more accurately

predicted with the PET assay compared to SET even for regions

with a single binding event.

To further examine the accuracy of the s70 dPeak predictions,

primer extension analysis was performed to map the transcription

start site for eight genes (Figures S10–S13 in Text S1; Table S7 in

Figure 4. dPeak analyses and evaluations of s70 PET and SET ChIP-Seq data based on RegulonDB annotated s70 factor binding sites.
(A) The numbers of correctly identified binding sites are plotted as a function of the distances between the RegulonDB reported binding events.
Linear lines (solid for PET, dashed for SET) through the data points depict general trends. (B) Resolution comparisons of the predictions for the regions
with a single annotated binding event. (C, D) PET (blue) and SET (red) coverage plots for representative examples of predicted s70 binding sites. Blue
and red dotted vertical lines indicate predictions using PET and SET data, respectively. Black solid vertical lines indicate the annotated binding sites in
(C) and experimentally validated binding sites in (D).
doi:10.1371/journal.pcbi.1003246.g004
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Text S1). dPeak analysis of the PET ChIP-Seq data predicts two

closely spaced s70 binding sites in the upstream of each of these

eight genes with the distance between predictions ranging 34 bp to

177 bp. Seven of these predictions are not annotated in

RegulonDB and thus represent potential novel transcription start

sites. A transcription start site was detected within 21 bp of 14

(87:5%) of these s70 binding site predictions (Figure 5A and

Table 1), further supporting the accuracy of the dPeak PET

predictions.

We treated these 14 validated sites as a gold standard and

evaluated the performance of each deconvolution algorithm for

these regions. Figure 5B depicts that dPeak with PET ChIP-Seq

data attains significantly higher resolution compared to SET-based

analysis regardless of the deconvolution algorithm used (p-values of

paired t-tests between dPeak using PET data and each of the other

methods using SET data are v0:01). dPeak with SET ChIP-Seq

data has a resolution comparable to or better than those of the

competing algorithms. GPS is not included in this plot because it

provides significantly worse resolution compared to other methods

(Figure S9C in Text S1). Genome-wide comparisons using the

RegulonDB transcription start site annotations as a gold standard

also lead to a similar conclusion, supporting the notion that PET-

Figure 5. Experimental validation and analysis of differential occupancy using dPeak. (A) Validation of a subset of transcription start site
predictions using primer extension. Primers (Table S7 in Text S1) complementary to the mRNA sequence *30{50 bp downstream of each predicted

start site were 5
0

end labeled with 32P and 0:2 pmol was used for each 20 ml assay. RNA was isolated from either aerobic (zO2) or anaerobic ({O2)
conditions. The sequencing ladders (G, A, T and C) were generated by dideoxy sequencing. Small arrows and filled circles depict the primer extension
products. In addition to dcuA T2 , a second, less abundant primer extension product (*) was identified with dcuA P2 . Since this product was not
identified with dcuA P1, it is possible that it corresponds to the start site of an sRNA which terminates upstream of the priming location of P1 . (B)
Resolution comparison of the high resolution binding site identification algorithms, using experimentally validated sites as a gold standard (extended
version in Figure S9C in Text S1). (C) Summary of the analyses of zO2 and {O2 PET ChIP-Seq data. The 82, 868, and 130 candidate regions (the first
diagram) cover 1%, 11%, and 1% of the E. coli genome, respectively. In the bottom diagram, the numbers in parentheses depict the set of binding
events that were independently validated with predictions from the analysis of biological replicate SET ChIP-Seq.
doi:10.1371/journal.pcbi.1003246.g005
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analysis with dPeak provides the best resolution (Figures S9A, B in

Text S1).

Figures 4C and 4D display two representative peak regions from

these analyses. Figure 4C illustrates two binding events in the

promoter regions of sibD and sibE genes separated by 375 bp. In

this case, two peaks are easily distinguishable just by visual

inspection and the predictions using both PET and SET data are

comparably accurate. Note that although these two binding events

are visually distinguishable, standard applications of MACS and

MOSAiCS identify this region as a single peak. Widths of

MOSAiCS and MACS peaks for this region are 900 bp and

2,042 bp, respectively. MACS identifies the position of the right

binding event as the ‘‘summit’’ of this region (position 3,193,216).

Figure 4D displays the promoter region of yejG gene, where the

distance between the two experimentally validated binding events

is only 122 bp. In this case, dPeak application to PET data

correctly predicts the number of binding events as two and

identifies the locations of these events within 12 bp of the validated

sites. In contrast, all of the SET-based analyses with the

deconvolution algorithms (PICS, GPS, GEM) incorrectly predict

one binding event located in the middle of the two experimentally

validated binding sites.

dPeak analysis of E. coli s70 PET ChIP-Seq data identifies
closely located binding sites that are differentially occupied
between aerobic and anaerobic conditions

High resolution identification of binding sites is especially

important for differential occupancy analysis where a protein of

interest is profiled under different conditions. Given the high

agreement between the dPeak algorithm and experimentally

validated transcription start sites at a subset of promoter regions,

we set out to identify differential promoter usage between the

aerobic and anaerobic growth conditions by profiling the E. coli

s70 factor. Results from the dPeak analysis of the aerobic and

anaerobic PET data are summarized in Figure 5C both in the

region (i.e., peak) and binding event levels. We identified 868
peaks and 967 dPeak binding events that were common between

the zO2 and {O2 conditions. Interestingly, only 82 peaks were

unique to the zO2 condition but dPeak analysis identified 247
zO2-specific binding events. Similarly, we identified 130 peaks

unique to the {O2 condition while dPeak analysis resulted in 268
{O2-specific binding events. We used the SET ChIP-Seq data

from additional biological replicates under both conditions as

independent validation of the results. This independent validation

using SET data identified 40{60% of the binding events

identified by dPeak using PET ChIP-Seq data (56:1% of the

common events, 41:3% of the zO2-specific binding events and

42:5% of the {O2-specific binding events). Table S8 in Text S1

further summarizes these results by cross-tabulating the number of

predicted binding events in each peak across the two conditions. It

illustrates that there are indeed many peaks with at least one

binding event in each condition and different number of binding

events across the two conditions. Figure S14 in Text S1 displays an

example of closely located binding sites that are differentially

occupied between aerobic and anaerobic conditions in s70 PET

ChIP-Seq data. These results suggest that dPeak analysis identified

many unique s70 binding events that could not be differentiated in

the peak-level analysis.

Discussion

High resolution identification of binding sites with ChIP-Seq

has profound effects for studying protein-DNA interactions in

prokaryotic genomes and differential occupancy. We evaluated

PET and SET ChIP-Seq assays and illustrated that PET has

considerably more power for deciphering locations of closely

spaced binding events. Our data-driven computational experi-

ments indicate that when the distance between binding events gets

smaller than the average library size, SET analysis have notably

less power than the PET analysis. Furthermore, PET provides

better resolution than SET even when a region harbors a single

binding event. We developed and evaluated the dPeak algorithm,

a model-based approach to identify protein binding sites in high

resolution, with data-driven computational experiments and

experimental validation. dPeak is currently the only algorithm

that can utilize both PET and SET ChIP-Seq data and can

accommodate high levels of non-specific binding apparent in

deeply sequenced ChIP samples (Table S3 in Text S1). Our data-

driven computational experiments and computational analysis of

experimentally validated s70 binding sites indicate that it

significantly outperforms the currently available PET ChIP-Seq

peak finder SIPeS [24]. Application of dPeak to E. coli s70 ChIP-

Seq data under aerobic and anaerobic conditions revealed that

although many peaks identified by standard application of popular

peak finders might appear as common between the two conditions,

a considerable percentage of these may harbor condition-specific

binding events. The high-resolution s70 binding sites identified by

dPeak could be combined with start-site mapping or consensus-

sequence identification to assign transcriptional orientation to the

s70 binding sites.

The advantages of using the dPeak algorithm are not limited to

the study of prokaryotic genomes. Applications in eukaryotic

genomes include identification of the exact locations of binding

motifs when multiple closely located consensus sequences reside in

Table 1. Experimental validation of the binding events
predicted by dPeak analysis of s70 PET ChIP-Seq data.

Genea
Predicted
position

True
positionb Distance Primerb Conditionc

yejG 2,276,288 2,276,299 11 P1 Aerobic

yejG 2,276,432 2,276,419 13 P2 Aerobic

spr 2,267,945 2,267,942 3 P1 Aerobic

spr 2,267,825 2,267,833 8 P2 Aerobic

dcuA 4,364,876 4,364,866 10 P1 Anaerobic

dcuA 4,364,975 4,364,974 1 P2 Anaerobic

aroL 405,583 405,579 4 P1 Anaerobic

aroL 405,489 405,504 15 P2 Anaerobic

serC 956,823 956,802 21 P1 Aerobic

serC 956,789 (Not validated) N/A Aerobic

hybO 3,144,382 3,144,385 3 P1 Anaerobic

hybO 3,144,438 (Not validated) N/A Anaerobic

ybgI 742,036 742,030 6 P1 Aerobic

ybgI 741,859 741,874d 15 P1 Aerobic

ptsG 1,157,005 1,156,989 16 P1 Aerobic

ptsG 1,156,866 1,156,849d 17 P1 Aerobic

(a)The genes with promoters harboring the predicted binding events.
(b)The true positions were determined by primer extension experiments
(Figure 5A).
(c)The conditions under which binding events are validated.
(d)We report results based on the RegulonDB annotations for ybgI and ptsG
genes as the primer extension products for these genes were too large to
accurately map with the sequencing ladder.
doi:10.1371/journal.pcbi.1003246.t001
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a peak region, studies of cis regulatory modules (CRM), and

refining consensus sequences. Figure S16 in Text S1 displays an

example application of dPeak for differentiating among multiple

closely located GATA1 binding sites with consensus WGATAR

within a ChIP-Seq peak region critical for erythroid differen-

tiation in mouse embryonic stem cells (data from [27]). CRM

studies investigate relationships between spatial configurations

of binding sites of multiple transcription factors and gene

expression. Relative orders, positions, and distances of binding

sites of multiple factors and their relative strengths are key

factors in CRM studies [28]. Because dPeak facilitates identi-

fication of binding sites of transcription factors in high

resolution from ChIP-Seq data, it can enable construction of

complex interaction networks among diverse factors across

multiple growth conditions.

We evaluated the performance of dPeak on eukaryotic

genome ChIP-Seq data that GPS and PICS were optimized

for. Figure S17 in Text S1 shows the performance comparison

results for transcription factor GABPA profiled in GM12878 cell

line from the ENCODE database. It indicates that dPeak

performs comparable to or outperforms GPS and PICS. In the

case of sequence-specific factors with well-conserved motifs such

as the GABPA factor, we observed that dPeak prediction can be

further improved in a straightforward way by incorporating

sequence information. Figure S17 in Text S1 illustrates that

dPeak with incorporated sequence information performs com-

parable to GEM and identifies the GABPA binding sites with

high accuracy.

Recently, ChIP-exo assay [29], a modified ChIP-Seq protocol

using exonuclease, has been proposed as a way of experimen-

tally attaining higher resolution in protein binding site

identification. Because the ChIP-exo protocol is new and

relatively laborious, there are not yet many publicly available

ChIP-exo datasets. We utilized ChIP-exo of CTCF factor in

human HeLa-S3 cell line [29] and compared their binding

event predictions with dPeak predictions on SET ChIP-Seq data

of CTCF in the same cell line. Figure S18 in Text S1 illustrates

that dPeak using SET ChIP-Seq data provides higher resolution

than ChIP-exo data and that dPeak can be readily utilized for

ChIP-exo data analysis. Furthermore, it also indicates that

dPeak performs comparable to or outperforms currently

available methods such as GPS and GEM for both ChIP-exo

and SET ChIP-Seq data. Although the real power of the ChIP-

exo technique will be revealed as more ChIP-exo datasets are

produced and compared with ChIP-Seq datasets, our results

with the currently available data suggest that analyzing ChIP-

Seq data with powerful deconvolution methods such as dPeak

might perform as well as ChIP-exo.

We implemented dPeak as an R package named dPeak.

dPeak utilizes the fast estimation algorithm we developed and

parallel computing. Analysis of the s70 data (,1,000 candidate

regions, each with ,2,300 reads on average) using our current

sub-optimal implementation of dPeak takes about 5 minutes

using 20 CPUs (2:2 Ghz) when up to 5 binding events are

allowed in each candidate region, while it takes about

20 minutes to run PICS and GPS (also using 20 CPUs).

Similarly, analysis of human ENCODE POL2-H1ESC data

(,14,000 candidate regions, each with *140 reads on average)

takes about 10 minutes for dPeak, while it takes 100 and

30 minutes for GPS and PICS, respectively. dPeak is currently

available at http://www.stat.wisc.edu/ ,chungdon/dpeak/ and

will be contributed to public repositories such as Bioconductor

[30] and Galaxy Tool Shed [31] upon publication.

Materials and Methods

Growth conditions
All strains were grown in MOPS minimal medium supplement-

ed with 0:2% glucose [32] at 370C and sparged with a gas mix of

95% N2 and 5% CO2 (anaerobic) or 70% N2, 5% CO2, and 25%
O2 (aerobic). Cells were harvested during mid-log growth (OD600

of *0:3 using a Perkin Elmer Lambda 25UV=Vis Spectropho-

tometer). WT E. coli K-12 MG1655 (F{, l{, rph{1) was used

for the experiments (Kiley lab stock).

ChIP experiments
ChIP assays were performed as previously described [33],

except that the glycine, the formaldehyde, and the sodium

phosphate mix were sparged with argon gas for 20 minutes before

use to maintain anaerobic conditions when required. Samples

were immunoprecipitated using 2mL of RNA Polymerase s70

antibody from NeoClone (W0004).

Library preparation, sequencing, and mapping of
sequencing reads

For ChIP-Seq experiments, 10 ng of immunoprecipitated and

purified DNA fragments from the aerobic and anaerobic s70

samples (one biological sample for both aerobic and anaerobic

growth conditions), along with 10 ng of input control (two

biological replicates for anaerobic Input and one biological

sample for aerobic Input), were submitted to the University of

Wisconsin-Madison DNA Sequencing Facility for ChIP-Seq

library preparation. Samples were sheared to 200{500 nt
during the IP process to facilitate library preparation. All

libraries were generated using reagents from the Illumina Paired

End Sample Preparation Kit (Illumina) and the Illumina

protocol ‘‘Preparing Samples for ChIP Sequencing of DNA’’

(Illumina part # 11257047 RevA) as per the manufacturer’s

instructions, except products of the ligation reaction were

purified by gel electrophoresis using 2% SizeSelect agarose gels

(Invitrogen) targeting 275 bp fragments. After library construc-

tion and amplification, quality and quantity were assessed using

an Agilent DNA 1000 series chip assay (Agilent) and QuantIT

PicoGreen dsDNA Kit (Invitrogen), respectively, and libraries

were standardized to 10mM. For PET ChIP-Seq data, cluster

generation was performed using an Illumina cBot Paired End

Cluster Generation Kit (v3). Paired reads, 36 bp run was

performed for each end, using 200 bp v3 SBS reagents and

CASAVA (the Illumina pipeline) v 1.8.2, on the HiSeq2000. For

SET ChIP-Seq data, cluster generation was performed using an

Illumina cBot Single Read Cluster Generation Kit (v4) and

placed on the Illumina cBot. A single read, 32 bp run was

performed, using standard 36 bp SBS kits (v4) and SCS 2.6 on

an Illumina Genome Analyzer IIx. Base calling was performed

using the standard Illumina Pipeline version 1.6. Sequence

reads were aligned to the published E. coli K-12 MG1655

genome (U00096.2) using the software packages SOAP [34] and

ELAND (within the Illumina Genome Analyzer Pipeline

Software), allowing at most two mismatches. PET experiments

yielded 13:8 million (M) and 22:3M mappable paired 36mer

reads and SET yielded 7:4M and 11:5M mappable 32mer reads

for aerobic and anaerobic conditions, respectively. Control

input experiments, generated with SET sequencing, resulted in

4:6M and 10:2M mappable 32mer reads for the aerobic and

anaerobic conditions, respectively. Raw and aligned data files

are available at ftp://ftp.cs.wisc.edu/pub/users/keles/dPeak

and are being processed by GEO for accession number

assignment.
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dPeak model
For PET data, if a DNA fragment (paired reads) belongs to g-th

binding event, we model its leftmost position conditional on its

length Li as Uniform distribution between mg{Liz1 and mg,

where mg is the position of g-th binding event. Lengths of DNA

fragments, Li, are modeled using the empirical distribution

obtained from actual PET data. For SET data, if a read belongs

to g-th binding event, we model its 5
0

end position conditional on

its strand as Normal distribution. Specifically, if a read is in the

forward strand, its 5
0

end position is modeled as Normal

distribution with mean mg{d and variance s2. 5
0

end positions

for reverse strand reads are modeled similarly with Normal

distribution with mean mgzd and variance s2. Parameters d and

s2 are common to all binding event components in each candidate

region. Strands of reads are modeled as Bernoulli distribution.

Background reads are assumed to be uniformly distributed over

the candidate region that they belong to. Parameters are estimated

via the Expectation-Maximization (EM) algorithm [35]. Addition-

al details on the dPeak model and the estimation algorithm for the

PET and SET settings are available in Sections 2 and 3 of Text S1.

Method comparison for SET ChIP-Seq data
We compared the sensitivity and the number of predictions of

dPeak with those of PICS [11], GPS [22], and GEM [23].

Sensitivity is the proportion of regions for which both of the two

true binding events are correctly identified. A binding event is

considered as ‘identified’ if the distance between the actual binding

event and the predicted position is less than 20 bp. Note that we

chose a more stringent criteria than the 100 bp used by GPS for

defining true positives because 100 bp is not high enough resolution

for prokaryotic genomes. For the PICS algorithm, we used the R

package PICS version 1.10, which is available from Bioconductor

(http://www.bioconductor.org/packages/2.10/bioc/html/PICS.

html). For the GPS algorithm, we used its Java implementation

version 1.1 from http://cgs.csail.mit.edu/gps/. In the perfor-

mance comparisons using s70 ChIP-Seq data, we also incorpo-

rated GEM, a recently modified and extended version of GPS,

which incorporates genome sequence of the peaks to improve

binding event identification. For the GEM algorithm, we used its

Java implementation version 0.9 from http://cgs.csail.mit.edu/

gem/. We downloaded the synthetic data used for the method

comparisons from http://cgs.csail.mit.edu/gps/ and its description

is provided in Supplementary information of the GPS paper [22].

This synthetic data consists of ‘‘chrA’’ with 1,000 regions that

harbor two closely spaced binding events and ‘‘chrB’’ to ‘‘chrK’’

with a total of 20,000 regions with a single binding event. We

evaluated performances of the methods on joint and single binding

event regions separately so that we could assess sensitivity and

specificity for each of these cases. Candidate regions for dPeak were

identified using the conditional binomial test [6] with a false

discovery rate of 0:05 by applying the Benjamini-Hochberg

correction [36]. These regions were also explicitly provided to the

GPS and GEM algorithms as candidate regions. Candidate regions

for PICS were identified using the function segmentReads() in the

PICS R package (default parameters). Default tuning parameters

were used during model fitting for all the methods.

Simulation studies to compare PET and SET ChIP-Seq data
We considered distances between binding sites ranging from

50 bp to 200 bp which characterize the typical binding event

spacing in E. coli. We generated and assigned 300 DNA fragments

to each of two binding events as follows. For each DNA fragment,

we drew the length (Li) from the distribution of library size, P(L),

estimated empirically from the actual s70 PET ChIP-Seq data and

group index (Zi) from multinomial distribution with parameters

(0:5, 0:5). Then, for given a library size and group index (Zi~g),

leftmost position of the paired reads (Si) was generated from

Uniform distribution between mg{Liz1 and mg, where mg is the

position of g-th binding event. Rightmost position was assigned as

Ei~SizLi{1. SET data was generated by randomly sampling

one of two ends from each of these paired reads. For the SET

analysis, average library size was assumed to be 150 bp. Then, only

half of the total number of paired reads was used to construct PET

data, in order to match number of reads with SET data for fair

comparison. In addition, we randomly assigned 10 DNA

fragments to arbitrary positions within the candidate region to

generate non-specific binding (background) reads. The sensitivity

and the number of predictions were summarized over 100
simulated datasets generated by this procedure. A binding event

was considered as ‘identified’ if the distance between the binding

event and the predicted position is less than 20 bp. We repeated

these PET versus SET analyses by comparing all the PET data

with SET data constructed from selecting one of two ends of each

read pair and obtained little or no change in the results (data not

shown).

dPeak analysis of s70 PET and SET ChIP-Seq data
We identified candidate regions, i.e., peaks with at least one

binding event, using the MOSAiCS algorithm [10] (two-sample

analysis with a false discovery rate of 0:001). In each candidate

region, we fitted the dPeak model, which is a mixture of g� binding

event components and one background component (Figure 1C). In

the current analysis, up to five binding event components

(gmax~5) were considered. The optimal number of binding events

was chosen with BIC for each candidate region. We utilized top

50% of the predicted binding events from each condition for the

comparison between the aerobic and anaerobic conditions.

Overall conclusions remained the same when the full set of

predicted binding events are considered.

Primer extension experiments
Total RNA was isolated as previously described [37]. Oligonu-

cleotide primers (Table S7 in Text S1) were labeled at the 5
0

end

using [c{32P]ATP (3,000 Ci=mmol) and T4 polynucleotide

kinase (Promega) followed by purification with a G25 Sephadex

Quick Spin Column (GE). Labeled primer (0:2 pmol) was

annealed with 7{30 mg total RNA in 20ml and extended with

avian myeloblastosis virus reverse transcriptase (Promega) as

described by the manufacturer, except that actinomycin D was

present at 100 ug=ml [38]. Primer extension experiments were

implemented for spr (8mg zO2 RNA), dcuA (8mg {O2 RNA), serC

(8mg zO2 RNA), aroL (30 mg and 15mg {O2 RNA for P1 and

P2, respectively), yejG (30mg zO2 RNA), hybO (30mg {O2 RNA),

ybgI (9mg zO2 RNA), and ptsG (9mg zO2 RNA). A dideoxy

sequencing ladder was electrophoresed in parallel with the primer

extension products on a 8% (wt=vol) polyacrylamide gel contain-

ing 7M urea. In cases where the transcription start site could be

assigned to one of two nucleotides, preference was given to the

purine nucleotide.

Software availability
The dPeak algorithm is implemented as an R package

named dpeak and is freely available from http://www.stat.wisc.

edu/,chungdon/dpeak/. We will commit dpeak to Biocon-

ductor (http://www.bioconductor.org) and Galaxy Tool Shed

(http://toolshed.g2.bx.psu.edu) upon publication.
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