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Abstract

It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the
synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to
synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even
single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic
regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory
network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as
the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the
number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population
of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the
capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number
of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations,
a power that is substantially enhanced when these cells form a population.
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Introduction

Associative learning
Almost all animals can associate neutral stimuli and stimuli of

ecological significance [1]. An extensively studied example is eye-

blink conditioning (Figure 1) [2,3]. Naı̈ve rabbits respond to an

airpuff to the cornea (Unconditioned Stimulus, US) with eyelid

closure (Unconditioned Response, UR). By contrast, a weak

auditory or visual stimulus (Conditioned Stimulus, CS) does not

elicit such an overt response. Repeated pairing of the CS and the

US forms a cognitive association between the CS and the US such

that the trained animal responds to the CS with eyelid closure, a

response known as Conditioned Response (CR). Two important

characteristics of associative learning are (1) specificity and (2)

generality. The CR does not reflect a general arousal. Rather, the

animal learns to respond specifically to the CS. The generality is

reflected by the fact that a large family of potential stimuli can

serve as a CS if paired with the US.

Neuronal networks are particularly adapted to performing this

association and in the last few decades there has been considerable

progress in understanding the ways in which experience-based

changes in synapses in the nervous system underlie this associative

learning process [4,5]. Neural network models for associative

memory, which explain how both specificity and generality are

maintained, are typically based on three elements: (1) Synapses are

the physical loci of the memory; (2) synaptic plasticity underlies

memory encoding; (3) neural network dynamics, in which the

activities of neurons depend on the synaptic efficacies, underlie the

retrieval of the learned memories in response to the CS.

Genetic regulatory networks
Genetic regulatory networks (GRN) describe the interaction of

genes in the cell through their RNA and protein products [6,7,8].

Previous studies have pointed out the similarity between the

dynamics of GRNs and the dynamics of neural networks [9]. For

example, GRNs, like neural networks, can implement logic-like

circuits, where the concentration of a protein (high or low)

corresponds to the binary state of the gate [10,11,12]. These

findings prompted us to evaluate the capacity of GRNs to learn

associations.

Considering associative learning in animals, the US is typically a

stimulus of biological significance, such as food or a noxious

stimulus that elicits a response (UR) in the naı̈ve animal, either in

the form of muscle activation or gland secretion. The GRN

correlate of a pain-inducing stimulus is stress. Stressful conditions

such as heat, extreme pH, or toxic chemicals often result in a
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substantial change in the expression level of many different

proteins in the cell. For example, Escherichia coli (E. coli) bacteria

respond to a variety of stress conditions by a general stress

response mechanism in which the master regulator ss controls the

expression of many genes [13]. These stressful conditions can be

regarded as a US and the resultant change in the expression level

of the proteins can be regarded as a UR. By contrast, other stimuli

may result in a narrow or absence of a response of the cell and in

that sense can be referred to as potential CS. Learning in this

framework would correspond to the formation of an association

between these potential CS and US such that following the

repeated pairing of the CS and US, the presentation of the CS

would elicit a UR-like response (CR).

The responsiveness of the GRNs to different stimuli has been

shown to change over time in response to evolutionary pressure in

a manner that resembles associative learning [14,15]. These

changes take place on time scales that are substantially longer than

the lifetime of a single cell and in contrast to associative learning in

animals, entail modifications of the genome through mutations.

On a shorter timescale, there is some evidence that the single-

celled Paramecium can learn to associate a CS with a US within its

lifetime [16]. However, these findings have been disputed [17] and

the question of whether Paramecia can learn associations and the

characteristics of this learning await further experimental valida-

tion. The capacity of GRNs to learn associations in shorter, non-

evolutionary time-scales has also been studied theoretically using

GRN models. Learning in these models is restricted to a small

subset of predefined stimuli [18,19,20,21] and thus the computa-

tional capabilities of these GRN models are limited compared to

neural network models.

Here we show that a GRN based on bistable elements and

stochastic transitions can learn associations while retaining both

specificity and generality. We further compute the capacity of the

network and show that the number of different learned associations

that the network can simultaneously retain is proportional to the

square root of the number of bistable elements. Moreover, this

capacity is substantially enhanced when considering a clonal

population of GRNs. These results imply that even bacteria are

endowed with the capacity to learn multiple associations.

Results

Our Genetic Associative Memory model (GAM) for associative

learning is based on three components: (1) a memory module that

Author Summary

It has been known since the pioneering studies of Ivan
Petrovich Pavlov that changes in the nervous system
enable animals to associate neutral stimuli with stimuli of
ecological significance. The goal of this paper is to study
whether genetic regulatory networks that govern the
production and degradation of proteins in all living cells
are capable of a similar associative learning. We show that
a standard model of a genetic regulatory network is
capable of learning multiple overlapping associations,
similar to a neural network. These results demonstrate
that even bacteria that are devoid of a nervous system can
learn associations. Moreover, as cells often reside in large
clonal populations, as in a colony of bacteria or in tissue,
we consider the ability of a large population of identical
cells to learn associations. We show that even if the cells
do not interact, the computational capabilities of the
population far exceed those of the single cell. This result is
a first demonstration of ‘‘wisdom of crowds’’ in clonal
populations of cells. Finally, we provide specific guidelines
for the experimental detection of associative learning in
populations of bacteria, a phenomenon that may have
been overlooked in standard experiments.

Figure 1. A schematic illustration of eye-blink conditioning. (A) Naı̈ve animal responds to the presentation of an airpuff (the US) by eyelid
closure. (B) By contrast, a tone (the CS) does not elicit any overt response. (C) During conditioning the CS and the US are repeatedly paired. (D) After
conditioning the animal responds to the CS with eyelid closure (the CR).
doi:10.1371/journal.pcbi.1003179.g001
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provides the long time-scale necessary for the maintenance of

memories for long periods of time; (2) a mechanism for encoding

the desired memories and (3) a response mechanism for the

readout or retrieval of the stored memories in response to the

relevant stimuli. We describe the three components separately in

the simpler case of a predefined association and then generalize to

the case of multiple associations and to the case of a population of

GAMs.

Learning a predefined association
Memory. A necessary condition for associative learning is the

ability to maintain memories. Memories require a long time-scale,

which characterizes multistable dynamics [22,23]. For example,

the ability of flip-flop devices in electronic circuits to maintain

memories is based on their bistable dynamics. Bistability naturally

emerges in dynamical systems if two conditions are fulfilled:

positive feedback and saturation [24,25,26]. Both these require-

ments characterize many GRNs, and bistability has been found in

both artificially engineered [27,28,29,30] and natural GRNs

[31,32,33,34,35,36]. For example, the response of the lactose

promoter in E. coli to intermediate induction levels was shown to

be bistable because of the positive feedback loop on the import of

the inducer in the cell [37].

In our GAM, we assume a positive feedback loop between a

gene and its protein product. The gene encodes for a protein M

which binds cooperatively, as a transcription factor, to the

promoter of that gene, resulting in further synthesis of M. The

kinetic reactions describing the dynamics of M appear in Text S1

in the Supporting Information, and their deterministic approxi-

mation [7,8] is equivalent to those of positive feedback loops such

as the lac system [38,39]:

d M½ �
dt

~F M½ �ð Þ{mM
: M½ �zIext ð1Þ

where F M½ �ð Þ reflects the nonlinear positive feedback (see Eq. (4)

in the Materials and Methods). The second term in Eq. (1) denotes

the protein degradation, where mM is a parameter. The third term

models the contribution of external factors to the dynamics of M

(see below).

The function
d M½ �

dt
, depicted in Figure 2A (top), is N-shaped

and is characterized by three zero-crossings. The two outermost

zero-crossings (red arrows in Figure 2A, top) correspond to the two

stable states (or fixed-points): a low expression level of M, M low

(left) and a high expression level, Mhigh (right). It can be readily

shown that the intermediate zero-crossing (black arrow) corre-

sponds to an unstable fixed-point of the dynamics. Thus, the

dynamics of Eq. (1) converge to one of the equilibrium values, the

low or high expression level of M, depending on the initial

conditions. This bistability of the dynamics of M endows the GRN

with the capacity to store binary memories in the form of the level

of expression of M. For this reason we refer to M as a ‘pseudo-

synapse’.

It is useful to rewrite Eq. (1) using an ‘energy’ function such that

d M½ �
dt

~{
LE M½ �ð Þ

L M½ � where E M½ �ð Þ~{

ð
M½ �

F M 0½ �ð Þd M 0½ �z 1

2

mM
: M½ �2{Iext

: M½ �. The energy function E M½ �ð Þ (Figure 2A,

bottom) is characterized by two minima (red arrows) and one local

maximum (black arrow). The two minima correspond to the two

stable fixed points of the dynamics of M and the maximum

corresponds to the intermediate unstable fixed point.

The differences between the value of the energy function at the

maximum and the values at the minima are known as the energy

gaps and are denoted by DE. In Figure 2A the two energy gaps are

approximately equal. However, an increase in the value of Iext

raises the function
d M½ �

dt
(Figure 2B top), resulting in a smaller

Figure 2. The bistable dynamics of the memory element. (A–C) The dynamics described by Eq. (1) for three different values of Iext. Top,
d M½ �

dt ;
bottom, the corresponding energy function E M½ �ð Þ. The red and black arrows denote the stable and unstable fixed points, respectively (zero

crossings of
d M½ �

dt
, top and extrema of the energy function, bottom). The value of Iext determines the offset of

d M½ �
dt

and hence the energy gaps. (B)

The larger Iext is, the smaller the energy gap corresponding to M low. (C) The smaller Iext is, the smaller the energy gap corresponding to Mhigh. The

values of the external inputs are Iext~0:0658,0:1315,0:0018
mM

min
in A–C, respectively.

doi:10.1371/journal.pcbi.1003179.g002
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energy gap for the M low fixed point, and a larger energy gap for

Mhigh fixed point (Figure 2B bottom). By contrast, a decrease in

the value of Iext lowers the function
d M½ �

dt
(Figure 2C top),

resulting in the opposite effect: a larger energy gap for M low, and a

smaller energy gap for Mhigh (Figure 2C bottom).

It should be noted that Eq. (1) is a deterministic approximation

of the biochemical dynamics. Biochemical processes such as the

bursting activity of the transcriptional machinery are stochastic

[40,41,42,43]. One way to account for the stochasticity is by

adding white noise to Eq. (1) such that

d M½ �
dt

~{
LE M½ �ð Þ

L M½ � zj ð2Þ

where j is a Gaussian white noise, SjT~0,

Sj tð Þ:j t0ð ÞT~2s2d t{t0ð Þ, s is the magnitude of the noise and d
is the Dirac delta ‘‘function’’.

One consequence of this stochasticity is that the noise is

expected to occasionally induce transitions between the two fixed

points. A well-known result from the field of stochastic processes is

that if the noise is sufficiently weak, the rate of transitions lð Þ from

one minimum to the other is exponentially dependent on the

energy gap, DE, l!e
{DE

s2 (e.g., see [44], and see also [45] for a

more accurate approximation). Consequently, even a small change

in the energy gap is expected to result in a large change in the

transition rate. Thus, although the three energy functions in

Figure 1A–C are qualitatively similar, they represent very different

dynamics. For sufficiently weak noise, the rate of transition from

Mhigh to M low in Figure 2B is negligible compared to the rate of

transition from M low to Mhigh. Similarly, the rate of transition

from Mhigh to M low in Figure 2C is negligible compared to the

rate of transition from M low to Mhigh. Moreover, the rates of

transition between the two stable states in Figure 2A are both

negligible compared to the rate of transition from M low to Mhigh

in Figure 2B or the rate of transition from Mhigh to M low in

Figure 2C. Thus, the transitions between the states are highly

dependent on the value of Iext. We utilize these results when

modeling the memory encoding in the next section.

Encoding. In associative learning, memory is encoded in

response to the contiguity of the CS and the US. To implement

this idea in the framework of the GAM, we assume that the value

of Iext is determined by external cues, the CS and US. Formally,

we assume that the CS and the US induce the expression of

proteins C and U, respectively. The value of Iext is determined by

the concentrations of C and U such that the US is effectively a

repressor of M but the co-occurrence of US and CS activates the

expression of M (see Eq. (4) in the Materials and Methods). In

other words, U in isolation decreases Iext but when bound to C it

increases Iext. This mode of regulation has already been

observed; e.g., in the osmotic response regulatory system in yeast

[46].

For simplicity we assume in our model that the expression levels

of C and U are binary, C½ �[ Clow,
�

Chigh
�

and U½ �[ U low,
�

Uhigh
�

,

reflecting the presence or absence of the CS and US, respectively.

Moreover, we assume that independently of the external cues, the

value of Iext is such that the dynamics of the pseudo-synapse are

bistable (as in Figure 2). Thus, the co-occurrence of the CS and US

increases the transition rate to the high expression level of M (as in

Figure 2B) whereas an exposure of the GAM to the US alone

increases the transition rate to the low expression level of M (as in

Figure 2C).

The computational implications of these dynamics are that a

repeated exposure of the GAM to the co-occurrence of the CS and

US is expected to result in a high state of M, whereas a repeated

exposure of the GAM to the US in the absence of the CS is

expected to result in a low state of M. In this sense, the state of M is

the physical correlate of the memory of the association between

the CS and US and a high level of M indicates an association

between the CS and US. Assuming that in the absence of the US,

the two energy gaps are high (as in Figure 2A), the transition rates

between the two states of the pseudo-synapse, in both directions,

would be low. Thus, in the absence of the US, information about

the existence of an association, as well as its absence, would be

maintained for long periods of time. These dynamics are

reminiscent of a multiplexer. A multiplexer is a device that selects

one of several input signals and forwards the selected input into a

single line. In the dynamics of M, the US selects whether M will be

maintained (in the absence of the US) or whether the value of M is

determined by the CS (in the presence of the US), as in [18].

However, in contrast to a standard multiplexer, transitions in our

model are stochastic. Thus, the dynamics depicted in Figure 2

resemble a stochastic multiplexer. This difference implies that

multiple repetitions are needed in order to change the state of M

with a high probability.

Retrieval. The last component of our GAM is a readout

scheme that decodes the state of M in the presence of a CS such

that the CS elicits a response if and only if the expression level of

M is high. To implement this, we assume that the UR and the CR

manifest in the GAM as the production of a response protein R.

The expression of R is regulated by two mechanisms: the US

regulates the expression of R through the binding of U to a

promoter of R, and the CS-pseudo-synapse pair regulates the

expression of R by cooperative binding of C and M to another

promoter (Figure 3A). The kinetic reactions describing the

dynamics of the expression of R appear in Text S1 in the

Supporting Information, and their deterministic approximation is

given by:

d R½ �
dt

~{mR
: R½ �zG1 U½ �ð ÞzG2 C½ �, M½ �ð Þ ð3Þ

where mR is the degradation rate of R and the functions G1 U½ �ð Þ
and G2 C½ �, M½ �ð Þ describe the dependence of the expression of R

on U, C and M (see Eq. (5) in the Materials and Methods). A high

level of U in Eq. (3) results in a high value of G1 U½ �ð Þ. This elicits

the expression of R, independently of the values of M and C,

corresponding to the UR. By contrast, a high level of C results in a

high level of G2 C½ �, M½ �ð Þ only when M is in its high expression

level. Thus, in the absence of the US, the stimulus substantially

increases R only when M is in its high expression level,

corresponding to the CR.

The dynamics of Eqs. (1–3) describe a GAM that can learn the

association between a CS and a US. This is demonstrated in

Figure 3B. Initially, at time t = 0, M is in the low expression level

state, corresponding to the ‘naı̈ve’ state of the network prior to

learning. In this state, a US (orange rectangle, t = 1 h) elicits a

response (UR), but a CS (open blue rectangle, t = 2 h) does not

elicit any response. Following two pairings of the CS and US (t = 3

and 4 h), the state of M does not change but in response to the

third pairing (t = 5 h) the state of M changes to the high state level.

In this state, the GAM is responsive to both a CS (t = 6 and 7 h)

and a US (t = 8 h). Three presentations of the US in the absence of

a CS (t = 8–10 h) do not elicit any change in the state of M but in

response to another presentation of the US in the absence of a CS

Stochasticity, Bistability and the Wisdom of Crowds
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(t = 11 h), the state of M reverts to its low value, and the GAM is

no longer responsive to CS (at t = 12 and 13 h).

Learning multiple associations
In the previous section, we demonstrated that a GRN can learn

to associate a CS with a US (Figure 3). However, this learning is

limited, as it is specific to a single, predefined CS. This GAM can

be trivially generalized to enable the learning of several different

associations by postulating that the GAM is characterized by a

number of memory elements, each associated with a single CS.

However, this generalized GAM is still limited in its ability to learn

associations because only those predefined CS can be learned.

This limitation contrasts sharply with neural network models,

which are capable of learning general associations. In this section

we generalize the model presented in Figure 3A and show that

similar to neural network models, GRNs are also endowed with

the capacity to learn a large number of arbitrary, overlapping CS.

Consider the network described Figure 4A. In contrast to the

single-pathway model (Figure 3A), in which a CS induces the

expression of a single protein C, in the generalized model we

assume that the CS are complex stimuli that activate N different

receptors, Ci, i[ 1, . . . ,Ngf . Each receptor Ci is associated with a

single pseudo-synapse Mi. The dynamics of each of the pseudo-

synapses follow the same equations as in the single-pathway model

(not shown in Figure 4A, see Eq. (4) in the Materials and

Methods).

The last component of our generalized GAM is the readout

scheme. We assume that similar to the single-pathway model,

the UR and the CR manifest in the generalized model as the

production of a response protein R. We assume two inde-

pendent promoters that regulate the expression of R. The

response to the presentation of the US is described by G1 (Eq.

(3)) and the response to the presentation of the CS is

regulated by the cooperative binding of Ci and Mi, where

different pairs of Ci and Mi independently regulate R (Eq. (5)

in the Materials and Methods and Text S1 in Supplementary

Information).

For simplicity, we assume in our analysis that the patterns of

expression of the proteins Ci that define the stimuli are random

and independent. In this case, the statistics of the stimuli are fully

determined by the sparseness of the stimuli, the probability that Ci

is in its high expression level, Pr Ci½ �~Chigh
� �

~f .

To gain insights into the ability of the generalized GAM to learn

multiple associations, we consider a naı̈ve GAM, in which the

values of the pseudo-synapses are random (Figure 4B, bottom,

t = 0). The responses of the GAM to five different stimuli, denoted

by A, B, C, D and E, presented to the GAM at times t = 0, 1, 2, 3

and 4 h, respectively, are relatively small. This is due to the

random, and hence relatively small overlap between the pattern of

activation of pseudo-synapses (color coded) and the pattern of

activation of the receptors Ci of the five stimuli (Ci~Chigh is

denoted by an open blue rectangle in Figure 4B).

In response to the pairing of C, B and A with the US (at times

t = 5, 6 and 7 h, respectively), the expression levels of some of the

Mi become more similar to that of the Ci in A, B and C,

respectively. As a result, the GAM responds more vigorously to the

presentation of A, B and C (at times t = 8, 9 and 10 h, respectively)

but not to the presentation of D or E (at times t = 11 and 12 h,

respectively). However, as a result of a repeated association of

pattern E with the US (at times t = 13, 14 and 15 h), the GAM

vigorously responds to the presentation of pattern E (at time

t = 17 h) but not to pattern D (at time t = 16 h). This example

demonstrates that a GAM can selectively learn to associate several

arbitrary CS patterns with a US.

Figure 3. A model for a Genetic Associative Memory module (GAM). (A) A logic circuit representing the GRN’s regulatory dynamics. The
external signals CS (blue) and US (orange) induce the expression of the proteins C (blue) and U (orange), respectively. The expression of U elicits a
response R (green) independently of C. In contrast, C elicits a response R only if the expression level of M (red) is high. The expression of M is induced
by a high concentration of M (the positive feedback, Eq. (2)) or by the co-expression of C and U, and is inhibited by the expression of U in the absence
of C. (B) Associative learning in a simulation of the GAM. Initially, the GAM is in the naı̈ve state, in which M~M low. In this state the GAM responds to
the US (orange) but not to the CS (blue rectangles). Repeated pairing of the CS and US (t = 3, 4 and 5 h) changes the state of M (color coded in
brightness) to the high state (immediately after t = 5 h). As a result, the GAM is responsive to the CS in isolation (t = 6 and 7 h). In response to
repeated presentation of the US in the absence of the CS (t = 8, 9, 10 and 11 h), the expression level of M reverts to the low state (immediately after
t = 11 h) resulting in a loss of response to the learned CS (t = 12 and 13 h). Note that the response at t = 5 h is slightly higher than the responses at
previous times. This results from the transition of M to its high state.
doi:10.1371/journal.pcbi.1003179.g003
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Order effect
A careful analysis of Figure 4B reveals that after learning, the

magnitude of the responses to the three learned CS is not equal.

The response to stimulus C (t = 10 h) is smaller than the response

to stimulus B (t = 9 h) and the response to B is smaller than the

response to A (t = 8 h). This difference reflects the fact that the

order of association affects the magnitude of the response to a CS.

This is because learning a new pattern may change the expression

level of a pseudo-synapse that participates in the encoding of an

older pattern. For example, consider pseudo-synapse 4 in

Figure 4B. In response to the presentation of stimulus C (at time

t = 5 h), the state of the pseudo-synapse has changed to the high

expression level, in line with the expression level of C4 in CS C.

However, the association of the US with A (at time t = 7 h) has

reverted the state of the pseudo-synapse to the low expression

level, decreasing the overall response to the CS C. In other words,

the association with the CS A has overwritten the information

stored in pseudo-synapse 4 concerning the CS C. More generally,

because of the overwriting of memories by more recent memories,

the magnitude of response to a CS is expected to decrease with the

number of subsequent CSs. After the encoding of a large number

of patterns, the response to an ‘old’ CS is expected to diminish to

an extent where it is no longer distinguishable from the response to

non-learned stimuli. In this case the CS is said to have been

extinguished (a more precise definition of ‘‘distinguishable’’

appears below). By contrast to the diminishing of the response to

a pattern following the overwriting by other patterns, the repeated

co-occurrence of the same pattern with the US (at times t = 13, 14

and 15 h) augments the strength of association of that pattern with

the US, as demonstrated by the response to pattern E at time

t = 17 h.

The magnitude of the order effect depends on two probabil-

ities: the probability p that the co-occurrence of U and a high

level of expression of Ci would induce a transition from M low to

Mhigh in the corresponding pseudo-synapse Mi and the

probability q that the co-occurrence of U and a low level of

expression of the corresponding Ci would induce a transition

from Mhigh to M low in the corresponding pseudo-synapse Mi.

The probabilities p and q are determined by the two rates of the

US-induced transitions and the duration of co-occurrence of the

US and CS, T (assuming that the rates of all other transitions are

negligible, see above) such that p~1{elLH T and q~1{elHLT ,

where lLH and lHL are the low-to-high and high-to-low

transition rates, respectively. The larger the transition rates

and the longer the duration, the larger the transition probabil-

ities are.

Figure 4. A model for learning multiple overlapping associations. (A) A schematic description of the dependence of the expression of R
(green) on the activation of the receptors Ci (blue), the pseudo-synapses Mi (red) and the US (orange), see Eq. (5). Note that for reasons of clarity, the
encoding process, which follows the same dynamics as in Eq. (4) (see Figure 3A) is not shown. (B) Simulation of the model (Eqs. (4) and (5)). Bottom,
the expression level of 5 representative pseudo-synapses over time is depicted using a color code (color coded in brightness); green, the response R;
orange rectangles, the timing of a US; open blue rectangles, the timing of activations of Ci by a stimulus. Initially, the GAM is in a naı̈ve state. In that
state, its response to CS (t = 0, 1, 2, 3 and 4 h) is below some threshold (dashed horizontal line). In response to the pairing of three of the CS (C, B and
A) with the US (t = 5, 6 and 7 h, respectively), a fraction of the pseudo-synapses which correspond to an active Ci undergo a transition to the high
expression state (e.g., i = 2 at t = 6 h) and a fraction of the pseudo-synapses which correspond to an inactive Ci undergo a transition to the low
expression state (e.g., i = 4 at t = 7 h). As a result, the response of the GAM to A, B and C (t = 8, 9 and 10 h) is larger than the response to the unlearned
stimuli, D and E (t = 11 and 12 h, respectively). As a result of repeated association of pattern E with the US (at times t = 13, 14 and 15 h), the GAM
vigorously responds to the presentation of pattern E (at time t = 17 h) but not to pattern D (at time t = 16 h).
doi:10.1371/journal.pcbi.1003179.g004
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If p~q~1 all pseudo-synapses are determined by the most

recent CS and the pattern of expression level of the different

pseudo-synapses corresponds to the pattern of activation of the

receptors in that CS. As a result, the response to the most recent

CS is substantially larger than the response to a non-learned

stimulus. However, this comes at a price. The most recent CS

overwrites the memory trace of all previously encoded CS and

therefore the responses to all these ‘older’ CS are indistinguishable

from the responses to the non-learned stimuli. Thus, if p~q~1,

the GAM cannot store more than a single association. The smaller

the values of p and q (e.g., due to smaller US-induced transition

rates), the fewer pseudo-synapses change in the process of learning

a CS, allowing the GAM to maintain information about

previously-learned CSs.

However, the transition probabilities should not be too small

because the smaller these probabilities are, the weaker is the

encoding. If these probabilities are too small, the response of the

GAM even to the most recently stored GAM is too small to be

distinguishable from non-learned stimuli. Therefore, in order for

the GAM to be able store a large number of CS, the values of the

US-induced transition rates should be sufficiently large to allow for

a sufficiently large response to the learned-CS but sufficiently small

to minimize the overwriting of old memories by new memories.

To better understand the requirement that the response to a CS

needs to be distinguishable from the response to non-learned

stimuli, consider again Figure 4B. The responses of the GAM to

the presentations of the non-learned stimuli A-E at times 0–5 h,

respectively, are not identical. These differences are due to the fact

that there is stochasticity in the response, resulting from

stochasticity in the dynamics of the pseudo-synapses and in the

realization of the different CS. Therefore, a memory of a CS is

said to be maintained if the distribution of the responses of the GAM

to the CS is distinguishable from the distribution of responses to the

non-learned stimuli. This notion becomes exact in the next

section.

The capacity of the GAM
How many CS can be stored in a GAM? Addressing this

question using the full dynamical equations (Figure 4) requires

extensive simulations that are beyond the scope of this paper.

Therefore, we use a binary approximation (see Materials and

Methods). The quality of the binary approximation is demon-

strated in Figure S1 in the Supporting Information.

As described in the previous section, responses to non-learned

stimuli depend on the overlap of the pattern of activation of the

stimuli with the pattern of activation of the pseudo-synapses.

Because both the stimuli and the dynamics of the pseudo-synapses

are stochastic, this response is a stochastic variable. The

distribution of the responses to non-learned stimuli (see Eq. (14)

in the Materials and Methods) is depicted in Figure 5A (blue). The

response of the GAM to learned CS is also a stochastic variable.

The distribution of responses to the most recently learned CS is

depicted in Figure 5A (black; Eq. (13) and in the Materials and

Methods). This distribution is well-separated from the distribution

of responses to the non-learned stimuli. Therefore, recently-

learned stimuli are distinguished from non-learned stimuli using a

simple threshold mechanism (e.g., the dashed line in Figure 4B).

The probability of an error depends on the overlap between the

two distributions. If the overlap is small, the GAM almost always

responds to the most recently learned CS and almost never

responds to non-learned stimuli. On the other hand, a large

overlap would result in a large number of errors, false positives or

misses, depending on the choice of threshold. The difference

between the means of the two distributions (black and blue)

depends on the transition probabilities. The higher the probabil-

ities, the larger the difference is. Therefore, the higher the

transition rates are, the easier it is to distinguish between the most

recently learned CS and the non-learned stimuli.

The distribution of responses to the presentation of the second-

most recently learned CS (darkest gray) is also to the right of the

distribution of responses to non-learned stimuli (blue). Neverthe-

less, it is shifted to the left relative to the distribution of responses to

the most recently learned CS (black). As a result, the overlap of this

distribution with the distribution of responses to the non-learned

stimuli is larger. The reason for this shift is that as noted in

Figure 4B, the newer CS ‘overwrites’ the memory of the older CS,

resulting in a decreased overlap between the CS and the pseudo-

synapses. The degree of overwriting, manifested as a shift to the

left of the distribution of responses to the second-most recently

learned CS relative to the most recently learned CS, depends on

the US-induced transition rates. The smaller the transition rates,

the smaller the overwriting is and therefore the smaller the shift to

the left of the distribution.

More generally, the distributions of responses to a CS shift to

the left with the ‘age’ of the CS. This is depicted in Figure 5A using

grayscale. While the distribution of the several most-recently

learned CS is well-separated from the distribution of responses to

non-learned stimuli (blue in Figure 5A), the distributions of

responses to ‘older’ CS and non-learned stimuli largely overlap,

indicating that ‘older’ CS are ‘forgotten’.

Figure 5. The capacity of a single GAM to maintain associations. (A) a distribution plot of the normalized response, h {n½ �, as a function of the
age of the CS. (B) the SNR as a function of the age of the CS. N~1000,f ~0:5,p~0:122,q~0:122,h~0:5 and Q~0:5. (C) The capacity of the GAM to
store memories as a function of N. Blue, exact Markov model; Red, approximated model (Eq. 20).
doi:10.1371/journal.pcbi.1003179.g005
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More formally, the ability of the GAM to distinguish between a

learned CS and a non-learned stimulus depends on the signal to

noise ratio (SNR), which is defined as the ratio of the difference in

mean responses to the two classes of stimuli, divided by the

square root of the sum of variances of the two distributions (Eq.

(14) in the Materials and Methods). In general, the larger the

SNR, the fewer errors when distinguishing between learned and

non-learned stimuli. The SNR, as a function of the ‘age’ of the

CS is depicted in Figure 5B: the newer the CS, the larger the

SNR. The SNR of the nth CS (where the numbering of patterns is

reversed such that n~1 corresponds to the most recent stimulus)

is given by Eq. (14) in the Materials and Methods section. The

capacity of the GAM can thus be defined as the ‘oldest’ CS such

that the corresponding SNR is larger than 1. In other words, the

capacity of the GAM nc is defined as the largest value of n such

that SNR nð Þw1.

The capacity of the GAM depends on the US-induced

transition rates, which determine the transition probabilities. As

discussed above, if these rates are high, forgetting is fast. On the

other hand, if these rates are too low the GAM cannot reliably

retrieve even the most recent CS. The capacity of the GAM is

maximal when the US-induced transition rates are intermediate,

balancing between these two requirements. The capacity of the

GAM as a function of the number of pseudo-synapses (N) is

depicted in Figure 5C (blue). The larger N, the larger is the

capacity of the GAM. In the Materials and Methods section we

show that in the limit of Nww1, if the US-induced transition

probabilities are optimal, the capacity of the GAM is proportional

to the square root of the number of pseudo-synapses, nc!
ffiffiffiffiffi
N
p

(Eq.

(20); red line in Figure 5C). This result is similar to the memory

capacity of models of neural networks with binary synapses

[47,48]. However, the learning rule proposed here, even in the

binary approximation, differs from the Hebbian synaptic plasticity

rule used in neural network models [47,48].

The wisdom of crowds
In the previous sections we studied the ability of a single GRN

to learn associations. However in nature, GRNs often do not

reside in isolation but in populations comprising of a large number

of individual cells of the same type, e.g., as in a colony of bacteria

or in a tissue, all exposed to the same external conditions. This

raises an interesting question: is the capacity of a population of

GAMs to store associations larger than that of a single GAM? The

answer is trivially positive if we allow the different GAMs to

communicate and form a recurrent network with specialized

connections between individual GAMs, similar to neurons in

neuronal networks. However, here we ask a different question: is

the capacity of a population of non-interacting GAMs to store and

retrieve memories different from that of the single GAM?

We consider a population of generalized GAMs as in Figure 4A.

All GAMs are identical, exposed to the same sequence of stimuli

but differ in their internal stochasticity. In other words, the noise j
associated with the dynamics of the pseudo-synapses (Eq. (2)) in the

different GAMs is assumed to be independent. The population

response in our model is assumed to be simply the accumulated

response of all individual GAMs.

In order to understand why the capacity of a population of

identical GAMs to store memories may be larger than the capacity

of a single GAM, we note that a CS of a particular ‘age’ can be

retrieved if the overlap between the distributions of responses to

the learned and non-learned stimuli is sufficiently small. This

overlap is sensitive to the variances of the two distributions (width

of the curves in Figure 5A). The larger the variance, the larger is

the overlap. Two sources contribute to this variance in the

responses. First, there is stochasticity in the realization of CS and

non-learned stimuli. Second, there is stochasticity in the encoding

process. While the first type of stochasticity is external and thus

shared by all GAMs in the population, the second type of

stochasticity is independent for each GAM. As a result, when

considering the cumulative response of a large population of

GAMs, all other parameters being equal, the variance in the

distribution of responses is considerably smaller (Eq. (23) in the

Materials and Methods). In Figure 6A we plot the distributions of

responses to CS of different ‘ages’ (gray, color-coded) and non-

learned stimuli (blue).

Similar to the case of a single GAM, the capacity of a

population of GAMs depends on the US-induced transition rates.

However, because the variance in the responses in the case of the

population is considerably smaller than the variance in the case of

a single GAM, the US-induced transition probabilities that

maximize the capacity of the population are considerably smaller

than those that maximize the capacity of a single GAM. In

Figure 6B we plot the SNR as a function of the ‘age’ of the CS

(solid blue line). Compared to the SNR of a single GAM (dashed

blue line, identical to Figure 5B), the SNR of the response of the

population of GAMs is larger than 1 for much ‘older’ CS.

Figure 6. The capacity of a large population of GAMs to maintain associations. (A) a distribution plot of the normalized response, h {n½ �
z , as

a function of the age of the CS. (B) Solid blue line, the SNR of a population of GAMs as a function of the age of the CS.
N~1000,Z~?,f ~0:5,p~0:00272,q~0:00272,h~0:5, and Q~0:5. Dashed blue line, the single GAM, same as in Figure 5B. (C) The capacity of a
population of GAMs as a function of N. Blue line, exact Markov model; Red line, approximated model (Eq. 20). Note that the blue and red lines almost
overlap. Dashed blue line, the single GAM, same as in Figure 5C.
doi:10.1371/journal.pcbi.1003179.g006
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The capacity of the population of GAMs as a function of the

number of pseudo-synapses (N) is depicted in Figure 6C (solid blue

line). The larger N is, the larger is the capacity of the GAMs. More

quantitative analysis reveals that for an appropriate choice of

parameters, the number of different CS that a large population of

GAMs can store is proportional to the number of pseudo-synapses

(Eq. (31); solid red line), compared to a capacity that is only

proportional to the square root of the number of pseudo-synapses

in the case of a single GAM (dashed blue line, identical to

Figure 5C).

Discussion

In this paper, we explored the ability of a general GRN to

encode associations. We showed that a GRN that is endowed with

bistable elements and stochastic dynamics is capable of storing and

retrieving multiple arbitrary and overlapping associations. The

capacity of a single GRN in our model, defined as the number of

stored associations, is proportional to the square root of the

number of bistable elements
ffiffiffiffiffi
N
p� �

. This result is reminiscent of

Hopfield-like models with bounded synapses, in which the

capacity is proportional to the square root of the number of

synapses [47,48,49]. Remarkably, in a large population of GRNs,

as is in a colony of bacteria or in a tissue, this capacity is

substantially higher and is proportional to the number of bistable

elements.

Despite the similarities between the GAM and the Hopfield

model, there are two important differences that are noteworthy.

First, the capacity of a single GAM may be limited by the

presence of readout noise (e.g., in the dynamics of R). However,

this readout noise is not expected to substantially affect the

capacity of a population of GAMs because of averaging. Second,

the number of neurons available in neuronal networks is much

larger than the number of bistable elements in GRNs. Altogether,

our model predicts that if the number of bistable elements in the

GRN does not exceed several tens, it will be difficult to store

more than one or two memories in a single GAM. Therefore, the

storage of multiple memories is likely to require a population of

GAMs.

The key elements in our model are the bistability and the

stochasticity of the dynamics of the GRN. Importantly, bistability

and stochasticity are not restricted to the transcriptional machin-

ery. Rather, they are found in various cellular processes, including

post-transcriptional regulation (e.g., by non-coding RNA [50,51])

or post-translational regulation (e.g. phosphorylation and degra-

dation regulation [36,52,53,54]). We modeled associative memory

that is based on the interaction of proteins through the

transcriptional machinery because these dynamics are better

characterized and are more accessible experimentally than other

cellular alternatives.

Moreover, the GAM is not restricted to a particular organism.

The parameters used in the simulations presented in this paper are

biologically plausible for bacteria. However, because the basic

elements of the GAM, namely, bistability and stochasticity, are

widespread in GRNs of all cells, the potential for associative

learning without a nervous system exists for virtually all cell types,

including single-celled eukaryotes and plants. Furthermore, this

work suggests that even in animals that possess a nervous system,

learning that is independent of this nervous system is also possible.

In particular, it could be interesting to consider GAM in the

immune system, which has evolved to learn to respond to novel

pathogens.

Bearing this in mind, we believe that in view of the recent

developments of experimental methods that quantitatively

measure the expression level of proteins, bacteria, in particular

the well characterized E. coli, are the ideal substrate to study the

associative learning in GRNs. Each of the components of the

GAM module (Figure 3A), namely inducible elements, bistable

switches and AND gates, have been established in the E. coli

transcription network and therefore a synthetic implementation is

achievable [55,56].

Beyond synthetic implementation, the complexity of the genetic

networks suggests that GAM-like modules may exist. A first step in

searching for GAMs in known networks should be the identifica-

tion of plausible candidates for the US, UR and CS. In animals,

the US is a stimulus that causes an overt response prior to learning,

the UR. Typically the US is a stimulus of biological significance,

such as food or a noxious stimulus and the UR is an ecologically-

relevant overt response, often in the form of muscle activation. For

example, in the eye-blink conditioning experiment (Figure 1) the

US is an air puff and the UR is an eye blink that protects the eye

from the puff. An important point to consider when searching for

associative learning in bacteria is ecological significance. Our

model for associative learning, similar to models of associative

learning in neuronal networks, does not incorporate any ecological

information about the stimuli. However in animals, it is known

that the ability to form an association depends on the ecological

relevance of the CS to the US. For example, the association of the

taste of a certain food (CS) with the symptoms caused by a toxic or

spoiled food (US), known as taste aversion, is easily-formed after a

small number of repetitions. By contrast, it is substantially more

difficult to form an association of a tone with the same US [57]. It

is generally believed that this difference results from the fact that

typically, taste is more informative about the chemical composition

of substances than auditory signals. Therefore, taste-aversion but

not tone-aversion has evolved as a specific learning mechanism

aimed at preventing the consumption of poisonous substances.

Drawing an analogy to associative learning in bacteria, we propose

to utilize ecologically-relevant CS rather than arbitrary CS when

searching for associative learning in bacteria. In our model, the

strength of association increases with the number of repetitions

due to the stochasticity in the encoding process. Such dependence

of the strength of association on the number of repetitions is also

observed in classical conditioning experiments in animals [58].

Therefore, experiments involving a large number of co-occur-

rences of the CS and US are more likely to reveal associative

learning in GRNs or populations of GRNs. Note that standard

experiments studying responses of bacteria are typically short and

do not involve repetitions in the presentation of stimuli to the same

population of bacteria. Therefore, associative learning in such

experiments may have been overlooked. Moreover, we have

shown that the learning capacity of the population of bacteria is

higher than that of a single GRN. Therefore, the experimental

search for associative learning in bacteria should be done at the

population level.

More specifically in bacteria, the presence of foreign bacteria

is a signal of potential stress. For example, many bacteria

produce antibiotics that are harmful to other strains [59]. Other

bacteria are sensitive to these damaging antibiotics and respond

to their presence by activating a pre-wired stress response, such

as the multiple antibiotics response (MAR) [60]. We thus suggest

that the R gene in our scheme corresponds to one of the outputs

of MAR response, e.g. the micF gene [61]. Note that similar to

the blink in the classic eye-blink conditioning that protects the

eye from the air puff (Figure 1), the activation of micF prevents

the entry of the antibiotics into the cell. Thus, the antibiotics can

be considered as a US whereas the stress response can be

considered as a UR. However, the production of harmful
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antibiotics is not present in all bacteria species. Therefore,

learning to distinguish between harmful and benign strains of

bacteria is of potential great ecological significance because it

may allow the bacteria to respond faster. Thus, the presence of

foreign bacteria could correspond to the CS in our framework.

Indeed, bacteria are able to detect secondary metabolites that

are produced by other strains [62]. In that line, we suggest as a

candidate for the M protein in the model the MarA gene. MarA

is known to positively autoregulate itself, and thus has the

potential to be bistable. In addition, the promoter of that gene

contains multiple binding sites for transcription factors, allowing

for complex regulation of the gene expression including the

realization of AND gates.

Experimentally, the UR can be measured using a fluorescent-

based reporter that is regulated by a promoter of a stress response

gene. The CS in this framework should be stimuli that can be

sensed by the bacteria but do not elicit the stress response. These

include a change in the concentration of different molecules that

does not activate the stress response. Repeated exposure to such

conditions can be controlled using a chemostat [63], which can

maintain selected growth conditions at a constant level while

changing others.

Finally, the benefit of the stress response at the population level

can also be found in the induction of the MAR response, as it

triggers the activation of genes that inactivate toxic compounds.

The benefit of this ‘‘pooled response’’ for the population comes

from the decrease in the concentration of the toxic compound

[64].

Whether or not associative learning exists in GRNs on a time-

scale much shorter than required for evolution is an open question.

However, whether considering bacteria that can predict a stress

condition or human digestive cells that can predict food intake,

associative learning in single and populations of cells seems to have

an evolutionary advantage. In view of the computational

capabilities of GRNs demonstrated in this paper, we believe that

future careful investigations will reveal the existence of associative

learning in single and populations of cells.

Materials and Methods

The dynamical equations of the generalized model
In this section we provide the rate equations that describe the

dynamics of the generalized model (Figure 4A). The kinetic

reactions that underlie these dynamics and the derivation of the

rate equations from the kinetic reactions are described in Text S1

in the Supporting Information. The single pathway equations

correspond to the generalized model with N~1.

The equations that describe the dynamics of the pseudo-

synapses are given by:

d Mi½ �
dt

~F Mi½ �ð Þ{mM
:MizIext Ci½ �, U½ �ð Þzji ð4Þ

where i[ 1, . . . ,Ngf . The nonlinear positive feedback term,

F Mi½ �ð Þ, is described by F M½ �ð Þ~ aM
1 zaM

2 M½ �n

aM
3 z M½ �n where the

parameters aM
i are kinetic parameters, and n is the Hill coefficient,

corresponding to the cooperativity of binding. The second term in

Eq. (4) denotes the protein degradation, where mM is a parameter.

The third term in Eq. (4) describe the effect of Ci and U,

Iext C½ �,Uð Þ~ a
Iext
1 za

Iext
2

: U½ �za
Iext
3

: C½ �: U½ �
a

Iext
4 za

Iext
5

: U½ �z C½ �: U½ �
where a

Iext
i are ki-

netic parameters. The last term in Eq. (4) models the stochasticity

of the dynamics, and we assume that ji are independent white

noise such that SjiT~0, Sji tð Þ:jj t0ð ÞT~2s2dijd t{t0ð Þ where dij is

Kronecker’s delta function such that dij~1 if i~j and dij~0

otherwise and s is a parameter.

The reactive equation that describes the dynamics of R is given

by:

d R½ �
dt

~{mR
:RzG1 U½ �ð Þz 1

N

XN

i~1

G2 Ci½ �, Mi½ �ð Þ ð5Þ

where mR is the degradation rate of R, G1 U½ �ð Þ~ aU
1 zaU

2 U½ �
aU

3 z U½ � and

G2 C½ �, M½ �ð Þ~ aCM
1 zaCM

2
: C½ �zaCM

3
: M½ �nzaCM

4
: C½ �M½ �n

aCM
5 zaCM

6
: C½ �zaCM

7
: M½ �nz C½ �M½ �n

where

aU
i and aCM

i are kinetic parameters.

The capacity of the GAM
In this section we compute the capacity of the GAM to

learn associations. To that goal, we consider a binary

approximation of the dynamics of the pseudo-synapses.

Because the dynamics of M spend most of the time near

the attractors of the deterministic dynamics, Eq. (1), it can be

approximated using a two-state Markov chain, where each

state corresponds to one attractor of the deterministic

dynamics. We further assume that the US and CS are

presented in discrete ‘‘trials’’ composed of a fixed period of

time. Therefore, the response of M to the presentation of the

CS and US can be approximated by:

Pr m0~1 m~0; c~1; u~1jð Þ~p

Pr m0~1 m~0; c~1; u~1jð Þ~p

Pr m0~m u~0jð Þ~1

ð6Þ

where c~
C½ �{Clow

Chigh{Clow
and u~

U½ �{U low

Uhigh{U low
such that c~0

and c~1 denote epochs in which C½ �~Clow and C½ �~Chigh,

respectively and u~0 and u~1 denote epochs in which

U½ �~U low and U½ �~Uhigh, respectively. The variables m and

m9 denote the states of the pseudo-synapse before and after

the presentation of the external cues and their values; 0 or 1

denote epochs in which M½ �&M low and M½ �&Mhigh,

respectively. The steady state response to the presentation of

a pattern is:

R½ �~ 1

mR

: aU
1

aU
3

z
1

N

XN

i~1

G2 Ci½ �, Mi½ �ð Þ
 !

ð7Þ

The selectivity of the response in Eq. (7) depends on the value

of the sum of G2 Ci½ �, Mi½ �ð Þ. In response to the presentation of

a CS that was learned n CSs ago,

1

N

XN

i~1

G2 Ci½ �, Mi½ �ð Þ~A1zA2
:h {n½ � ð8Þ

where

h {n½ �~
1

N

XN

i~1

mi{hð Þ: c
{n½ �

i {Q
� �

ð9Þ
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A1~
aCM

1 zaCM
2

:ClowzaCM
3

: M low
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zaCM
4
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6
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aCM
5 zaCM

6
:ClowzaCM

7
: M lowð ÞnzClow: M lowð Þn

{
aCM

1 zaCM
2

:ChighzaCM
3

: M low
� �n

zaCM
4

:Chigh M low
� �n

aCM
5 zaCM

6
:ChighzaCM

7
: M lowð ÞnzChigh: M lowð Þn

A2
,

Q~

aCM
1 zaCM

2
:ClowzaCM

3
: M low
� �n

zaCM
4

:Clow M low
� �n

aCM
5 zaCM

6
:ClowzaCM

7
: M lowð ÞnzClow: M lowð Þn

{
aCM

1 zaCM
2

:ClowzaCM
3

: Mhigh
� �n

zaCM
4

:Clow Mhigh
� �n

aCM
5 zaCM

6
:ClowzaCM

7
: Mhighð ÞnzClow: Mhighð Þn

A2

(see Text S1 in Supplementary Information for a more detailed

derivation).

Dissociating a learned pattern C {n½ � from non-learned patterns

(which we denote as C {?½ �) is possible only if h {n½ � is significantly

different from h {?½ �. The difficulty in dissociating learned and

non-learned patterns lies in the fact that the responses to the two

types of patterns are stochastic variables that depend on the

stochasticity in the realization of the learned and non-learned

stimuli as well as the stochasticity in the learning. Therefore, we

consider the distribution of responses to the learned and non-

learned stimuli.

To compute the distribution of h {n½ �, note that in response to

the presentation of a sequence of CS, changes in the state of the

pseudo-synapses follow a Markov chain such that

Pr m0~1 m~0jð Þ~fp

Pr m0~0 m~1jð Þ~ 1{fð Þq
ð10Þ

From Eq. (10) it follows that at the stationary distribution,

Pr m~1 c {n½ �		 ~0
� �

~
fp

1{v
1{qvn{1
� �

Pr m~1 c {n½ �		 ~1
� �

~
fp

1{v
z

1{fð Þ:p:q:vn{1

1{v

ð11Þ

where v~1{ fpz 1{fð Þqð Þ.
Using Eq. (11), and the fact that m2~m and c2~c, a

straightforward calculation yields that the mean and variance of

h {n½ � are given by:

E h {n½ �
h i

~E h {?½ �
h i

zS

var h {n½ �
� �

~var h {?½ �
� �

{

1

N
S: Sz2 f {Qð Þ E m½ �{hð Þ{ 1{2Qð Þ 1{2hð Þð Þ

ð12Þ

where

E h {?½ �
h i

~ E mð Þ{hð Þ f {wð Þ

E m½ �~ fp

1{v

S~
f 1{fð Þpq

1{v
:vn{1

var h {?½ �
� �

~
1

N
E m½ � 1{E m½ �ð Þ: Q2z 1{2Qð Þf

� ��
z

f 1{fð Þ: E m½ �{hð Þ2
�

ð13Þ

Note that for large N h {n½ � is the sum of a large number of

independent and identically distributed random variables and

therefore according to the central limit theorem h {n½ � is normally

distributed.

In order to compute the capacity of the GAM, we define the

difference between the mean responses to learned and non-learned

stimuli as the signal and the square root of the sum of the variances

of the responses to the learned and non-learned stimuli as the noise.

In the limit of large N, the ability of a binary classifier to

discriminate between the learned and non-learned stimuli depends

on the SNR. If the SNR is large, it is possible to achieve a high

detection rate while maintaining a low level of false positives. A low

SNR implies that the two stimuli are indistinguishable. Therefore,

we define the capacity of the GAM to be the oldest memory such

that the SNR is larger than 1 (see also [47,48] for a similar

approach in models of neural networks). Formally, the signal-to-

noise-ratio for a pattern presented n patterns ago is given by:

SNR nð Þ~ S

No
ð14Þ

where

No~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var h {n½ �ð Þzvar h {?½ �ð Þ

q
ð15Þ

We compute the capacity in the limit of large N and consider the

effect of the scaling of p and q with N on the capacity of the GAM. If
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the values of p and q are very different then the pseudo-synapses will

saturate. Therefore, we consider the same scaling of p and q,

p,q*O N{d
� �

. The signal in Eq. (13) depends on the product of

two terms, vn{1 that depends on n and a prefactor,
f 1{fð Þpq

1{v
that

is independent of n. It is easy to see that the prefactor,

f 1{fð Þpq

1{v
*O N{d

� �
. Similarly, it is easy to see that

var h {n½ �� �
*O

1

N


 �
. Therefore, SNR*O N

{ d{1
2

� �
:vn{1


 �
.

Because vn{1
v1, a necessary condition for the SNR to be larger

than 1 is dƒ

1

2
. The term vn{1 decays exponentially fast with n.

However, because 1{v*O N{d
� �

, as long as nƒO Nd
� �

,

vn{1*O 1ð Þ. Therefore, for dƒ

1

2
, as long as nƒO Nd

� �
,

SNR§O 1ð Þ. Thus, for dƒ

1

2
, the capacity of the GAM is

O Nd
� �

, which is maximal for d~
1

2
. In other words, assuming

that p,q*O
1ffiffiffiffiffi
N
p

 �

, the capacity of the GAM is O
ffiffiffiffiffi
N
p� �

.

To gain insights into this result, we consider the optimal choice

of h and Q (which minimizes the variance), in which h~E m½ � and

Q~f . In this case, in the limit of large N,

var h {n½ �
� �

~
1

N
:f 1{fð Þ: pq

1{vð Þ2
zO

1

N2


 �
ð16Þ

and Eq. (15) becomes

No~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N
:f 2 1{fð Þ2: pq

1{vð Þ2
zO

1

N2


 �s
ð17Þ

Thus, Eq. (14) becomes:

SNR nð Þ~
ffiffiffiffiffiffiffiffiffi
Npq

2

r
:vn{1 ð18Þ

The requirement that SNR nð Þ§1 yields:

nƒ
1

2 fpz 1{fð Þqð Þ ln
Npq

2


 �
ð19Þ

where we used the fact that for xvv1, ln 1{xð Þ&{x and

therefore ln vð Þ&{ fpz 1{fð Þqð Þ.
In order to find the values of p� and q� that maximize the

capacity of the GAM, we compute the zeros of the partial

derivatives of Eq. (19) with respect to p and q, resulting in

p�~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1{fð Þe2

f

s
: 1ffiffiffiffiffi

N
p and q�~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fe2

1{fð Þ

s
: 1ffiffiffiffiffi

N
p . Thus, the capac-

ity of the GAM is

n�~

ffiffiffiffiffi
N
p

2
ffiffiffi
2
p

:e:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1{fð Þ

p ð20Þ

For f ~0:5, the capacity is n�~

ffiffiffiffiffi
N
pffiffiffi

2
p

:e
. Note that the capacity

increases as the value of f deviates from f ~0:5.

The capacity of a population of GAMs
In this section we compute the capacity of a large population

composed of Z identical GAMs. The population response to the

presentation of C{n is given by (up to constant shift and scaling):

h {n½ �
z ~

1

Z

XZ

j~1

1

N

XN

i~1

mi,j{h
� �

: c
{n½ �

i {Q
� �

ð21Þ

where mi,j is the ith pseudo synapse (i[ 1, . . . ,Nf g) in the jth GAM

(j[ 1, . . . ,Zf g) (compare to Eq. (9)).

Similar to the analysis of the capacity of a single GAM, we

compute the mean and variance of h {n½ �
z . The computation of

mean of h {n½ �
z in the case of the population is similar to that

computation for the case of a single GAM, yielding

E h {n½ �
z

h i
~

f 1{fð Þpqvn{1

1{v
zE h {?½ �

z

h i
ð22Þ

Note that E h {n½ �
z

� 

is independent of the size of the population:

since all GAMs are identical, their contribution, on average, is

equal. Computing the variance of Eq. (21) results yields:

var h {n½ �
z

� �
~

1

Z
:var h

{n½ �
z~1

� �
z 1{

1

Z


 �
: 1

N
:

E mi,j{E m½ �
� �

mi,j0~j{E m½ �
� �h i

:Q2z
�
E mi,j{E m½ �
� �

mi,j0~j{E m½ �
� �

c
{n½ �

i

h i
:

1{2Qð Þzf 1{fð Þ E m½ �{hð Þ2{2S E m½ �{hð Þ:

1{f {Qð Þ{S2Þ

ð23Þ

In order to evaluate Eq. (23), we consider the dynamics of a single

pseudo-synapse mi,j . Similar to Eq. (3),

m
0
i,j~ci 1{mi,j

� �
ai,jzcimi,jz 1{cið Þmi,j 1{bi,j

� �
ð24Þ

where ai,j and bi,j are Bernoulli variables with parameters p and q,

respectively.

Using induction, it is easy to prove that the value of mi,j in

response to the learning of an infinite sequence of CS is given by:

mi,j~
X?
k~1

B
{k½ �

i,j P
k{1

r~1
W

{r½ �
i,j ð25Þ

where B
{k½ �

i,j ~c
{k½ �

i a
{k½ �

i,j and W
{r½ �

i,j ~1{c
{r½ �

i a
{r½ �

i,j { 1{c
{r½ �

i

� �
b

{r½ �
i,j and a

{x½ �
i,j and b

{x½ �
i,j denote the values of the Bernoulli

variables ai,j and bi,j , respectively, during the encoding of the CS x

patterns ago.

Using Eq. (24), it can be shown that:

E mi,j{E m½ �
� �

mi,j0~j{E m½ �
� �h i

~
f 1{fð Þp2q2

1{vð Þ2 1{v2ð Þ

E mi,j{E m½ �
� �

mi,j0~j{E m½ �
� �

c
{n½ �

i

h i
~

f 2p2

1{vð Þz

2f 3p2 1{pð Þ
1{vð Þ 1{v2ð Þz

f 3p2

1{vð Þ2
z

2fpS

1{vð Þ v{v2ð Þ
:

fp2z 1{fð Þq2
� �

zvn{1
2

: f 1{fð Þp2q 2{qð Þ
1{v2

z




2f 2 1{fð Þp2q

1{vð Þ2 v{v2ð Þ
: fp2z 1{fð Þq2
� �!

ð26Þ

where v2~1{2:fp{2: 1{fð Þqzfp2z 1{fð Þq2.
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Substituting Eq. (26) in Eq. (23) and assuming that p,q*O
1

N


 �
yields:

var h {n½ �
z

� �
~

1

Z
:var h

{n½ �
z~1

� �
z 1{

1

Z


 �
: 1

N
:

f 1{fð Þp2q2

2 fpz 1{fð Þqð Þ3
: f 1{2Qð ÞzQ2
� �

z

 

f 1{fð Þ E m½ �{hð Þ2{2S E m½ �{hð Þ:

1{f {Qð ÞzO
1

N2


 ��
ð27Þ

Note that in the case of a single network, Z~1, only the first term

contributes, yielding Eq. (16).

The capacity of the population of GAMs is defined as the oldest

memory such that the SNR is larger than 1, where the signal and

noise terms in Eq. (14) are given by

S~E h {n½ �
z {h {?½ �

z

h i
ð28Þ

And

No~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var h

{n½ �
z

� �
zvar h

{?½ �
z

� �r
ð29Þ

In the limit of ZwwN (large number of GAMs) the contribution

of the first term in Eq. (26) to the variance vanishes and the

capacity depends on the second term. For a general value of h,

f 1{fð Þ E m½ �{hð Þ2{2S E m½ �{hð Þ: 1{f {Qð Þ*O 1ð Þ and this

term dominates var h {n½ �
z

� �
, resulting in var h {n½ �

z

� �
*O

1

N


 �
.

Therefore, the population capacity in this case is O
ffiffiffiffiffi
N
p� �

, similar

to that of a single GAM. However, if h~E m½ � this O 1ð Þ term

vanishes and var h {n½ �
z

� �
is dominated by

f 1{fð Þp2q2

2 fpz 1{fð Þqð Þ3
:

f 1{2Qð ÞzQ2
� �

, resulting in var h {n½ �
z

� �
*O

p

N

� �
. Similar to the

case of a single GAM, we compute the capacity in the limit of large

N and consider the effect of the scaling of p and q with N on the

capacity of the population of GAMs. If the values of p and q are

very different then the pseudo-synapses will saturate. Therefore,

we consider the same scaling of p and q, p,q*O N{d
� �

. The signal

in Eq. (27) is the same as that of a single GAM (Eq. (13)), therefore

the prefactor in Eq. (13) is
f 1{fð Þpq

1{v
*O N{d

� �
. Similarly, it is

easy to see that var h {n½ �
z

� �
*O

p

N

� �
~O N{ dz1ð Þ� �

. Therefore,

SNR*O N
{d{1

2 :vn{1
� �

. Because vn{1
v1, a necessary condi-

tion for the SNR to be larger than 1 is dƒ1. The term vn{1

decays exponentially fast with n. However, because

1{v*O N{d
� �

, as long as nƒO Nd
� �

, vn{1*O 1ð Þ. Therefore,

for dƒ1, as long as nƒO Nd
� �

,SNR nð Þ§O 1ð Þ. Thus, for dƒ1,

the capacity of the GAM is O Nd
� �

, which is maximal for d~1. In

other words, assuming that p,q*O
1

N


 �
, the capacity of the

GAM is O Nð Þ. In particular, assuming that Q~f , substituting

Eqs. (28) and Eq. (29) in Eq. (14) yields

SNR nð Þ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1{vð Þ

p
:vn{1 ð30Þ

A straightforward calculation reveals that the capacity is maximal

when 1{v~
e

N
, resulting in capacity:

n�pop~
N

2e
ð31Þ

Numerical procedures
In our simulations, we used the following parameters:

mM~mR~0:14
1

min
; n~4; aM

1 ~2
mMð Þ5

min
; aM

2 ~0:8
mM

min
;

aM
3 ~110 mMð Þ4; a

Iext
1 ~0:0066

mMð Þ3

min
; a

Iext
2 ~0;

a
Iext
3 ~0:6193

mM

min
; a

Iext
4 ~0:1 mMð Þ2; a

Iext
5 ~3:66mM;

aU
1 ~0; aU

2 ~0:3
mM

min
; aU

3 ~10mM; aCM
1 ~0; aCM

2 ~0; aCM
3 ~0;

aCM
4 ~0:3

mM

min
; aCM

5 ~100 mMð Þ5; aCM
6 ~100 mMð Þ4; aCM

7 ~1mM;

s2~0:033
mMð Þ2

min

For the generalized model (Figure 3) we used:

f ~0:5; N~1000; aU
2 ~0:02

mM

min
; aU

3 ~10mM; aCM
1 ~104 mMð Þ6

min
;

aCM
2 ~0; aCM

3 ~0; aCM
4 ~37:5

mM

min
; aCM

5 ~105 mMð Þ5;

aCM
6 ~1:9745:105 mMð Þ4; aCM

7 ~187:2mM

All other parameters were the same as the single pathway model

(Figure 3). The derivation of the parameters from the reaction

kinetic constants is provided in the Text S1 in the Supporting

Information. The reaction kinetic constants that were used are

provided in Table S1 in the Supporting Information. Simulations

in Figures 3 and 4 were carried out using Euler method for

numerical integration with step sizes Dt~0:1and 0.5 min,

respectively.

Supporting Information

Figure S1 Comparing the dynamics equations and the
Markov approximation. (A) Green line, the response R in a

simulation of the model (Eqs. (4) and (5)) in the same paradigm as

in Figure 4B. Orange rectangles, the timing of a US; Letters A–E

denote the timing as identities of CS. (B) The responses R

to patterns A–E prior to learning (blue, green, black, magenta

and yellow lines, respectively) and to pattern A after learning

(red line), at the times corresponding to the corresponding colored

horizontal lines in A, aligned to the time of presentation of

the stimuli. Circles, mean response in the second half of stimulus

presentation (last 15min) for each pattern. . (C) Histograms of

mean responses (circles in B) to the most recently learned patterns

(black) and random patterns (blue). (D) The SNR as a function
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of the age of the pattern. Red circles, the dynamics equations,

blue line, the predicted SNR from the Markov model. Green

line, the predicted SNR assuming optimal parameters. Note that

the green and blue lines almost overlap, and that they both

agree well with the simulation red circles. The parameters

that were used in the simulation are the same as those used in

Figure 4B and the SNR and histograms are based on 1,000

repetitions.

(TIF)

Table S1 Kinetic parameters used in simulations. A

table of all the kinetic parameters used to derive the parameters of

the numerical simulations of the approximate dynamics.

(PDF)

Text S1 Derivations of the approximate dynamic equa-
tions (Eqs. 1–9) from the kinetic reaction equations
(PDF)

Acknowledgments

We thank Ohad Sorek for drawing Figure 1 and Mor Nitzan for her

helpful comments on the manuscript

Author Contributions

Conceived and designed the experiments: MS NQB YL. Performed the

experiments: MS YL. Analyzed the data: MS NQB YL. Contributed

reagents/materials/analysis tools: MS NQB YL. Wrote the paper: MS

NQB YL.

References

1. Pavlov IP (1927) Conditioned Reflexes. Anrep GV, translator. London: Oxford
University Press.

2. Kitazawa S (2002) Neurobiology: ready to unlearn. Nature 416: 270–273.

3. Medina JF, Repa JC, Mauk MD, LeDoux JE (2002) Parallels between

cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci 3: 122–

131.

4. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor
trafficking underlying a form of associative learning. Science 308: 83–88.

5. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, et al. (2002)

Requirement for hippocampal CA3 NMDA receptors in associative memory
recall. Science 297: 211–218.

6. Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene

networks. Neuron 26: 567–580.

7. Garcia-Ojalvo J (2011) Physical approaches to the dynamics of genetic circuits: a

tutorial. Contemporary Physics 52: 439–464.

8. Alon U (2007) An Introduction to systems biology: design principles of biological
circuits. Chapman & Hall/CRC

9. Bray D (1995) Protein molecules as computational elements in living cells.

Nature 376: 307–312.

10. Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial

transcription logic. Proc Natl Acad Sci U S A 100: 5136–5141.

11. Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and
orthogonal genetic logic gates for robust digital-like synthetic biology. Nat

Commun 2: 508.

12. Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a
modular AND gate. Mol Syst Biol 3: 133.

13. Hengge-Aronis R (2002) Recent insights into the general stress response

regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4: 341–346.

14. Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, et al. (2009) Adaptive

prediction of environmental changes by microorganisms. Nature 460: 220–
U280.

15. Tagkopoulos I, Liu YC, Tavazoie S (2008) Predictive behavior within microbial

genetic networks. Science 320: 1313–1317.

16. Hennessey TM, Rucker WB, Mcdiarmid CG (1979) Classical-Conditioning in
Paramecia. Animal Learning & Behavior 7: 417–423.

17. Armus HL, Montgomery AR, Gurney RL (2006) Discrimination learning and
extinction in paramecia (P. caudatum). Psychol Rep 98: 705–711.

18. Fritz G, Buchler NE, Hwa T, Gerland U (2007) Designing sequential

transcription logic: a simple genetic circuit for conditional memory. Syst Synth
Biol 1: 89–98.

19. Fernando CT, Liekens AM, Bingle LE, Beck C, Lenser T, et al. (2009)

Molecular circuits for associative learning in single-celled organisms. J R Soc

Interface 6: 463–469.

20. Gandhi N, Ashkenasy G, Tannenbaum E (2007) Associative learning in
biochemical networks. J Theor Biol 249: 58–66.

21. Ginsburg S, Jablonka E (2009) Epigenetic learning in non-neural organisms.

J Biosci 34: 633–646.

22. Loewenstein Y, Sompolinsky H (2003) Temporal integration by calcium
dynamics in a model neuron. Nat Neurosci 6: 961–967.

23. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, et al.

(2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation.

Nat Neurosci 8: 202–211.

24. Ferrell JE, Jr. (2002) Self-perpetuating states in signal transduction: positive
feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:

140–148.

25. Wilhelm T (2009) The smallest chemical reaction system with bistability. BMC
Syst Biol 3: 90.

26. Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a robust
neural integrator. Nat Neurosci 5: 775–782.

27. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle

switch in Escherichia coli. Nature 403: 339–342.

28. Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, et al. (2007)
Rational design of memory in eukaryotic cells. Genes Dev 21: 2271–2276.

29. Kramer BP, Viretta AU, Daoud-El-Baba M, Aubel D, Weber W, et al. (2004)
An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol

22: 867–870.

30. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of
an autoregulatory genetic module. Proc Natl Acad Sci U S A 100: 7714–7719.

31. Novick A, Weiner M (1957) Enzyme Induction as an All-or-None Phenomenon.

Proc Natl Acad Sci U S A 43: 553–566.

32. Ferrell JE, Jr. (2008) Feedback regulation of opposing enzymes generates robust,
all-or-none bistable responses. Curr Biol 18: R244–245.

33. Xiong W, Ferrell JE, Jr. (2003) A positive-feedback-based bistable ‘memory

module’ that governs a cell fate decision. Nature 426: 460–465.

34. Bagowski CP, Ferrell JE, Jr. (2001) Bistability in the JNK cascade. Curr Biol 11:
1176–1182.

35. Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and

amplifiers for gene expression. Proc Natl Acad Sci U S A 97: 2075–2080.

36. Pomerening JR (2008) Uncovering mechanisms of bistability in biological

systems. Curr Opin Biotechnol 19: 381–388.

37. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A (2004)

Multistability in the lactose utilization network of Escherichia coli. Nature 427:

737–740.

38. Mahaffy JM, Savev ES (1999) Stability Analysis for a mathematical model of the
lac operon. Q Appl Math 57: 37–53.

39. Yildirim N, Santillan M, Horike D, Mackey MC (2004) Dynamics and bistability

in a reduced model of the lac operon. Chaos 14: 279–292.

40. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA
synthesis in mammalian cells. PLoS Biol 4: e309.

41. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene

expression and its consequences. Cell 135: 216–226.

42. Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene
activity in individual bacteria. Cell 123: 1025–1036.

43. Bialek W. (2000) Stability and Noise in Biochemical Switches. pp. 103–109.

44. Neiman T, Loewenstein Y (2013) Covariance-based synaptic plasticity in an

attractor network model accounts for fast adaptation in free operant learning.
J Neurosci 33: 1521–1534.

45. Van Kampen NG (1992) Stochastic Processes in Physics and Chemistry.

Amsterdam: North-Holland.

46. Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor
complex into an activator that recruits SAGA and SWI/SNF in response to

osmotic stress. Mol Cell 9: 1307–1317.

47. Tsodyks M (1990) Associative Memory in Neural Networks with Binary

Synapses Modern Physics Letters B 4: 713.

48. Amit DJ, Fusi S (1994) Learning in Neural Networks with Material Synapses.

Neural Comput 6: 957–982.

49. Fusi S, Abbott LF (2007) Limits on the memory storage capacity of bounded

synapses. Nat Neurosci 10: 485–493.

50. Yoon JH, Abdelmohsen K, Gorospe M (2012) Post-transcriptional gene
regulation by long noncoding RNA. J Mol Biol.

51. Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators.

Annu Rev Biochem 74: 199–217.

52. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and
bistability arising from multisite phosphorylation in protein kinase cascades.

J Cell Biol 164: 353–359.

53. Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-
proteasome system. Semin Cell Dev Biol 23: 523–529.

54. Kapuy O, Barik D, Sananes MRD, Tyson JJ, Novak B (2009) Bistability by

multiple phosphorylation of regulatory proteins. Progress in Biophysics &
Molecular Biology 100: 47–56.

55. Chin JW (2006) Modular approaches to expanding the functions of living

matter. Nat Chem Biol 2: 304–311.

56. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:
224–230.

57. Lionel N (2009) Introduction To Psychology. Juta and Company Ltd.

58. Gallistel CR (1990) The organization of learning. Cambridge, MA: MIT Press.

Stochasticity, Bistability and the Wisdom of Crowds

PLOS Computational Biology | www.ploscompbiol.org 14 August 2013 | Volume 9 | Issue 8 | e1003179



59. Garmendia L, Hernandez A, Sanchez MB, Martinez JL (2012) Metagenomics

and antibiotics. Clin Microbiol Infect 18 Suppl 4: 27–31.
60. Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to

antibiotics and other toxic chemicals. Trends Microbiol 7: 410–413.

61. Delihas N, Forst S (2001) MicF: an antisense RNA gene involved in
response of Escherichia coli to global stress factors. J Mol Biol 313:

1–12.

62. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001)

Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25: 365–404.
63. Novick A, Szilard L (1950) Description of the chemostat. Science 112: 715–716.

64. Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA, et al. (2009)

Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to
triclosan induces a species-specific response, including drug detoxification.

J Antimicrob Chemother 64: 973–985.

Stochasticity, Bistability and the Wisdom of Crowds

PLOS Computational Biology | www.ploscompbiol.org 15 August 2013 | Volume 9 | Issue 8 | e1003179


