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Abstract: High-throughput tech-
nologies produce massive amounts
of data. However, individual meth-
ods yield data specific to the
technique used and biological set-
up. The integration of such diverse
data is necessary for the qualitative
analysis of information relevant to
hypotheses or discoveries. It is
often useful to integrate these
datasets using pathways and pro-
tein interaction networks to get a
broader view of the experiment.
The resulting network needs to be
able to focus on either the large-
scale picture or on the more
detailed small-scale subsets, de-
pending on the research question
and goals. In this tutorial, we
illustrate a workflow useful to
integrate, analyze, and visualize
data from different sources, and
highlight important features of
tools to support such analyses.

Introduction

For a diverse set of biological problems,

network visualization can be a powerful

approach for data interpretation and

analysis. Many different network visuali-

zation tools and software packages are

freely available to academic researchers;

these systems differ greatly in terms of the

features and standards they support, and

consequently the analyses they enable.

Since users of these visualization tools

come from a range of backgrounds in

biology and bioinformatics, they have

distinct skills and expectations. One or

many tools may be used to explore or

visualize a single network, each with

different strengths and weaknesses.

In this tutorial, we give an in-depth

tutorial on how to create informative

network visualizations from a set of genes

using NAViGaTOR 2.3 as our network

visualization tool (http://ophid.utoronto.

ca/navigator). Our intent is to explore the

relationship between genes known to

modulate aging and genes commonly

mutated in cancer. We demonstrate sev-

eral ways that complementary data sourc-

es (such as therapeutics and microRNAs)

and alternate layout strategies can be

combined to offer distinct perspectives on

the same underlying biological problem.

These network visualizations can illumi-

nate surprising new connections, simplify

interpretation, and help speed up biolog-

ical discovery through data-driven hypoth-

esis generation.

Workflow

General Considerations for
Biological Network Visualization

Network construction. Networks

are generally represented within visuali-

zation applications as annotated graphs.

Biological networks are represented as

graphs, and defined by a set of vertices

(often referred to as nodes) and edges, plus

additional annotations that describe the

properties of these objects. This model

allows the use of many algorithms devoted

to graph analysis. Networks can be ob-

tained in several ways, generally beginning

with a list of genes of interest (often

derived from experimental data) and an

interaction file defining global interactions

from a larger set. From this point networks

can be manually constructed—with the

user assigning positions and node descrip-

tion characteristics, they can be automati-

cally generated (for example, random

networks), or could be formed by query-

ing public databases (e.g., protein–protein

interaction or pathway databases) to assign

further node descriptions. To aid data

interchange, several community standards,

e.g., PSI-MI [1], BioPAX [2], SBML [3],

GML, CML, CellML [4], and ASCII

TAB delimited file have been defined.

Some commonly used databases of inter-

actions include Intact [5], BioGRID [6],

HPRD [7], I2D [8], and iRefindex [9].

Some of these have been integrated under

the IMEx consortium [10], and are

accessible via the PSICQUIC standard

[11]. The features of each of these data

formats and sources vary, being extremely

dependent on their individual purpose.

For example, the C. elegans interactions in

I2D ver. 1.95 (7,060 proteins/nodes and

57,224 interactions/edges) can be repre-

sented as a 3MB TAB delimited file,

containing only graph structure, protein

names, and interaction sources. The same

data, represented in PSI-MI format, is

structured to define many other features,

such as database cross-references and experi-

ment documentation, and requires 56MB.

The time to load these different formats in

NAViGaTOR is 10 and 54 seconds, respec-

tively, as complex formats require more

system resources within the visualization

program. File formats must be carefully

selected to serve the needs and competencies

of the researcher.

Depending on the workflow and fea-

tures of a program, it may be possible to
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merge networks and annotations from

multiple sources, while considering context

and confidence of individual interactions.

Thus, tools supporting data interchange

formats such as PSI-MI enable this loose

program integration.

Due to the ambiguity of terms and

many-to-many relationships to IDs, it is

important to note that the accuracy and

reproducibility of a representation is

entirely dependent on the level of care

with which its data was documented.

Researchers should always document the

source of their data, which nomenclature

databases (and their versions) were used

(UniProt release 2012_07, mirDIP v2.0,

DrugBank v2.5, etc.), and what ID

mapping methods have been used in

instances where different sources were

merged.

Layout. Network layouts determine

the positions of individual nodes in a

coordinate space. There are several basic

requirements that a good layout should

satisfy. It should provide a biologically

meaningful representation of the network

while allowing ‘‘easy’’ interpretation by

the viewer. Edges between nodes of

interest should be easy to follow. This

can be achieved by efficient use of screen

space and minimization of edge crossings,

and by optimal use of transparency and

other visualization methods. Layouts can

be created by manually or algorithmically

placing nodes, or by some combination of

these two approaches. For algorithmic

layouts, scalability can be important, as

biological graphs can often grow to

encompass tens of thousands of nodes

and millions of edges. Several effective

algorithms, such as Graph Drawing with

Intelligent Placement (GRIP) [12], have

been proposed to address this

requirement, as well as algorithms that

take advantage of multi-core CPUs or

GPUs. Even so, large biological graphs are

sometimes impossible to lay out coherently

even with the best algorithms, resulting in

‘‘hairball’’ layouts.

Visualizing node and edge

attributes. The annotations contained

in a network can be represented using

different visual attributes, such as color,

size, and shape. Multiple combinations of

attributes to visual feature mapping exist,

but some are more suitable and easier to

interpret. One has to consider continuous

versus discrete attributes, dynamic ranges,

and number of features and their values

that need to be differentiated. The type of

annotation and its visual attribute must

also be appropriate: node size can

effectively represent a numeric value, but

might poorly represent different classes of

object. For example, expression can be

effectively represented by color, but may

also be represented as discrete values with

node shape. In both examples, using

transparency can further improve

interpretability of important parts in the

network.

Analysis. Systematic analysis of

protein–protein interactions (PPIs) and

other biological networks can uncover

biologically relevant information. PPI

networks have a strong structure-function

relationship [13], which can be used to

help interpret integrated data sets [14–16].

Beyond the different data that can be

integrated to help visualize highly

important nodes in the graph, the

analysis can also involve graph features

like node degree, node centrality, shortest

paths, cliques, cycles in directed graphs,

etc.

Diverse data sources and visualizations

can offer different perspectives on the

same biological data. There are many

different metrics for evaluating a graph’s

aesthetics, such as path bend and edge

crossing minimization [17]. However,

these metrics often give different results

when presented with the same graph,

which leaves room for subjective decisions

about individual layout tasks. Below, we

explore alternative visualizations of the

relation between aging and cancer to

highlight some of the features discussed

above.

Building the Aging-Cancer Network
Network construction. First, we

converted 65 human aging genes

(downloaded from GenAge build 15,

http://genomics.senescence.info/genes/)

into 112 UniProt IDs and 475 human

cancer genes (from the Sanger Cancer

Gene Census, http://www.sanger.ac.uk/

genetics/CGP/Census/, accessed Feb.

2012) into 857 UniProt IDs (Table S1)

using the I2D web interface (http://ophid.

utoronto.ca/ophidv2.201/). The mapping

between different database IDs is never

one-to-one, and this causes the differences

in numbers between the genes and the

UniProt IDs list. Next, we uploaded this

list of 969 IDs into NAViGaTOR and

retrieved known, publicly available human

PPIs from I2D 1.95 (this step retrieves all

connections that include at least one gene

from the starting list). Next, we used the

NAViGaTOR search function to select

only those nodes corresponding to the

cancer or aging gene lists (e.g., query

proteins), and deleted all other nodes (we

only wanted to consider connections

between aging and cancer genes in our

analysis). At this point, the network

comprised 219 nodes and 1,195 edges

(data available as a NAViGaTOR XML

file in Dataset S1); the default visualization

for this network is the infamous ‘‘hairball’’.

Further layout and analysis steps are

needed to highlight the interesting features

of this network. An interactive combina-

tion of analysis and visualization imple-

ments a visual data mining workflow that

enables the best integration of user’s needs

and expertise.

Visualizing attributes. (1) Using

shape to distinguish node types. First, we

defined two subsets in NAViGaTOR:

aging proteins and cancer proteins. We

used the set operation tool to create a third

subset, defined as the intersection of the

first two subsets, i.e., proteins known to be

involved both in aging and in cancer. A

different node shape has been manually

assigned to each subset (Figure 1a and

Figure S1). The group of shared genes

comprised ATM, BRCA1, BUB1B, CEBPA,

ERCC2, ERCC4, MSH2, TP53, and

CHEK2. (2) Using node color to

distinguish protein function. Using the

I2D plugin, we downloaded the Gene

Ontology (GO) [18] terms, PubMed

references, and gene synonyms associated

with each node. We decided to color the

nodes according to the GO category to

which they belong (Figure 1a), and to show

the gene names of the nodes shared

between the aging and cancer lists. We

decided to display gene names because

they are more interpretable by humans

than database IDs, but any text feature

associated to the nodes can be displayed as

a label. Importantly, gene or protein IDs

are best used to interrogate external

databases, as they eliminate the

ambiguity of name matching.

Pathway enrichment analysis of the

proteins in the network using the NAVi-

GaTOR plugin showed that the top two

pathways for the complete network as well

as for the shared genes are DNA Repair

(p,2.83209 and p,5.65206) and Cell

Cycle (p,6.15209 and p,8.35205) (Figure

S2). It has been described that the choice

between cell survival and cell death

represents the trade-off between cancer

and aging, triggered by damage to the

DNA [19]. These pathways are highly

interconnected [20]; and thus, it is not

surprising to identify them to be most

represented in our cross-talk genes.

Layout. We used a separated circular

layout for the nodes shared between the

cancer and aging datasets while the other

nodes are distributed in circular layouts,

including only cancer genes (C) or only

aging genes (A) directly interacting with

the shared ones (A1, C1) or not (A2, C2).
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The circular layout lets us appreciate the

number of nodes for each category and the

distribution of the visual features in the

subset. As shown in Figure S3, these views

can be further enhanced by sorting the

circular view using GO, thus further

highlighting the diversity or enrichment

of individual GO functions.

Perspectives and Visualizations of
the Aging-Cancer Network:
Differentially Regulated Genes in
Cancer

We identified network nodes that were

significantly differentially regulated in both

non-small cell lung and ovarian cancer

data, two cancers where incidence rises

sharply with age (SEER, http://seer.

cancer.gov/).

Network construction. We down-

loaded genes up- or down-regulated in

non-small cell lung or ovarian cancer from

CDIP, the Cancer Data Integration Portal

(http://ophid.utoronto.ca/cdip/), a col-

lection of gene expression data from pub-

lished studies.

Visualizing attributes. To represent

up- and down-regulated genes we used

node shape. We also related node height

to the number of times the gene is

aberrantly expressed in lung cancer

studies and node width to the number of

ovarian cancer studies (Figure 1b and

Figure S4). Transparency shows the total

number of times the gene was deregulated

in the two cancers. Edge color was used to

differentiate inter- and intra-group

interactions, and node color corresponds

to GO biological function.

Interpretation. It is now apparent

that the shared genes are more frequently

aberrantly expressed in ovarian cancer

than in non-small cell lung cancer. This

implies the involvement of the DNA repair

pathways in the two tumor types: they play

a central role in ovarian carcinogenesis (all

of the high penetrance ovarian cancer

susceptibility genes identified so far play a

role in DNA repair) [21], while in lung

cancer they share causality with signaling

pathways (especially those that promote

growth) [22].

Network nodes and edges may repre-

sent other information besides physical

PPIs, e.g., genetic interactions [23], met-

abolic reactions [24], gene regulations

[25], and microRNA–target [26] and

drug–target associations [27]. The next

paragraph discusses an example. A second

one is shown in Figure S5.

Perspectives and Visualizations of
the Aging-Cancer Network:
Therapeutics

Network construction. We down-

loaded lists of drugs that target the aging

and cancer genes in our network from

CTD, the Comparative Toxicogenomics

Database (http://ctdbase.org/) [28]. We

uploaded these drug–protein interactions

into a new subset in NAViGaTOR.

Layout. The nodes representing the

drugs are distributed in sets close to the

nodes category they interact with. For

drugs interacting with the shared genes,

we used a linear layout to show node

names more clearly (Figure 1c and Figure

S6).

Interpretation. It is interesting to

note that 99 compounds (23% of all

compounds) target genes from both the

cancer and aging subsets. The most

connected node in this subset is pirinixic

acid, a peroxisome proliferator activated

receptor a (PPARa) agonist. PPARa and

the genes under its control play a role in

the evolution of oxidative stress excesses

observed in aging, the activation of the

receptor being involved in the restoration

of the cellular redox balance [29].

Moreover, it has been demonstrated that

several genes involved in cell cycle control

and DNA repair pathways are induced

upon activation of PPARa [30].

Finishing Up: Data Interchange and
Export

Exporting network data, much like the

data import stage of network construction,

is possible with many formats, each with

their own strengths and weaknesses, such

as richness of representation language,

speed of loading the file, memory require-

ments, etc. The selection of an export

format depends on the intended recipient

of the data and their needs (http://www.

cs.utoronto.ca/,juris/data/BI09/).

Analogously to data export, multiple

image export formats can be used by

individual tools. For networks, it is most

useful to extend the standard image for-

mats, e.g., JPEG, TIFF, PNG, BMP, with

scalable vector graphics (SVG, http://

www.w3.org/Graphics/SVG/) format,

which is an XML-based file format for

describing two-dimensional vector graph-

ics. SVG format is especially useful for

preparing the final annotated figures with-

out loss of quality in Inkscape (http://

www.inkscape.org/) or Adobe Illustrator.

In our case, the network files were

exported in SVG format and finalized

using Adobe Illustrator. The resulting

figures are the ones shown in this paper.

The original networks in NAViGaTOR

XML format are downloadable from the

supplementary data (Datasets S2, S3, S4,

S5, S6, S7).

Conclusions

After discussing the basic network

visualization workflow, we demonstrated

how the analysis of networks built on PPIs

can discover and highlight important

features of some genes of interest (in our

case, the connection between cancer and

aging genes). We also introduced some of

the many different kinds of data that are

now available to enrich the analysis of a

simple gene list (or list of proteins,

microRNAs, etc.). While we focused on

gene expression, drug targeting, and

microRNA involvement with the genes in

our network, we highlighted the main

principles and steps needed for such

integrative network analysis. We discussed

node layout and showed how to set up

their appearance in some of the many

possible ways to give an idea of how

networks can effectively visualize large

amounts of data by emphasizing differ-

ences between subsets and ranking nodes

according to a given filter.

Understandably, presented combina-

tions of analysis methods are only a few

out of many possible approaches to visual

data mining. NAViGaTOR and other

similar tools offer the possibility to com-

bine different analyses and data in multi-

ple ways, and the researcher’s purpose and

interest will determine which workflow is

Figure 1. Network visualization of the query genes and their involvement in other tumor types. a) Network built on aging and cancer
genes. Labeled nodes belong to both gene lists. Square nodes represent cancer genes while diamonds represent aging genes. b) Deregulation of the
network genes in lung (represented by down arrows) and ovarian cancer (represented by up arrows). The height and width of the nodes are
proportional to the number of studies where the genes are deregulated. Node transparency corresponds to overall number of studies where the
gene is deregulated. c) Network integrating chemical compounds targeting the query genes. Hexagonal nodes represent drugs. The names of the
drugs interacting with the shared genes are shown. C: cancer genes, A: aging genes, D: drugs. C1, A1: genes interacting with shared ones, C2, A2:
genes not interacting with the shared ones. D1: drugs targeting only aging genes, D2: drugs targeting both aging and cancer genes, D3: drugs
targeting only cancer genes. Node colors represent GO categories as per legend. Edges are colored to differentiate inter- and intra-group interactions.
doi:10.1371/journal.pcbi.1002833.g001
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more effective for her data. A comparison

of the main features of several well-known

network visualization tools is shown in

Table S2, and links to a larger number of

tools are included as Table S3. Tools that

support interactive data visualization en-

able a useful blend of automation and

expert knowledge to customize the work-

flows and analyses on the fly.

Individual tools need a good balance of

performance and useful features. The

features needed to complete a task are

highly dependent on the available data

and the researcher’s competencies. There

is no single solution applicable to all

research scenarios; this requires the con-

stant development of new tools and

analysis methods, like the development of

plugins to semi-automatically query and

integrate data from all possible useful

database, and places a responsibility upon

the researcher to be aware of and

competent in tools that support her needs.

Supporting Information

Dataset S1 Hairball. XML file with

only the original data (‘‘hairball’’).

(XML)

Dataset S2 Cancer and aging genes
network. XML file corresponding to

Figure S1.

(XML)

Dataset S3 Pathway network. XML

file corresponding to Figure S2.

(XML)

Dataset S4 Gene Ontology net-
work. XML file corresponding to Figure

S3.

(XML)

Dataset S5 Deregulated genes net-
work. XML file corresponding to Figure

S4.

(XML)

Dataset S6 microRNA network.
XML file corresponding to Figure S5.

(XML)

Dataset S7 Drugs network. XML file

corresponding to Figure S6.

(XML)

Figure S1 Cancer and aging genes
network. Labeled nodes belong to both

gene lists. Square nodes represent cancer

genes while diamonds represent aging genes.

C: cancer genes, A: aging genes. C1, A1:

genes interacting with the shared genes, C2,

A2: genes not interacting with the shared

genes. Node colors represent GO categories

as per legend. Edges are colored to differ-

entiate inter- and intra-group interactions.

(TIF)

Figure S2 Pathway network. Path-

way enrichment analysis. Nodes belonging

to the most significant pathways are

highlighted (DNA Repair p = 2.83209

and Cell Cycle p = 6.15209; Hypergeo-

metric test). Green highlight: Cell Cycle.

Blue highlight: DNA Repair. Red high-

light: overlap. C: cancer genes, A: aging

genes. C1, A1: genes interacting with the

shared genes, C2, A2: genes not interact-

ing with the shared genes. Node colors

represent GO categories as per legend.

Edges are colored to differentiate inter-

and intra-group interactions.

(TIF)

Figure S3 Gene Ontology network.
Organization of nodes according to their

Gene Ontology terms. C: cancer genes, A:

aging genes. C1, A1: genes interacting

with shared ones, C2, A2: genes not

interacting with the shared ones. Node

colors represent GO categories as per

legend. Edges are colored to differentiate

inter- and intra-group interactions.

(TIF)

Figure S4 Deregulated genes net-
work. Analysis of the deregulation of the

network genes in lung (represented by down

triangles) and ovarian cancer (represented

by up triangles). The height and width of

the nodes are proportional to the number of

studies where the genes are deregulated.

Transparency represents total number of

studies where the gene is deregulated. C:

cancer genes, A: aging genes. C1, A1: genes

interacting with the shared genes, C2, A2:

genes not interacting with the shared genes.

Node colors represent GO categories as per

legend. Edges are colored to differentiate

inter- and intra-group interactions.

(TIF)

Figure S5 microRNA network. Inte-

gration of microRNAs targeting the orig-

inal genes. After downloading predicted

miRNA–gene interactions for the genes in

our network from the mirDIP database

ver. 1 (http://ophid.utoronto.ca/mirDIP/),

which integrates 12 microRNA prediction

datasets, we kept only those interactions

that were identified in at least three

independent datasets. We analyzed the

microRNAs to separate universal micro-

RNAs from pathway-specific ones [25].

Notably, hsa-miR-548c-3p is predicted to

target the largest number of shared genes.

A recent study implicated this micro-

RNA in the regulation of HMGA1 [31], a

proto-oncogene that influences nuclear

functions, essential mitochondrial DNA

maintenance, and organelle functions.

HMGA1 proteins are often over-expressed

in cancer cells and alterations to mitochon-

drial function are frequently present. These

two characteristics are also associated with

multiple non-cancer diseases and aging [32].

Pathway-specific microRNAs are shown in

blue while universal ones are shown in red.

C: cancer genes, A: aging genes. C1, A1:

genes interacting with the shared genes, C2,

A2: genes not interacting with the shared

genes. Node colors represent GO categories

as per legend. Edges are colored to differen-

tiate inter- and intra-group interactions.

(TIF)

Figure S6 Drugs network. Integra-

tion of chemical compounds targeting

genes in the cancer and aging lists.

Octagonal nodes represent drugs. Drug

node size corresponds to node degree. The

names of the drugs interacting with the

shared genes are shown. C: cancer genes,

A: aging genes, D: drugs. C1, A1: genes

interacting with the shared genes, C2, A2:

genes not interacting with the shared

genes. D1: drugs targeting only aging

genes, D2: drugs targeting both aging

and cancer genes, D3: drugs targeting only

cancer genes. Node colors represent GO

categories as per legend. Edges are colored

to differentiate inter- and intra-group

interactions.

(TIF)

Table S1 Lists of genes used for the
analysis.

(XLS)

Table S2 Comparison of the main
features of some network visualiza-
tion tools. The table shows a synthetic

comparison of the main features of some

well-known network visualization tools.

3 = the tool fully supports the function.
*L = the tool can retrieve information

stored locally; R = capability to retrieve

information from remote databases.
#A = the tool automatically can get addi-

tional information from the selected data

sources; M = this function is supported

only manually. $All = Win, Mac, Linux,

JVM = Java virtual machine. ‘S = Simple,

C = Complex, and L = Limited, refer to

the complexity of the analysis supported

by each tool.

(DOCX)

Table S3 List of known protein in-
teraction network visualization tools.

(DOC)
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