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Abstract

Despite its century-old use, the interpretation of local field potentials (LFPs), the low-frequency part of electrical signals
recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents
following synaptic input, and obvious questions regarding the ‘locality’ of the LFP are: What is the size of the signal-
generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a
synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal?
Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established
biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations
of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are
the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations
between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For
uncorrelated input only the first factor is relevant, and here a modest reduction (,50%) in the spatial reach is observed for
higher frequencies (.100 Hz) compared to the near-DC (*0Hz) value of about 200mm. Much larger frequency-dependent
effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-
frequency (*0Hz) LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency
LFP components have larger spatial reach and extend further outside the active population than high-frequency
components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of
neurons in the population. Our numerical findings are backed up by an intuitive simplified model for the generation of
population LFP.
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Introduction

The measurement of electrical potentials in the brain has a

more than hundred year old history [1]. While the high-frequency

part has been successfully used as a measure of spiking activity in a

handful of surrounding neurons, the interpretation of the low-

frequency part, the local field potential (LFP), has proved more

difficult. Current-source density (CSD) analysis of multisite LFP

recordings across well-organized layered neural structures such as

cortex and hippocampus, was introduced in the 1950’s [2].

However, even if the CSD is a more local measure of neural

activity than the LFP [3–8], the interpretation in terms of

underlying activity in neural populations is inherently ambiguous

[9,10]. Thus in many in vivo applications, for example when

investigating receptive fields in sensory systems, the LFP signal was

discarded altogether. The LFP signal has seen a revival in the last

decade, however. This is due to the rapid development of new

silicon-based microelectrodes now allowing for simultaneous

recordings of LFP at tens or hundreds of contacts [11–14] (and

availability of affordable computer storage), the realization among

neuroscientists that the LFP offers a unique window into neural

activity at the population level [9,15–23], and the possibility of

using the LFP signal in brain-machine interfaces [24–27].

To take full advantage of the opportunities offered by this new

recording technology, a precise understanding of the link between

the recorded LFP and the underlying neural activity is required.

For example, two obvious questions regarding the ‘locality’ of the

LFP that need quantitative answers are: (1) What is the size of the

signal-generating region, i.e., spatial reach, around a recording

contact? (2) How far does the LFP signal extend outside an active

population due to volume conduction? The first question has been

addressed in several experimental studies, with resulting estimates

for the spatial reach in cortex varying from a few hundred

micrometers to several millimeters [28–33]. This large range in

reported experimental estimates presumably reflects that the

spatial reach depends strongly on the spatiotemporal properties
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of the underlying spiking network activity, in particular the level of

correlations [34]. These critical network features will not only vary

between the different brain regions and species studied, but also

depend on the brain state.

In cortex, thousands of neurons contribute to the LFP, making

the signal inherently difficult to interpret. Fortunately, the

‘measurement physics’, i.e., the biophysical link between neural

activity and what is measured, is well understood: According to

well-established volume-conductor theory [10,35], the recorded

LFPs stem from appropriately weighted contributions from

transmembrane currents in the vicinity of the electrode contact.

Building on pioneering work by Rall in the 1960’s [35,36], a

forward-modeling scheme incorporating detailed reconstructed

neuronal morphologies in precise calculations of extracellular

potentials has been established [37] and used to explore both

spikes [37–41] and LFPs [9,34,41–43] generated by single neurons

[37–40,42] and neural populations [9,34,41]. Unlike in experi-

ments, this modeling scheme allows for a clear separation between

volume conduction effects and effects of spatiotemporal variations

in spiking network activity in determining population LFPs. In

[34] it was used in a thorough investigation of the locality of LFP.

It was found that the size of the LFP-generating region depends on

the neuron morphology, the synapse distribution and correlations

in synaptic activity. For uncorrelated activity, the LFP represents

neurons in a small region (that is, a few hundred micrometers

around the electrode contact), while in the case of correlated input

the size of the generating region is determined by the spatial range

of correlated synaptic activity and could thus be much larger.

Specifically, it was found that correlated synaptic inputs onto

either the apical or basal dendrites of a population of pyramidal

neurons could give orders of magnitude larger LFPs, and a much

larger spatial reach, compared to the situations with (1) the same

correlated input spread homogeneously over the neuronal

dendrite or (2) similar uncorrelated synaptic inputs placed evenly

or unevenly over the neurons.

As shown in [34], the relative contributions to the population

LFP from neurons at different distances from the electrode will

depend on three factors: First, the amplitude of the LFP generated

by a single neuron decays with distance (typically as 1=r2 for

distances beyond a few hundred micrometers, less sharply closer to

the neuron). Thus single neurons close to the electrode will

contribute more to the LFP than if it was placed further away.

Second, for a disc-like population, characteristic for a laminar

population in a cortical column, it follows that with constant

neuron density, the number of neurons located on a ring at a

particular radial distance r from the electrode will increase linearly

with r. Third, with correlated synaptic inputs onto a neural

population, the LFP contributions from different cells will also

become correlated, or synchronized, and will effectively boost the

contributions to the LFP. The contributions from different rings of

neurons will thus be determined by the interplay of these three

factors. In [34] a simplified model for LFP generation based on

these elements, (1) the decay of the single-neuron contribution with

the distance from the electrode, (2) the population geometry, and

(3) the correlation of LFP contributions from individual neural

sources, was constructed. We found this simple model to not only

give qualitative insight into the generation of population LFPs, but

also quantitatively accurate predictions of the size of the signal-

generating region and the decay of the signal outside an active

population. Here we extend this work by examining the frequency

dependence of the LFP.

Strong frequency dependencies have been observed both in the

tuning properties [28,29] and information content [18,22] of

cortical LFPs. For example, the low-frequency LFP (less than

12 Hz) has been shown to carry complementary information to

the gamma-range LFP (30–100 Hz) in V1 of macaque monkeys

during naturalistic visual stimulation [22]. To properly interpret

such experiments, it is thus important to know how spatial reach of

the LFP varies across frequencies and whether the biophysics of

LFP signal generation boost some frequencies compared to others.

The high-frequency LFP components are, for example, expected

to be more local than the low-frequency components due to

‘intrinsic dendritic filtering’ [42], i.e. due to the reduction of the

(effective) current-dipoles with increasing frequency resulting from

the capacitive properties of the dendritic membrane [10].

In [34] we used the biophysical forward-modeling scheme to

investigate the total population LFP, i.e., the total signal generated

across all frequencies. Here we use the same scheme to investigate

both the distribution of the power of synaptically generated LFP

between different frequency bands and the frequency dependence

of the locality of the LFP signal. In terms of the latter, we study the

size of the signal-generating region (spatial reach) as well as the

spatial extension of the LFP signal outside an active population —

for each frequency component separately.

We also use a frequency-resolved (i.e. dealing with each

frequency component separately) version of the simplified model

developed in [34] to guide our investigation of this frequency

dependence. The population geometry (factor 2) does obviously

not change with frequency. In contrast, the single-neuron LFP

contribution (factor 1) decays faster with distance for higher LFP

frequencies due to the intrinsic dendritic filtering effect [40,42],

but an equally important factor turns out to be the frequency

dependence of the ‘correlation transfer’, i.e., how correlations in

the synaptic input are transferred to correlations between the

single-neuron LFP contributions (factor 3). As an example, Figure 1

illustrates how the frequency-resolved spatial reach varies with the

input correlation for a pyramidal population receiving basal

synaptic inputs. We show that when the frequency dependencies of

factors 1 and 3 are incorporated, the simplified model can still

account well for the results obtained by comprehensive numerical

investigations. To allow for direct use of the simplified model in

future applications, we here thus present and tabulate numerical

results for the frequency dependence of these key factors for a

variety of situations.

Author Summary

The first recording of electrical potential from brain activity
was reported already in 1875, but still the interpretation of
the signal is debated. To take full advantage of the new
generation of microelectrodes with hundreds or even
thousands of electrode contacts, an accurate quantitative
link between what is measured and the underlying neural
circuit activity is needed. Here we address the question of
how the observed frequency dependence of recorded
local field potentials (LFPs) should be interpreted. By use of
a well-established biophysical modeling scheme, com-
bined with detailed reconstructed neuronal morphologies,
we find that correlations in the synaptic inputs onto a
population of pyramidal cells may significantly boost the
low-frequency components and affect the spatial profile of
the generated LFP. We further find that these low-
frequency components may be less ‘local’ than the high-
frequency LFP components in the sense that (1) the size of
signal-generation region of the LFP recorded at an
electrode is larger and (2) the LFP generated by a
synaptically activated population spreads further outside
the population edge due to volume conduction.

Frequency Dependence of Power and Reach of the LFP
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Note that we here for simplicity will refer to all calculated

extracellular potentials as ‘LFPs’ even if we consider frequencies as

high as 500 Hz which sometimes are regarded to be outside the

LFP band. Further, spikes, that is, the extracellular signatures of

action potentials, may contribute to recorded extracellular

potentials at frequencies as low as 100 Hz [40,44–47]. While the

intrinsic dendritic filtering effect [40] and correlations [44] also are

critical in determining the contribution from spikes to the LFP, our

focus here is on the direct contributions from synaptic inputs.

The paper is organized as follows: first we describe the

biophysical model of LFP and our simulation setup, present the

simplified model of the population LFP, and review its ingredients.

Then we present detailed results of the simulations: we analyze the

frequency content of the population LFP, the reach of different

frequency components, the decay of the signal outside of the

population, and the depth-dependence of the LFP. Next we

discuss the implications of our results for interpretation of

electrophysiological data in terms of the underlying neural activity.

Finally, in Methods we give details of the simulation setup and the

mathematical model.

Results

Biophysical origin of LFP
Extracellular potentials are generated by transmembrane

currents [48]. In the commonly used volume conductor theory, also

employed here, the extracellular medium is modeled as a smooth

three-dimensional continuum with transmembrane currents rep-

resenting volume current sources. The fundamental formula relating

neural activity in an infinite volume conductor to the generation of

the LFP w(t) at a position r is given by [10,37]

w(r,t)~
1

4pscond

Xn

k~1

Ik(t)

Dr{rk D
: ð1Þ

Here Ik denotes the transmembrane current (including the

capacitive current) in a neural compartment k positioned at rk,

and the extracellular conductivity, here assumed real (ohmic),

isotropic (same in all directions) and homogeneous (same at all

positions), is denoted by scond.

A key feature of Equation 1 is that it is linear, i.e., the

contributions to the LFP from the various compartments in a

neuron sum up. Likewise the contributions from all the neurons in

a population add up linearly.

The transmembrane currents Ik setting up the extracellular

potentials according to Equation 1 are calculated by means of

standard multicompartmental modeling techniques, here by use of

the simulation tool NEURON [49].

Simulations of LFP
An essential part of the present work is the numerical simulation

of the LFP in the center of a disc-like population of cortical cells.

The simulation setup is illustrated in Figure 2. We consider a

population of N~10000 cells distributed homogeneously on a

planar disc with a radius of 1000mm, Figure 2B. The number of

cells is chosen to be the same as in [34] and translates to the planar

cell density r^3000 cells=mm2 for each population. This density

allows for efficient simulations and seems biologically plausible: a

total planar density of, say, 50000 cortical neurons per mm2 [50]

divided by the number of relevant subpopulations (*5–10), and

finally multiplied by the fraction of neurons in the subpopulation

receiving synaptic inputs, will give on the order of a few thousand

single-neuron LFP sources per mm2.

The somas of the cells are all positioned at the same depth, and

the LFP is calculated at various ‘virtual electrode’ positions inside

and outside the population. In this setup we investigate how the

LFP signal increases as contributions from more and more distant

neurons are included, i.e., we study how the root mean square

amplitude s of the population LFP (obtained as a sum of single-cell

contributions) depends on the radius R of the subpopulation of

cells included in the sum (Figure 2C).

In the simulations we use three different morphologically-

detailed cell models shown in Figure 2B: the layer-3 and layer-5

pyramidal cells, and the layer-4 stellate cells. All neuron models

are passive, i.e., without active conductances, and the extracellular

signatures of action potentials (spikes) are thus not included. In

combination with the use of current-based synapses (see next

paragraph) this assumption makes the system linear so that each

frequency (Fourier) component can be investigated separately. For

each class of pyramidal cells we consider three different spatial

patterns of synaptic input: the synapses are placed either in the

apical region only, in the basal region only, or evenly over the

whole cell. For the layer-4 stellate cells we consider only spatially

homogeneous synaptic input, as these cells lack clearly defined

dendritic regions. Each synapse is activated with a Poissonian spike

train, the spike trains can be either generated independently for

each cell, or chosen from a common pool to model input

correlations, Figure 2A.

The synaptic currents are modeled as a-functions with a very

short time constant (t~0:1ms) to assure that no frequency filtering

is imposed by the synapses themselves. In the frequency range

considered in the present simulations (up to 500 Hz) each synaptic

input current thus effectively corresponds to a d-function with a

white (flat) power spectrum. With Poissonian spike statistics, which

also implies a white power spectrum, the power spectrum of the

input current is flat, Figure 2D. Hence the only frequency filtering

in our simulation setup will come from the intrinsic dendritic

filtering effect [40,42] due to electrical properties of the cable and

Figure 1. Spatial reach of different frequency components of LFP for different levels of synaptic input correlations cin. Color lines
denote parts of the whole population (gray, radius = 1 mm) which contribute 95% of LFP amplitude at given frequency in the middle of the
population, at the soma level. Results for layer-5 pyramidal cell with basal input.
doi:10.1371/journal.pcbi.1003137.g001

Frequency Dependence of Power and Reach of the LFP
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the summation of the single-neuron LFP contributions to form the

population LFP, Figure 2E. If any frequency filtering was to be

imposed by the synapse, such as the exponential synapse

(Figure 2D), the power spectra of the population LFP would be

determined by the superposition of the synaptic and dendritic

filters, Figure 2E, i.e., by multiplying the transfer functions of the

two filters. For further details on the simulations we refer to the

Methods section.

Simplified model of population LFP
To understand how the population signal emerges from single-

cell contributions we use a simplified mathematical model, which

is a frequency-resolved version of the model introduced in [34].

We assume that the power spectral density (PSD) of the contribution

to the LFP from the i-th cell at given frequency can be factorized

as

DWi(f )D2&s2
j(f )F2

i (f ), ð2Þ

where Wi(f ) is the Fourier transform of the single-cell LFP wi(t),

|Wi D2 is the PSD of the single-cell LFP, s2
j is the PSD of the

synaptic input current, and Fi(f ) is the frequency-dependent shape

function of the i-th cell, which carries the information about how the

root mean square amplitude of the signal at given frequency

decays with distance at a given depth. Moreover, we assume that

the shape function of each cell in the population can be replaced

with a single, distance- and frequency-dependent function:

Fi(f )~F(f ,ri), ð3Þ

that is, we assume that the shape function Fi only depends on the

frequency and the lateral distance ri from the recording electrode

(Figure 2B), and neglect variation in the single-neuron LFP

contributions due to other factors. For each particular morphology

(layer-3/layer-4/layer-5) and synaptic stimulation pattern (homo-

geneous/apical/basal), the LFP contribution from each cell in the

population is thus described with the function F (f ,r). Note that for

the special case of white-noise input (i.e., s2
j(f )~const:), the

squared shape function F2(f ,ri) will be proportional to the PSD of

the single-cell contribution to the LFP.

The summation of single-cell LFPs to the population signal

depends on the correlation between the single-cell LFP contribu-

tions. In the case of uncorrelated input this amounts to simply adding

the variances of the single-cell LFPs. For a disc-like population of

Figure 2. Simulation setup. A. Input spike trains are either generated independently for each cell (uncorrelated input), or chosen from a common
pool (correlated input: every two cells share a fraction cin of inputs). B. Model cells (red: L3 pyramidal cell, green: L4 stellate cell, blue: L5 pyramidal
cell) are placed with constant planar density r on a disc of radius R, in this example with the recording electrode at the population center. Electrode
positions shown as black dots. C. The population LFP is a sum of contributions from cells at different distances r. The dependence of the amplitude
s(R) of the population LFP on the population radius R serves to define the spatial reach (see text). The correlations between inputs give raise to
correlations cw between single-cell LFP contributions. D. The synapses used in simulations yield a flat power spectrum of input current, but because
of the frequency-dependence of single-cell shape functions F (f ,r) and population-averaged coherence cW(f ) (see text), the resulting power spectrum
of the population LFP is not flat (E). This LFP filtering effect will be present for any synapse type, such as the exponential synapse which in addition
yields non-flat power spectrum of the input current (dashed curves in D, E).
doi:10.1371/journal.pcbi.1003137.g002

Frequency Dependence of Power and Reach of the LFP
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radius R we thus obtain the following expression for the PSD of

the signal at the center:

G0(f ,R)~s2
j

X
rivR

F (f ,ri)j j2?2s2
jpr

ðR

0

r F (f ,r)j j2dr: ð4Þ

On the other hand, if the single-cell LFPs are fully correlated

(identical), the PSD of the signal is found by adding the single

amplitudes, not variances, and we thus obtain

G1(f ,R)~s2
j

X
rivR

F (f ,ri)

������
������
2

?s2
j(2pr)2

ðR

0

rF (f ,r)dr

����
����
2

: ð5Þ

In our simulation setup the single-cell LFP contributions from

two equidistant neurons (i.e., same ri) are not identical even for the

maximum level of input correlations cin~1: while the same spike

trains are used to synaptically stimulate the cell, they will not in

general activate an identical set of synapses (see Methods).

Moreover, as we now work in the frequency domain, the

correlation between single-cell contributions to the LFP (wi,wj ) is

naturally replaced by their coherence (W�i Wj=DWi DDWj D), which, in

general, depends on the frequency.

If we approximate the LFP coherence between each pair of cells

by the population-averaged LFP coherence cW, then the PSD is

given by

P(f ,R)~½1{cW(f )�G0(f ,R)zcW(f )G1(f ,R), ð6Þ

where ½1{cW(f )�G0 is the contribution resulting from uncorrelat-

ed inputs, and cW(f )G1(f ,R) represents the contribution of

correlated inputs (see Methods for the full derivation of this

formula). Note that the root mean square amplitude s of the signal

(see Figure 2) is related to the PSD P(f ,R) through

s2(R)~2

ð
P(f ,R)df ,

where the integration is between f ~0Hz and f ~500Hz (half the

sampling frequency).

Illustration of use of simplified model of population LFP
Before embarking on the comprehensive numerical evaluation

of the ingredients of the simplified model in the next Section and

its use in the remainder of the Results, we illustrate in Figure 3 the

key features of the model on a specific example, a population of

layer-5 cells receiving basal synaptic inputs.

The first ingredient that must be determined is the shape

function F (f ,r) in Equation 3. Figures 3A and B show the

numerically evaluated squared shape functions F2(f ,r) at the soma

level as a function of distance from the neuron (for three selected

frequency bands) and frequency (for three distances), respectively.

Figure 3C illustrates the fitting of the numerical results (full model)

to a piecewise power-law expression (see Equation 7 below) for

F (f ,r). The fitted values of the key parameter in this power-law

function, the cutoff distance r�, are found to depend on frequency

reflecting the intrinsic dendritic filtering effect (Figure 3D). The

second ingredient is the average coherence cW between single-

neuron LFP contributions. The numerically evaluated cW, shown

in Figure 3E for four values of the input correlation cin, is seen to

depend even more strongly on frequency.

Next we can plug F(f ,r) into the integrals, Equations 4 and 5, to

obtain G0(f ,R) and G1(f ,R), respectively. Finally, the population

LFP power is evaluated by combining G0(f ,R),G1(f ,R), and cW(f )
in Equation 6. The results for the present example are displayed in

Figure 3F. As observed, correlated input boosts the low-frequency

population LFP up to two orders of magnitude, a key feature

which is seen both in the numerical simulations (dots) and in the

simplified model (solid lines).

The population LFP shown in Figure 3F is measured at the

center of a population with radius R~1000mm. In the next

sections we investigate how the LFP amplitude depends on the

various factors and also investigate how local the LFP is in the

various situations: First, the size of the signal-generating region is

probed by studying how the LFP amplitude measured at the soma

level grows when the population radius R is increased. From this a

measure of the spatial reach can be extracted. Next, we investigate

how the measured LFP power decays when the electrode is moved

outside the active population. Finally, we investigate the depth-

resolved LFP profile, i.e., the locality of the LFP changes in the

vertical direction.

Numerical evaluation of ingredients of simplified model
Equation 6 implies that any frequency dependence of the

population LFP (for example, frequency dependence of the spatial

reach) in general will result from the interplay of two separate

effects: (1) frequency dependence of the single-cell shape functions

F (f ,r) and (2) frequency dependence of the coherence cW(f )
between single-cell contributions to the population signal. These

two effects are addressed next.

Frequency dependence of shape function. The power of

the extracellular potential from a single neuron decays when we

move away from the cell, and the rate of the decay depends on the

frequency of the signal. In Figure 3A we have plotted squared

shape functions F2(f ,r) at the soma level for three selected

frequency bands for the case with the layer-5 cell receiving basal

synaptic stimulation. We observe that the high-frequency LFP

component decays faster with distance than the low-frequency

component. This leads to the low-pass filtered power spectra seen

in Figure 3B and is consistent with our previous observations of

low-pass filtering in dendritic cables, i.e., the intrinsic dendritic

filtering effect [40,42]. To quantify this phenomenon we

approximate the actual shape functions with simplified power-

law shape functions with frequency-dependent parameters. Spe-

cifically, at the soma level the amplitude of the single-cell LFP is,

following [51], modeled as:

F (f ,r)~

F0, if rvr ,

F0

ffiffiffiffiffiffiffiffi
r =r

p
, if r ƒrvr�(f ),

F0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r =r�(f )

p
(r�(f )=r)2 if r§r�(f ),

8><
>: ð7Þ

i.e., the shape function is approximated by !r{1=2 close to the cell

(rvr�) and by !r{2 (dipole) in the far-field regime (rvr�). The

constant value of F(f ,r) is used for rvr to avoid the unphysical

divergence; however, in the numerical evaluation at the soma level

r is effectively set to zero. The parameter r� thus represents the

cutoff distance where the LFP contribution switches from the near-

field (F!r{1=2) to the far-field regime (F!r{2), see fitted curve in

Figure 3C. This parametric representation of the shape function

allows us to express the functions G0(f ,R) and G1(f ,R) (Equations

4 and 5) explicitly in terms of the cutoff distance r�, see Methods

for details. The observed reduction of r� with increasing frequency

(Figure 3D) is intimately related to the corresponding reduction of

the frequency-dependent electrotonic length constant in dendrites

Frequency Dependence of Power and Reach of the LFP
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[10,40]. In the example shown in Figure 3A the transition to

dipole decay occurs closer to the cell for the high-frequency signal

(at about 40mm) than for the low-frequency components

(^80mm).

In Figure 4 we show the calculated cutoff distance r� for LFPs at

the soma level for the various situations considered in the present

paper involving the layer-3 pyramidal neuron (4A), the layer-5

pyramidal neuron (4B), and the layer-4 stellate neuron (4C). For

the pyramidal neurons we consider three spatial patterns of

synaptic inputs, that is homogeneous, only apical or only basal

[34]. All these combinations of cell morphology and stimulation

pattern exhibit similar behavior as in our example (Figure 3): r�(f )
decays with increasing frequency. The only exception is the layer-

5 cell with apical input, where r� is very large, and also exhibits a

minimum around 150 Hz. This reflects that the geometry of this

situation is unique, with the synaptic input positioned far above

the soma level where the LFP is recorded. As a consequence the

shrinkage of the current dipole with increasing frequency will be

accompanied by a vertical shift of the mean position of the current

dipole in the apical direction. In this situation where the electrode

is far below the effective current dipole, there will be little change

in the signal when the lateral distance is changed (see Figure 2D in

[34]). This will translate to a larger value of r� with our current

fitting procedure. The squared shape functions and the single-cell

power spectra for the remaining situations (all apart from layer-5

cell with basal synaptic input) are shown in Figures S2A, B to S7A,

B.

Frequency dependence of coherence. The single-cell shape

functions F (f ,r) alone are generally not sufficient to predict the

population LFP. The missing component is cW(f ), the frequency-

dependent population-averaged coherence between single-cell

LFP contributions. This quantity can be estimated from popula-

tion simulations, as described in detail in Methods, Equation 17.

Coherence curves for different input correlation levels for our

example (LFP recorded at the soma level at the center of a layer-5

cell population receiving basal stimulation) are shown in Figure 3E.

The coherence cW(f ) is seen to be higher for low-frequency

components. This may be understood on biophysical grounds by

considering the dendritic morphology of the cell: for high-

frequency synaptic input the return currents will be closer along

Figure 3. Ingredients of the simplified LFP model for soma-level LFP for layer-5 cell with basal synaptic input. A. Spatial decay in lateral
direction for the squared single-cell shape functions DF (f ,r)D2 for three different frequencies f ~0,60 and 500Hz. B. Single-cell LFP spectra DF (f ,r)D2 for

three different lateral distances from the soma (dotted vertical lines in A). C. Log-log plot of the squared near-DC (*0Hz) shape function DF (0,r)2D
(dots) approximated by a piecewise-linear function with cutoff distance r� (line; see Eq. 7). D. Frequency dependence of the cutoff distance r�(f ). E.
Population-averaged LFP coherence cW for different input correlation levels cin. Dots not connected with lines indicate that DcW D is plotted in place of
spurious negative values (see Methods). F. Power spectra P(f ,R) of the compound LFP (R~1000mm); dots correspond to simulation; lines correspond
to predictions from simplified model, Eq. 6, based on r� and cW given in D and E, respectively.
doi:10.1371/journal.pcbi.1003137.g003
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the dendrite to the synaptic currents because of filtering in the

dendritic cable [40]. For the example in Figure 3E with basal

stimulation of layer-5 pyramidal neurons, the resulting current

dipoles will be aligned along the short basal dendritic segments,

which converge at the soma from all angles. However, for low-

frequency input some of the synaptic input current will return

through the apical dendrite [42], and the orientation of the

effective current dipoles will be more similar between cells, leading

to a higher coherence.

By combining the shape functions F (f ,r) with the LFP

coherence cW(f ) in the simplified model (Equation 6) we can

now obtain predictions for the population LFP. The resulting PSD

for our example situation is shown in Figure 3F and is seen to be in

excellent agreement with the simulation results (see Figures S2C–

S7C for the results for the remaining combinations of cell type and

synaptic input patterns).

In Figure 5 we show the frequency dependence of the coherence

cW(f ) (measured at the soma level at the center of the populations)

for the same full set of seven situations as depicted in Figure 4. A

first observation is that for pyramidal neurons (layer-3, layer-5)

with asymmetric synaptic input (either only apical or only basal),

decay of cW(f ) with increasing frequency is observed for all non-

zero levels of input correlations cin. This low-pass filtering effect is

seen to be strongest for the layer-5 cell with basal input (Figure 5A,

5B, 5D, 5E). However, when the same pyramidal neurons receive

homogeneous synaptic inputs, the filtering effect is almost absent

(Figure 5C, 5F). In that respect it resembles the situation with the

stellate layer-4 cells receiving homogeneous synaptic input

(Figure 5G) where cW is essentially zero, implying that the

correlations in the synaptic input do not translate into correlations

of the single-neuron LFP contributions.

Population LFP and spatial reach
As a first step towards exploring the spatial reach of the

extracellular potential in our disc-like setup we next show how the

population signal emerges from single-cell contributions and

investigate frequency-related effects. In Figure 6 we present results

both from the full simulation and the simplified model (Equation

6) for our example situation with the population of layer-5 cells

receiving basal synaptic input.

In Figure 6A we show the PSD of the LFP produced by

differently-sized populations of cells receiving uncorrelated synap-

tic input. While we observe some low-pass filtering (especially

above *100Hz) for all population sizes, the effect is not

particularly strong. Figure 6D instead shows the PSD for the

same uncorrelated situation as a function of the population radius

R. We observe that the LFP in all frequency bands saturates rather

quickly with increasing population size, that is for

R^100{200mm. This implies that the contributions from

uncorrelated neuronal LFP sources positioned more than a few

hundred micrometers away from the electrode are negligible for all

frequencies considered.

The situation changes dramatically for the case of correlated

synaptic input (Figure 6B, 6C, 6E, 6F), both in terms of amplitude

and frequency dependence. For the case with the maximum input

correlations cin~1 (Figure 6C, 6F), we see that the low-frequency

power is up to two orders of magnitude larger than for the

corresponding uncorrelated case. Further, a significant low-pass

filtering effect is seen. For example, the low-frequency power

(*0Hz) is an order of magnitude larger than the power at 60Hz
for cin~1 (Figure 6F). Another observation is that the low-

frequency power grows much faster with increasing population

radius than the high-frequency power (Figure 6E, 6F). Finally, the

power of the population signal no longer seems to saturate as the

population radius increases [34].

The predictions from the simplified model agree qualitatively

with the full simulation results; however, we observe some clear

deviations: First, in Figure 6D–F we see that the simplified model

overestimates the power of the low-frequency components

(*0Hz,60Hz). This is because the model here uses the

approximate power-law shape functions (Equation 7) which lie

above the numerically evaluated shape functions for low frequen-

cies (Figure 3C). For high-frequency components (500 Hz), on the

other hand, the opposite situation occurs (results for fitted

approximate power-law function not shown). Second, in case of

correlated input the model works better for the larger populations

than for smaller ones. This is as expected given the present

procedure for calculating the LFP coherence cW(f ) used in the

simplified model: here this LFP coherence cW(f ) was extracted

from the full population (R~1000mm) simulations, and the value

Figure 4. Frequency dependence of the cutoff distance r� for soma-level LFP for all situations considered: homogeneous (solid), apical
(dashed) and basal synaptic input (dotted) applied to the layer-3 pyramidal cell (A), the layer-5 pyramidal cell (B), and the layer-4 stellate cell (C). Cell
morphologies depicted in Figure 2B. Dots in A, B, C represent the actual frequency resolution, thin lines serve to guide the eye.
doi:10.1371/journal.pcbi.1003137.g004
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obtained is not surprisingly a poor approximation when applied to

populations which are much smaller. With cW(f ) calculated for

each population radius R separately, the simplified model

predictions significantly improve (Figure S1).

We are now ready to analyze the frequency dependence of the

spatial reach of extracellular potential. Following [34] we define

the spatial reach as the radius of the subpopulation which yields 95%

of the root mean square amplitude in the population center

Figure 5. Frequency dependence of the population-averaged LFP coherence cW for soma-level LFP for all situations considered.
Dots represent the actual frequency resolution, thin lines serve to guide the eye. Dots not connected with lines indicate that DcW D is plotted, see
Methods. A, B, C: population of layer-3 cells; D, E, F: population of layer-5 cells, G: population of layer-4 cells; A, D: apical synaptic input; B, E: basal
synaptic input; C, F, G: homogeneous synaptic input.
doi:10.1371/journal.pcbi.1003137.g005
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compared to the largest population considered (R~1000mm).

With this definition the spatial reach is easily found from the data

presented in Figure 6D, 6E and 6F as the distance at which the

amplitude of the LFP reaches 95% of the maximum value.

The results for the spatial reach for all seven situations

considered are shown in Figure 7. The reach is seen to vary both

with the frequency f and the level of input correlation cin, but the

specific effects depend sensitively on the cell morphology and

synaptic stimulation pattern. For the pyramidal cells with

asymmetric input (either only basal or only apical) the spatial

reach grows significantly with increasing input correlations cin

(Figure 7A, 7B, 7D, 7E). The effect is particularly prominent for

lower frequencies, i.e., smaller levels of input correlations cin are

needed to increase the spatial reach significantly. As a conse-

quence, for certain correlation levels cin the spatial reach of the

low-frequency components can differ a lot from the spatial reach

of the high-frequency components. For example, in the situation

with the layer-5 population receiving basal input with cin~0:01,

the spatial reach at 100 Hz is only around 200mm, while the low-

frequency reach is almost 800mm. For the case of homogeneous

inputs onto pyramidal neurons (Figure 7C, 7F) these effects are still

present, but seen to be much weaker. For the layer-4 stellate cells

the spatial reach is practically independent of the frequency f and

the input correlation level cin, Figure 7G.

Note that the situation with the layer-5 population receiving

only apical input is again somewhat different from the other cases.

Here the spatial reach for the uncorrelated input is already quite

large (^300{400mm) and the levels of the input correlation

required to saturate the spatial reach at a maximum value possible

in our setup are significantly smaller.

For the case of uncorrelated input we can obtain analytical

expression for the spatial reach from the simplified model. Using

Equations 4 and 7 we obtain an explicit formula for G0(f ,R) in

terms of the cutoff distance r�(f ) and the population radius R,

Equation 15. From this, we find in the limit of re?0, that the

radius of the subpopulation contributing a fraction a of the

asymptotic amplitude (R??) is equal to r�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3{3a2
p

(valid for

a2
w

2

3
). For our choice of a~0:95 we find the spatial reach to be

^1:85r�.

Lateral decay of LFP outside the population
The spatial reach we have discussed above represents an

‘electrode-centric’ point of view: we ask about the distance from

the recording electrode of the neurons setting up the LFP signal.

However, one can also take a ‘population-centric’ approach and

Figure 6. Power spectral density of population LFP at the soma level as a function of frequency and the population radius. Full
simulation results (dots) and simplified model predictions (lines) for the LFP at the center of disc-like populations of layer-5 pyramidal cells receiving
basal synaptic input. Three different input correlation levels cin are considered. A, B, C: PSD of population LFP for three population radii R. D, E, F:
dependence of power of three different frequency components on the population radius R.
doi:10.1371/journal.pcbi.1003137.g006
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Figure 7. Spatial reach at soma level for different frequency components of LFP. Spatial reach is defined as the radius of a subpopulation
contributing 95% of the root mean square amplitude of LFP compared to the amplitude for R~1000mm. LFP is calculated at the soma level at the
center of the population. Full simulation results plotted with dots; predictions from the simplified model (Equation 6) based on calculated values of r�
and cW given in Figures 4 and 5, respectively, are shown with lines. A, B, C: population of layer-3 cells; D, E, F: population of layer-5 cells, G: population
of layer-4 cells; A, D: apical synaptic input; B, E: basal synaptic input; C, F, G: homogeneous synaptic input.
doi:10.1371/journal.pcbi.1003137.g007
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instead ask how rapidly the LFP signal decays with distance

outside an active population [34].

In Figure 8 we show results for this situation, still with LFPs

recorded at the soma level, for an example population

(R~1000mm) of layer-5 cells receiving basal or apical synaptic

inputs. The first observation in the case of basal synaptic input is

that the low- and medium-frequency LFP components

(*0Hz,60Hz) are significantly boosted, up to two orders of

magnitude, by high levels of input correlations cin (Figure 8A, 8B).

This applies both inside and outside of the population. For the

high-frequency signal (500 Hz, Figure 8C), however, input

correlations are seen to have only a small boosting effect on the

signal amplitude. In the case of apical synaptic inputs the effect of

increasing input correlations is seen to be more uniform across

frequency bands, with the high-frequency components (500 Hz)

being boosted by roughly the same factor as the low- and medium-

frequency LFP components (*0Hz,60Hz), Figure 8D–8F.

The strong boosting of the LFP signal seen for correlated

synaptic input for *0Hz (Figure 8A) and 60 Hz (Figure 8B) has

direct implications for how recorded LFP signals should be

interpreted. As observed in these panels, the LFP measured a

millimeter or more outside a highly-correlated populations can

easily be larger than the LFP contribution from a similar, yet

uncorrelated population surrounding the electrode. For the

example, in Figure 8A we observe that the LFP signal recorded

500mm outside a correlated population with cin~0:1 is still larger

than the contribution recorded inside the same population

receiving uncorrelated synaptic inputs (cin~0). For 60 Hz

(Figure 8B) the boosting effect is smaller, but still the signal

recorded outside a correlated population may be larger than what

is recorded inside an identical population receiving uncorrelated

input. This dominance of LFPs from distant correlated popula-

tions over uncorrelated populations surrounding the electrode is

seen to be even more pronounced for the apical-input case in the

lower panels (Figure 8D–8F), further highlighting that the

interpretation of the recorded LFPs in terms of activity in the

neurons immediately surrounding the electrode has to be done

with caution.

In Figure 9 we show the same PSDs as in Figure 8, but

normalized to unity at the population center. This illustrates that

the decay of the LFP is more abrupt around the population edge in

the uncorrelated case than in correlated cases (this is especially

Figure 8. Decay of extracellular potential at the soma level outside populations of layer-5 cells with asymmetric input. Each of the
panels shows full simulation results (dots) and predictions from simplified model, Equation 6 (lines) for one frequency band (0, 60, 500 Hz) and four
input correlation levels. Horizontal dotted lines indicate ‘noise level’ (power of the signal generated by a population of uncorrelated cells with
homogeneous input, see text). A, B, C: basal synaptic input. D, E, F: apical synaptic input.
doi:10.1371/journal.pcbi.1003137.g008
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prominent for the low-frequency components *0Hz,60Hz). This

is consistent with an observation made in [51] (see Figure 3.9

therein), namely that in the large-population limit the LFP signal

power at the population edge will be reduced to half of power at

the center for uncorrelated populations, while it will be reduced to

a quarter of the center power for fully correlated populations.

Here this difference between the correlated and uncorrelated cases

is more pronounced for the low-frequency components, where the

coherence cW is largest.

In general, there are three key lengths determining the decay

outside a population: the size of the population, the anatomical

extension of the dendrites of the neurons, and the electrotonic

length of the neuronal dendrites. In the examples depicted in

Figures 8 and 9 we considered populations of layer-5 cells with a

radius R~1000mm. For smaller populations the abruptness of the

decay outside the population edge will be less sharp as

demonstrated in [51], but we refrain from a detailed study of

the interplay of all these factors here.

We next investigated the related question of detectability,

i.e., how far away from a synaptically activated population the

generated LFP still can be detected above the ambient LFP

‘noise’. This noise level will naturally vary between experi-

mental situations, but here we assumed it to be given by the

background LFP signal from neurons of the same morphology,

receiving the same number and type of synaptic inputs, except

that the inputs are (1) uncorrelated and (2) homogeneously

spread over the neuronal membrane. (The power of this

background LFP signal is plotted as dotted lines in Figure 8.)

The frequency-dependent signal decay and detectability

outside basally-activated populations are illustrated in the 2D

color plots in Figure 10. As in Figure 8, the population radius is

fixed at R~1000mm, and we plot the PSD both inside and

outside the population. The lines mark where the signal-to-

noise ratio falls below 0.5 (solid line) and 0.1 (dotted line),

respectively. Here the signal-to-noise ratio is defined as the

ratio between the root mean square amplitudes of the LFP

signal (from the basally-activated population) and the LFP

noise (from the background population).

A first observation is that for uncorrelated synaptic inputs

(cin~0, Figure 10A–10B), there is very little variation with

frequency. Also the detectability of the LFP outside the active

population is poor: the signal-to-noise ratio falls to 0.5 about

100mm outside the population, and below 0.1 less than 500mm
outside. The situation is seen to be very different when the

Figure 9. Decay of extracellular potential at the soma level outside populations of layer-5 cells with asymmetric input. Same as
Figure 8, but with PSDs normalized to 1 at the population center, and the distance axis zoomed in to highlight the behavior around the edge of the
population. A, B, C: basal synaptic input. D, E, F: apical synaptic input.
doi:10.1371/journal.pcbi.1003137.g009
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populations receive correlated synaptic inputs. Focusing first on

the case with the largest level of input correlations (cin~1,

Figure 10G, 10H), we see that the lower frequencies of LFP extend

further outside the population than the higher frequencies. For

example, for the near-DC component (*0Hz) the signal-to-noise

ratio is seen to be almost 0.5 at a distance of 2000mm, i.e., 1000mm

outside the population edge, and 0.1 as far way as 2000mm outside

this edge. For the 125 Hz component, on the other hand, the

signal-to-noise ratio is reduced to 0.5 as little as 200mm outside the

population. The results for the intermediate cases

(cin~0:01,cin~0:1) depicted in Figures 10C–10F are seen to

bridge these uncorrelated and strongly correlated cases.

Figure 10. LFP signal power at the soma level as functions of frequency and distance from basally-activated pyramidal-cell
populations. Colormaps (A, C, E, G) show the power of extracellular signal of a population of layer-5 cells receiving basal synaptic input for four
levels of input correlation cin as functions of frequency and distance from center of populations. Black solid and dotted lines denote signal to noise
ratio of 0.5 and 0.1, respectively. B, D, F, H: power spectra of extracellular signal at different distances, lines: prediction from simplified model in
Equation 6, dots: full simulation. Thin vertical dotted lines with dots in A, C, E, G denote the distances at which the power spectra are shown, that is, at
the center (0mm), population edge (1000mm), and two distances outside (*1600mm and *2500mm).
doi:10.1371/journal.pcbi.1003137.g010
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The results for the basally-driven pyramidal cell population in

Figure 10 demonstrate a main result from this study, namely that

correlations in synaptic inputs may significantly enhance the

amplitude and thus also the detectability of the low-frequency LFP

components relative to the high-frequency LFP components. The

same effect is observed for the same population when the synaptic

inputs are placed solely on the apical part of the neurons, cf.

Figure 11. However, here a sizable low-pass filtering effect in

detectability is observed also for the case with uncorrelated input

(Figure 11A, 11B) due to the intrinsic dendritic filtering effect

Figure 11. LFP signal power at the soma level as functions of frequency and distance from apically-activated pyramidal-cell
populations. Colormaps (A, C, E, G) show the power of extracellular signal of a population of layer-5 cells receiving apical synaptic input for four
levels of input correlation cin as functions of frequency and distance from center of populations. Black solid and dotted lines denote signal to noise
ratio of 0.5 and 0.1, respectively. B, D, F, H: power spectra of extracellular signal at different distances, lines: prediction from simplified model in
Equation 6, dots: full simulation. Thin vertical dotted lines with dots in A, C, E, G denote the distances at which the power spectra are shown, that is, at
the center (0mm), population edge (1000mm), and two distances outside (*1600mm and *2500mm).
doi:10.1371/journal.pcbi.1003137.g011
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[40,42]. It is also worth noting that populations of layer-5 cells

stimulated apically yielded the farthest-reaching LFP signal of all

cases analyzed. Note also that the low-pass filtering effect in the

boosting of LFP signal with increasing correlations was seen to be

largely absent in the case of a spatially homogeneous distributions

of synaptic inputs onto populations made of any of our three

example neuronal morphologies (results not shown).

Finally, inspection of Figure 8 (and the PSD line plots in

Figures 10 and 11) reveals that the predictions from the simplified

model (Equation 6) agree excellently with the full numerical

simulations for the case of uncorrelated input. However, the

simplified model systematically overestimates the signal power for

correlated populations for positions far outside the active

populations. This is because the simplified model predicts a fall-

off of the LFP amplitude proportional to r{2 in the far-field limit,

while in the full simulations the total LFP signal will be dominated

by correlated dipoles oriented vertically. When moving horizon-

tally from a a vertical dipole at a fixed vertical position, it follows

from geometry that the dipole potential will decay as r{3 rather

than r{2 [40]. As a consequence the functional form of the lateral

decay of the LFP signal outside a correlated population will be

close to r{3 [34].

This limitation of the simplified model can be remedied by

incorporating the fact that the evaluated population-averaged

coherence cW(f ) not only depends on the size of the population R

considered, but also on the electrode position X along the

horizontal axis from where it is evaluated, i.e., cW(f )~cW(f ; R,X ).
So far the population-averaged LFP coherence has been evaluated

at the population center, i.e., at X~0. However, when Equation

17 is evaluated at other positions X , as shown in Figure 12, cW is

observed to decay as 1=X 2 for X&R. In the formula for the

simplified model in Equation 6 the power P is in the correlation-

dominated regime seen to be proportional to cWG1. A modified

simplified theory including not only the X-dependence of G1

[34,51], but also the observed X -dependence of cW (i.e., cW*1=X 2

for X&R), indeed predicts the correct far-field X -dependence

outside the active population (see Figure S8). The physical

interpretation is that the dominance of the LFP signal of the

correlated vertical dipoles will be incorporated in the population-

averaged LFP coherence cW.

Figure 12. Population-averaged LFP coherence cW at the soma level as a function of distance X from center of population of layer-5
pyramidal cells. A, B, C: basal synaptic input, D, E, F: apical synaptic input. Dots not connected with lines indicate that DcWD is plotted in place of
spurious negative values (see Methods). Dashed lines mark 1=X 2 decay.
doi:10.1371/journal.pcbi.1003137.g012
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Depth dependence of LFP
Until now we have focused on the LFP calculated at the soma

level of each population. However, in general there will be

substantial transmembrane currents and thus LFP contributions

across the entire dendritic structure [42]. Since the dendrites of the

pyramidal cells span several cortical layers, it is natural to ask how

the LFP power will depend on the depth. As for the soma-layer

LFPs we observe in Figure 13 that the level of correlations is a

crucial parameter also here. For example, for the case of

uncorrelated (cin~0), asymmetric synaptic inputs onto a layer-5

cell population the LFP is essentially located around the inputs

(superficial layers in Figure 13A, layer 5 in Figure 13E). However,

for strongly correlated synaptic input we instead obtain a dipolar,

‘dumbbell’ pattern with two poles in each end of the dendritic

structure of the neuron (Figure 13B–D, Figure 13F–H). Similar

behavior can be observed for the population of layer-3 pyramidal

cells (Figure S9). The dipolar structure is not present in case of

homogeneous synaptic input onto a layer-5 cell population

(Figure 13I–L) and for a population of layer-4 cells (not shown).

Figure 13B–D,G,H also reveals the same substantial boosting of

the low-frequency (*v50Hz) dumbbell-shaped LFPs for correlated

synaptic inputs as previously seen in Figure 6. For symmetric or

uncorrelated inputs, on the other hand, there is no such boosting,

and less relative attenuation of the signal is observed at the higher

frequencies.

Interestingly and encouragingly the simplified model for the

population LFP in Equation 6 captures, as seen in Figure 14, the

salient features of the depth-dependence well. Now the shape

curves F (f ,r) and the population-averaged coherence cW depend

both on depth and lateral position, as well as frequency, as

depicted in Figure 15. These functional dependencies of the

elements of the simplified model also explain why the dumbbell

LFP pattern arises for correlated, asymmetric synaptic inputs: As

described in [34,51] contributions from distant neurons (r *w r�)
will dominate over neurons close by (r *v r�) for correlated inputs,

and as seen in Figure 15A–B for these distant neurons the shape

functions F (f ,r) are not too different in magnitude in the various

layers. As a consequence substantial LFPs (which more detailed

analysis reveal to have a dumbbell structure) are thus seen at most

cortical depths. For uncorrelated inputs (cin~0), or homoge-

neously distributed correlated inputs resulting in very small

correlations between the individual LFP contributions

(Figure 15F), the neurons close by (r *v r�) will dominate. Then

for the case of basal input, for example, the somatic LFP (layer-5)

will be much larger than the LFP in the other layers.

The dipolar LFP patterns observed for highly correlated

synaptic input are consistent with the patterns observed in [9],

where strongly correlated inputs was implicitly assumed in their

more simplified scheme for calculating population LFPs (see

Figure 13 therein).

Discussion

In this computational study we have investigated the frequency

dependence of the signal power and ‘locality’ of cortical local field

potentials (LFP). While some low-pass filtering effects of the LFP

are seen also for populations of cells receiving uncorrelated

synaptic inputs or homogeneously distributed correlated synaptic

inputs, the large frequency-dependent effects are seen when

populations of pyramidal neurons receive correlated and spatially

asymmetric inputs (i.e., either only basal or apical). For example,

for the case with a layer-5 population receiving correlated,

Poissonian synaptic currents (with a white-noise, i.e., flat band,

power spectra) onto their basal dendrites, the power of the low-

Figure 13. Depth-dependence of LFP power in the center of a population of layer-5 pyramidal cells. PSD of the LFP for different
correlation levels and different patterns of synaptic input. Population radius: R~1000mm. Values in each panel are normalized separately. A, B, C, D:
apical synaptic input; E, F, G, H: basal synaptic input; I, J, K, L: homogeneous synaptic input. A, E, I: cin~0; B, F, J: cin~0:01; C, G, K: cin~0:1; D, H, L:
cin~1.
doi:10.1371/journal.pcbi.1003137.g013
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frequency LFP (*0 Hz) was seen to be an order of magnitude

larger than the LFP power at 60 Hz. Correspondingly, the low-

frequency LFP components were seen to extend much further

outside the active population than high-frequency components.

The correlation of synaptic input currents and their spatial

placement were observed to be equally crucial for determining the

vertical profile of the LFP signal. For correlated and spatially

asymmetric inputs, characteristic dipolar ‘dumbbell’ LFP struc-

tures spanning the vertical extent of the dendrites of the pyramidal

neurons in the populations were observed; for uncorrelated and/

or spatially homogeneous inputs, the LFP was instead confined

around the positions of the somas (with the exception of

uncorrelated apical input onto the layer-5 population).

The findings from our comprehensive biophysical simulations

using reconstructed neuronal morphologies were backed up by a

simplified model, adapted from [34], for generation of population

LFP. This model is based on three factors: (1) the decay of the

single-neuron contribution with the distance from the electrode

represented by the frequency-dependent shape function F (f ,r), (2)

the population geometry and density of neuronal LFP sources, and

(3) the frequency-dependent correlation (or, more precisely, coherence

cW(f )) of the single-neuron LFP contributions from individual

neural sources. Our simple model for the population LFP

(Equation 6) was found to give quantitatively accurate predictions,

implying that it captures the salient features. While some of the

observed low-pass filtering could be traced back to single-neuron

properties and the intrinsic dendritic filtering effect [40,42]

accounted for by the shape function F(f ,r), most of the observed

low-pass filtering was due to strong low-pass filtering in the coherence

cW(f ) between the single-neuron LFP contributions: synaptic-input

correlations translated into correlated single-neuron LFP contri-

bution to a much larger extent for lower frequencies than for

higher frequencies. As a direct consequence, the low-frequency

components of the extracellular potential are significantly boosted

in populations with correlated synaptic input. In our model this

happens purely because of dendritic filtering, as the synaptic input

currents themselves have been tailored to have a flat (white-noise)

PSD. With a colored (frequency-dependent) spectrum of the

synaptic input, the power spectrum of the LFP would be given as

the product of the PSD of this synaptic filter and the PSD from the

dendritic filtering investigated here (cf. Figure 2D and 2E).

A key qualitative finding in our study is that the size of the

signal-generating region, i.e., the spatial reach, may in the case of

correlated synaptic input vary strongly with frequency. For the

example population in Figure 1 we see that for cin~0:01, a

plausible correlation level in cortical spiking networks (see, e.g.,

Figure 6 in [34]), the LFP spatial reach may be reduced from close

to the size of the population (*800mm) for *0Hz to *400mm for

60 Hz. For uncorrelated input, however, the spatial reach will

generally always be small (*v200mm) for all frequencies, with the

exception of the case with apical input on large pyramidal cells

(Figure 7). Note that in the present simulation scheme the spatial

reach is by definition less than 1000mm, the size of our model

population. Unlike for uncorrelated populations, the LFP power

will for correlated populations keep on increasing when the

population grows beyond 1000mm [34]. The present definition of

spatial reach (95% of the amplitude for R~1000mm) thus

underestimates the true size of the signal-generating region in this

case.

In a recent experimental study from macaque auditory cortex

[33] it was observed that different frequency bands spread equally

far from a source (cf. Figures 5 and 6 there). There are, however,

notable differences between this study and our present approach,

making it difficult to compare the results. First, here we focus

Figure 14. Simplified-model predictions of the depth-dependence of LFP power in a population of layer-5 pyramidal cells. PSD of
the LFP for different correlation levels and different patterns of synaptic input as predicted by the simplified model of the population LFP. Population
radius: R~1000mm. Values in each panel are normalized separately. A, B, C, D: apical synaptic input; E, F, G, H: basal synaptic input; I, J, K, L:
homogeneous synaptic input. A, E, I: cin~0; B, F, J: cin~0:01; C, G, K: cin~0:1; D, H, L: cin~1.
doi:10.1371/journal.pcbi.1003137.g014
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mostly on the spread of the LFP along cortical layers at the soma

level, while in [33] the spread in vertical direction was studied.

Second, and likely more importantly, in [33] the LFP amplitude at

a given latency after stimulation was used to extract LFP decay

profiles. In contrast, we here use noise input and consider the root

mean square amplitude of LFP over a relatively long time period.

Further, the correlation level of the synaptic input, found here to

be a critical parameter in determining the frequency dependence,

is not known in the situation in [33]. It is thus difficult to assess

whether our results are in accordance, or not.

Our results have direct consequences for the interpretation of

observed cross-correlations between extracellular potentials re-

corded at different electrodes [52–57]. As demonstrated here the

low-frequency LFP signal generated by a population of neurons

around one electrode receiving asymmetric synaptic input, may

extend a millimeter or more outside the active population (see,

e.g., Figure 10G). Thus measured correlations in the low-

frequency LFP components between two electrodes positioned,

say, one millimeter apart, may be due to volume conduction

effects. However, cross-correlation induced by such volume

conduction will, as demonstrated here, have a diminishing spatial

range with increasing LFP frequencies. Note also that the

magnitudes of the LFP amplitude at the two adjacent electrodes

will aid in the interpretation: while volume conduction may

propagate the LFP a millimeter or more, the amplitude will

rapidly diminish with distance (cf. Figure 10 and 11). Thus the

observation of large-amplitude LFPs at both electrodes would be

an indication that both electrodes are surrounded by strong LFP-

generating populations.

In [58] the temporal power spectra of the EEG were shown to

be well fitted by 1=f a power-law functions with power-law

exponents a varying between brain areas: in the frontal lobe a
was reported to be 1:78+0:76, while in the occipital lobe

a~1:19+0:28. Power laws have also been found in recordings of

the LFP, see, e.g., [59,60], often with different exponents a. In [60]

a was shown to vary between network states, more specifically

between the slow-wave sleep and awake states. In this context it is

interesting to note that the PSDs in our Figure 3F express

approximate power laws with exponents a highly dependent on

the degree of coherence. This finding suggests that varying levels

Figure 15. Ingredients of the simplified model of the depth-dependence of LFP power. Top row: squared shape functions DF (f ~0,r)D2 for
the lowest-frequency component (*0 Hz) of the LFP generated by layer-5 cells with apical (A), basal (B) or homogeneous (C) synaptic input, at
different recording depths. Bottom row: population-averaged LFP coherence cW, calculated at different depths in a maximally correlated (cin~1)
population of layer-5 cells with either apical (D), basal (E), or homogenous (F) distribution of synapses.
doi:10.1371/journal.pcbi.1003137.g015
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of coherence in the synaptic input may be a mechanism

underlying the different experimentally observed power laws.

This would also be in agreement with the experimental

observations that network states with a presumably large

coherence (e.g., slow wave sleep in [60]) typically express a larger

value of a than network states for which the coherence is lower

(e.g., awake state in [60]).

In our modeling we have assumed the extracellular medium to

have a frequency-independent conductivity, an assumption

supported by a recent thorough experimental study of the

electrical properties of monkey cortical tissue [61]. However, if

for example low-frequency filtering scond~scond(f ) of the

extracellular medium should be found [62], this filtering would

superimpose directly on the filtering seen here, i.e., the total LFP

filter would be the product of the LFP filter calculated here and

the filter from the extracellular medium (!1=scond(f )).

Here we have focused on the spatial and spectral properties of

LFP signals triggered by presynaptic spikes that could originate

from within the same cortical population or come from other

distant brain regions. While not addressed here, it may be that the

LFP signal itself influences the timing of these locally generated

spikes through ephaptic coupling [63,64]. That would in turn

influence the correlation structure of incoming spikes and thereby

also the generated LFP signal. Since our simulations show that

both the LFP amplitude and spatial reach is larger for low than for

high frequencies, this suggests that if ephaptic effects play a role in

cortical processing, they would likely be larger for low than for

high frequencies.

The present study has focused on LFPs generated by synaptic

input currents and the associated return currents. While these

synaptic contributions are thought to dominate at least low-

frequency LFPs [9,41,65], other sources will also contribute to the

signal in the frequency band typically associated with the LFP

(*v500Hz). Sodium spikes, i.e., the fast extracellular signatures of

action potentials, may contribute to the LFP signal for frequencies

as low as 100 Hz [40,44–47], and slower phenomena such as

calcium spikes and spike afterhyperpolarization [66] at lower

frequencies still. For spikes the source of the LFP is active sodium

and potassium conductances localized mainly in the soma and

axon hillock, rather than synaptic currents that can be positioned

all over the dendrites. Nevertheless, many of our present

observations and findings also apply here, in particular, the

intrinsic dendritic filtering effect that will give faster decay with

distance of the single-neuron contributions for high frequencies

than for low frequencies [40] and the possibility of amplification of

the population signal when neuron spiking is highly correlated.

Interestingly, the latter effect has recently been demonstrated in a

very accomplished biophysical modeling study to be the likely

mechanism behind the large LFP power observed in the 100–

200 Hz frequency band in rat hippocampus [44].

In the present analysis we have modeled the dendrites as simple

RC-circuits which, in combination with the use of current-based

synapses, made the system linear. This greatly facilitated the

present frequency-resolved analysis in that the LFPs at different

frequencies were effectively decoupled, cf. the standard theory for

Fourier analysis of linear systems. The present results also serve as

a starting point for the exploration of non-linear effects, for

example due to active membrane conductances. Close to the

resting potential of the neuron, the active conductances can be

linearized, and the neuron dynamics can be described by linear

theory with quasi-active membrane modeled by a combination of

resistors, capacitors and inductors (see, e.g., Ch. 10 in [67], Ch. 9

in [68], or [69]). At present it is not known to what extent such

‘generalized’ linear schemes will be able to account for the LFP

generation in real neurons, but the present forward-modeling

scheme, applicable for passive and active conductances alike, can

be used to explore this question systematically.

Methods

LFP simulations
The setup of the LFP simulations is almost identical to the

scheme used to model cortical population LFPs in [34]. The main

difference is that here we use a much smaller synaptic time

constant to achieve an effectively white (flat) power spectrum for

the synaptic currents for the frequencies of interest here (less than

500 Hz). We therefore also use a smaller numerical time step. The

model parameters are presented in detail (in the format described

in [70]) in Tables S1, S2 and S3. For the reader’s convenience we

summarize the essential information below.

Cell models. We analyze three compartmental cell models:

the layer-3 and layer-5 pyramidal cells, and layer-4 stellate cells

[71], available from ModelDB [72], accession number 2488. We

modified the models by removing active conductances and axon

segments. The passive parameters of the cells were the following:

specific axial resistance Ra~150V:cm, specific membrane resis-

tance Rm~30kV:cm, specific membrane capacitance

Cm~1:0mF=cm.

Each simulated cell was stimulated using 1000 excitatory

current-based a-function synapses with a time constant

t~0:1ms. The synaptic time constant was short enough to ensure

that the spectrum of the input current was flat in the studied range.

Each synapse was driven by a homogeneous Poisson spike train

with the rate of 5 spikes per second. The spike trains driving one

cell were independent. For uncorrelated input into the population

also the spike trains belonging to each cell were independent, for

correlated input they were drawn (without repetitions for each cell)

from a common pool consisting of 1000=cin spike trains. As a

result, in case of correlated input each two cells shared 1000:cin

spike trains on average. Note that even for cin~1, when each of

the cells is driven by the same spike trains, the spike trains will in

general be assigned to different synaptic locations.

We simulated activity of cells for either 10200 ms (single-cell

shape functions at the soma level and LFP in the population’s

center at the soma level) or 1200 ms (LFP at points not in the

population’s center and and LFP shown in Section on depth

dependence of LFP). The first 200 ms were discarded to avoid

start-up artifacts. We used a fixed time step of 1/64 ms, and

recorded the results of the simulation (transmembrane currents in

all compartments) with 1 ms time step (sampling frequency

1 kHz).

For the pyramidal cells we employed three stimulation patterns:

the synapses were distributed either in the apical or basal part, or

homogeneously throughout the whole dendritic tree (in each case

the probability of attaching a synapse in a given compartment was

proportional to its surface area). We used the same layer

boundaries and soma depths as in [34].

Calculation of LFP. The extracellular electric potential was

calculated using the line-source method [37,73], resulting from

integration of Equation 1 over linear dendritic segments. We

assumed a purely resistive, homogeneous, isotropic and infinite

extracellular medium, and an ideal point electrode (no filtering),

placed either at the soma level (single-depth simulations), or at the

middle depth of each layer (simulations of depth-dependence of

the LFP). In single-cell simulations the electrode was placed at a

distance (between 10mm and 10000mm) from a single cell, in

population simulations it was placed either at the center of the

population or at 31 points placed between 0mm and 10000mm
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from the center. To obtain the model LFP at the center of

differently-sized populations we summed contributions from

different subsets (cells located closer to the electrode than some

distance) of the same full (R~1000mm) population.

Single-cell shape functions. To obtain single-cell shape

functions (Figure 3A) we calculated the LFP at different distances

from a single cell, then calculated power spectra of these signals.

The final curves were obtained by averaging power spectra from

100 simulations for each distance.

Population simulations. We simulated populations of

N~10000 identical neuron. The cells were placed homogeneously

within a disc of 1000mm radius at the same depth. Each cell was

rotated randomly along the vertical axis.

Software. We performed the simulations using the NEU-

RON simulator (www.neuron.yale.edu, [49]) and the Python

(www.python.org) interface to NEURON [74]; we also used

NeuroTools (neuralensemble.org/trac/NeuroTools/). The calcu-

lations of extracellular field were performed using LFPy [75] —

Python package for modeling of LFP.

Derivation of the mean-field model
To derive the formula in Equation 6 for the power spectral

density (PSD) of the extracellular signal in the center of the

population we start with the assumption that DWi(f )D2, the PSD of

the contribution of the i-th cell at given frequency f , may be

factorized as

DWi(f )D2&s2
j(f )F2

i (f ), ð8Þ

where s2
j is the PSD of the input current, and Fi(f ) is the

frequency-dependent shape function of the i-th cell. We also assume

that the shape function F depends only on frequency and distance

from the center, that is:

Fi(f )~F (f ,ri): ð9Þ

Let us compute the PSD of the population signal W(f )
(dependence on frequency f dropped below for convenience):

P~jW(f )j2~W�W~(
XN

i~1

W�i )(
XN

j~1

Wj)

~
XN

i~1

W�i Wiz
XN

i~1

XN

j~1

i=j

W�i Wj :

ð10Þ

We now use Equations 8 and 9 to express P in terms of shape

functions and the PSD of the input current, note the trick

(multiplication by 1~sjFi=DWi D) in the double sum:

P~s2
j

XN

i~1

F (ri)
2z

XN

i~1

XN

j~1

i=j

W�i
DWi D

Wj

DWj D
F (ri)F (rj)

0
BB@

1
CCA: ð11Þ

We further assume that the coherence term
W�i
DWi D

Wj

DWj D
may by

replaced by its population average over N(N{1) pairs. This

assumption, while not true in general, is a reasonable approxima-

tion because the input correlations are homogeneous across the

population. We can then move the coherence term in front of the

double sum:

P~s2
j

XN

i~1

F (ri)
2z:

1

N(N{1)

XN

i~1

XN

j~1

i=j

W�i
jWi j

Wj

jWj j
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~:cW

XN

i~1

XN
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F (ri)F (rj)

1
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As marked in Equation 12, we denote the population-averaged

coherence by cW. We further rewrite P as

P~s2
j

XN

i~1

F (ri)
2zcW

XN
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F(ri)

�����
�����
2

{
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and finally

P~(1{cW) s2
j

XN

i~1

F (ri)
2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
~:G0

zcW s2
j

XN

i~1

F (ri)

�����
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~:G1
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If we assume approximate, power-law shape functions F (f ,r)
parametrized by the cutoff distance r�(f ) (Equation 7), and change

sums to integrals as in Equations 4 and 5 (limit of large number of

cells), then the functions G0(f ,R) and G1(f ,R) have the following

closed-form representation [51]:

G0(f ,R)~

F2
0 rpR2 if Rƒr ,

F2
0 rpr (2R{r ) if r vRƒr�,

F2
0 rpr (3r�{r {r3

�=R2) if r�ƒR,

8><
>: ð15Þ

G1(f ,R)~

F 2
0 r2p2R4 if Rƒr ,

1

9
F 2

0 r2p2(r2{4r
1=2

R3=2)2 if r vRƒr�,

1

9
F 2

0 r2p2r r
3=2

{(4z6 log(R=r�))r
3=2
�

� �2

if r�ƒR,

8>>>><
>>>>:

ð16Þ

which we used for calculating predictions from the simplified model. At the

soma level we effectively set r to zero; for modeling the LFP at any different

layer we used r ~r� [51]. The model can be modified to calculate

the power of the signal outside the center of the population, i.e., at

positions offset from the center by the distance X . In that case, the

function F(f ,R) in (4) and (5) has to be replaced by F(f ,Dr{X D). It

is no longer easy to obtain closed-form formulae for G0 and G1 in

terms of r�, and we used the (non-parametric) shape curves

obtained from the simulations, as the final integration had to be

done numerically anyway.

Data analysis
Population-averaged LFP coherence. It is hard to estimate

the population-averaged LFP coherence cW directly as an average

of pairwise coherences between the single-cell contributions to the

LFP. Therefore, we used the same technique as in [34] (Equations

14 and 15 therein), ending up with

cW(f )~

PN
i~1

Wi(f )

DWi(f )D

����
����
2

{N

N(N{1)
: ð17Þ
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Coherence is always positive; however, the population-averaged

coherence cW estimated using Equation 17 may take spurious

negative value (for example because finite-length signals are used).

This does not mean that cW is truly negative, but rather that the

value is too small to be estimated reliably from the amount of data

available. In such cases we plotted DcWD in figures.

Note that Wi(f ) in Equation 17 may be evaluated either at the

population center, or at a lateral position Xw0; as a result we will

get either cW(f ; X~0) or cW(f ; X ), see Section on lateral decay of

LFP outside the population.

Frequency analysis. To calculate the power spectral

densities we used the Welch’s average periodogram method

(the matplotlib.mlab.psd function from Matplotlib [76]). We used

a Hanning window of length 32 or 128 time steps (32 or 128 ms)

and overlap between blocks equal to the half of the window

length, which resulted in 17 (or 65) equally spaced frequency bins

between 0 and 500 Hz. When calculating the population-

averaged LFP coherence, Equation 17, we calculated the discrete

Fourier transform and binned the resulting cW in the same

frequency bins as resulting from the Welch’s average period-

ogram method.

Spatial reach of LFP. To obtain the spatial reach of the LFP

we calculated the power spectral density P(f ,R) of the population

LFP as a function of frequency f and population radius R (taking

values between 0 and 1000mm in 25mm increments). The spatial

reach at given frequency was defined as the smallest radius R� for

which the amplitude sW(f ,R�) is larger than 95% of the amplitude

calculated for the full population.

Software. Data analysis was performed using NumPy and

SciPy Python packages [77] and IPython [78]. Plotting was done

using Matplotlib [76].

Supporting Information

Figure S1 Power spectral density of population LFP as a
function of frequency and the population radius. Full

simulation results (dots) and simplified model predictions (lines) for

the soma-level LFP at the center of disc-like populations of layer-5

pyramidal cells receiving basal synaptic input. Three different

input correlation levels cin are considered. A, B, C: PSD of

population LFP for three population radii R. D, E, F: dependence

of power of three different frequency components on the

population radius R. This is an alternate version of Figure 6 from

the paper; here the coherence cW is estimated not just once for the

full (R~1000mm) population, but in a radius-dependent fashion,

for each population radius R~25,50,75, . . . 1000mm separately.

In effect the simplified model predictions are closer to the full

simulations than in Figure 6.

(TIFF)

Figure S2 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-5 cells
with apical input. A. Spatial decay in lateral direction for the

squared single-cell shape functions DF (f ,r)D2 for three different

frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP spectra

DF (f ,r)D2 for three different lateral distances from the soma (dotted

vertical lines in A). C. Power spectra P(f ,R) of the compound LFP

(R~1000mm); dots correspond to simulation; lines correspond to

predictions from the simplified model.

(TIFF)

Figure S3 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-5 cells
with homogeneous input. A. Spatial decay in lateral direction

for the squared single-cell shape functions DF (f ,r)D2 for three

different frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP

spectra DF (f ,r)D2 for three different lateral distances from the soma

(dotted vertical lines in A). C. Power spectra P(f ,R) of the

compound LFP (R~1000mm); dots correspond to simulation; lines

correspond to predictions from the simplified model.

(TIFF)

Figure S4 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-3 cells
with apical input. A. Spatial decay in lateral direction for the

squared single-cell shape functions DF (f ,r)D2 for three different

frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP spectra

DF (f ,r)D2 for three different lateral distances from the soma (dotted

vertical lines in A). C. Power spectra P(f ,R) of the compound LFP

(R~1000mm); dots correspond to simulation; lines correspond to

predictions from the simplified model.

(TIFF)

Figure S5 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-3 cells
with basal input. A. Spatial decay in lateral direction for the

squared single-cell shape functions DF (f ,r)D2 for three different

frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP spectra

DF (f ,r)D2 for three different lateral distances from the soma (dotted

vertical lines in A). C. Power spectra P(f ,R) of the compound LFP

(R~1000mm); dots correspond to simulation; lines correspond to

predictions from the simplified model.

(TIFF)

Figure S6 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-3 cells
with homogeneous input. A. Spatial decay in lateral direction

for the squared single-cell shape functions DF (f ,r)D2 for three

different frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP

spectra DF (f ,r)D2 for three different lateral distances from the soma

(dotted vertical lines in A). C. Power spectra P(f ,R) of the

compound LFP (R~1000mm); dots correspond to simulation; lines

correspond to predictions from the simplified model.

(TIFF)

Figure S7 The shape function DF (f ,r)D2 and the popula-
tion LFP power spectra at the soma level for layer-4 cells
with homogeneous input. A. Spatial decay in lateral direction

for the squared single-cell shape functions DF (f ,r)D2 for three

different frequencies f = 0, 60 and 500 Hz. B. Single-cell LFP

spectra DF (f ,r)D2 for three different lateral distances from the soma

(dotted vertical lines in A). C. Power spectra P(f ,R) of the

compound LFP (R~1000mm); dots correspond to simulation; lines

correspond to predictions from the simplified model.

(TIFF)

Figure S8 Decay of extracellular potential at the soma
level outside populations of layer-5 cells with asymmet-
ric input. Each of the panels shows full simulation results (dots)

and predictions from simplified model Equation 5 (lines) for one

frequency band (0, 60, 500 Hz) and four input correlation levels.

Horizontal dotted lines indicate ‘noise level’ (power of the signal

generated by a population of uncorrelated cells with homoge-

neous input, see text). A, B, C: basal synaptic input. D, E, F:

apical synaptic input. This is an alternate version of Figure 8 from

the paper, here the population-averaged coherence cW depends

also on the lateral position of the electrode. In effect the simplified

model predictions are closer to the full simulations than in

Figure 8.

(TIFF)
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Figure S9 Depth-dependence of LFP power in the
center of a population of layer-3 pyramidal cells. PSD

of the LFP for different correlation levels and different patterns of

synaptic input. Population radius: R~1000mm. Values in each

panel are normalized separately. A, B, C, D: apical synaptic

input; E, F, G, H: basal synaptic input; I, J, K, L: homogeneous

synaptic input. A, E, I: cin~0; B, F, J: cin~0:01; C, G, K:

cin~0:1; D, H, L: cin~1.

(TIFF)

Table S1 Summary of the population model used for
LFP simulations. Continues in Table S2.

(PDF)

Table S2 Summary of the population model used for
LFP simulations. Continued from Table S1.

(PDF)

Table S3 Parameters of the population model used for
LFP simulations.

(PDF)
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Potentials: Biophysical Origin and Analysis. In: Panzeri S, Quian Quiroga R,
editors, Principles of Neural Coding. Boca Raton: CRC Press. pp.37–60.

52. Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local
field potentials and unit discharges in cat cerebral cortex during natural wake

and sleep states. Journal of Neuroscience 19: 4595–4608.

53. Nauhaus I, Busse L, Carandini M, Ringach D (2012) Stimulus contrast
modulates functional connectivity in visual cortex. Nature Neuroscience 32:

3088–3094.
54. Ray S, Maunsell J (2011) Network rhythms influence the relationship between

spiketriggered local field potential and functional connectivity. Journal of

Neuroscience 31: 12674–12682.
55. Nauhaus I, Busse L, Ringach D, Carandini M (2012) Robustness of traveling

waves in ongoing activity of visual cortex. Journal of Neuroscience 32: 3088–
3094.

56. Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations
in monkey visual cortex: implications for functional brain imaging. Cerebral

Cortex 13: 422–433.

57. Maier A, Adams GK, Aura C, Leopold DA (2010) Distinct superficial and deep
laminar domains of activity in the visual cortex during rest and stimulation.

Frontiers in Systems Neuroscience 4.
58. Freeman WJ, Holmes MD, Burke BC, Vanhatalo S (2003) Spatial spectra of

scalp EEG and EMG from awake humans. Clinical Neurophysiology 114:

1053–1068.
59. Milstein J, Mormann F, Fried I, Koch C (2009) Neuronal shot noise and

Brownian 1/f2 behavior in the local field potential. PLOS ONE 4: e4338.
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