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Abstract

Local field potentials (LFPs) are widely used to study the function of local networks in the brain. They are also closely
correlated with the blood-oxygen-level-dependent signal, the predominant contrast mechanism in functional magnetic
resonance imaging. We developed a new laminar cortex model (LCM) to simulate the amplitude and frequency of LFPs. Our
model combines the laminar architecture of the cerebral cortex and multiple continuum models to simulate the collective
activity of cortical neurons. The five cortical layers (layer I, II/III, IV, V, and VI) are simulated as separate continuum models
between which there are synaptic connections. The LCM was used to simulate the dynamics of the visual cortex under
different conditions of visual stimulation. LFPs are reported for two kinds of visual stimulation: general visual stimulation
and intermittent light stimulation. The power spectra of LFPs were calculated and compared with existing empirical data.
The LCM was able to produce spontaneous LFPs exhibiting frequency-inverse (1/e) power spectrum behaviour. Laminar
profiles of current source density showed similarities to experimental data. General stimulation enhanced the oscillation of
LFPs corresponding to gamma frequencies. During simulated intermittent light stimulation, the LCM captured the
fundamental as well as high order harmonics as previously reported. The power spectrum expected with a reduction in layer
IV neurons, often observed with focal cortical dysplasias associated with epilepsy was also simulated.
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Introduction

Neuronal activity changes the distribution of electric potentials

in the brain [1,2]. Local field potentials (LFPs) are the low-

frequency (,100 Hz) fluctuations in electric potentials in the

extracellular space of the brain [2,3]. They represent a weighted

average of the potential changes produced by neuronal activity in

a small volume around the measuring electrode [4,5]. Concurrent

electrophysiological and functional MRI experiments have also

demonstrated that LFPs are correlated with signal change in

functional magnetic resonance imaging, a method of detecting

neuronal activity through changes in blood-oxygen-level-depen-

dent signal [6–8]. Previous electrophysiological experiments

investigating the neuronal processes underlying LFPs have

measured the membrane potential of neurons and extracellular

field potentials simultaneously [9,10]. A major difficulty with this

paradigm is that LFPs reflect the activity of more than 10,000

neurons [11] within 250 micrometres of the recording electrode

[4,5]. Simultaneous measurement of such a large number of

neuron activities has not been achieved to date. Furthermore,

multiple concurrent processes contribute to LFPs, including action

potentials, synaptic transmission, glial activity, and even extracel-

lular space diffusion [12] and are difficult to disambiguate.

Computer simulations have widely been adopted to predict

changes in neuronal activity associated with corresponding LFPs.

A previous study simulated the membrane potential changes of a

large number of individual neurons as means of reconstructing the

LFP [for example, see 13]. Simulating the dynamics of a large

number of neurons faces the challenge of specifying the

physiological parameters in large, inhomogeneous populations

with diverse physiological properties [14]. An alternative approach

to simulating individual neuronal activity has been to simulate the

activity in an ensemble of neurons. An example of this is the

continuum cortex model, developed by Wright et al [15–18],

which has been used to simulate ensemble activity at different

scales [17]. Existing continuum cortex models do not take into

account the laminar architecture of the cerebral cortex. They are,

therefore, limited in their ability to model the distribution of

electric potential of the brain in three dimensions. Cortical

neurons are organized in columns comprising as many as 20,000

neurons [19,20]. Functionally, neurons in a column display similar

responses to specific stimuli [21]. In this paper, we build on this

notion to expand the continuum cortex model by incorporating

the laminar connection architecture of the cortex and simulating

the collective of neuronal ensembles within cortical columns. We

have used the new laminar cortex model (LCM) to simulate LFPs

within the visual cortex under different conditions of visual

stimulation.

Methods

Continuum cortex model
We give a brief overview of the continuum cortex model for

completeness, but for specific details refer to [17]. The continuum
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cortex model simulates the collective electrophysiological activities

of the cerebral cortex. A population approximation is used to

overcome the difficulty of simulating a large number of individual

neurons, and to capture the essential aspects of cortical dynamics

[15,16]. The continuum cortex model divides the simulated

cortical area into a n|n grid of elements, where n is an integer.

Each element consists of two populations of neurons: excitatory

and inhibitory [17]. Each population is treated as a single entity

capable of receiving spikes, changing membrane potential, and

generating and propagating spikes [17].

The numbers of spikes propagating between neurons of two

groups at any one time varies. In the continuum cortex model the

effects of action potential shape and its temporal evolution are

ignored. Instead, the average afferent spike rate (w) is used to

measure interaction between the two groups of neurons. The spike

rate is defined as the average number of spikes a neuron of one

group receives from a neuron of the other group per unit time.

The continuum cortex model contains four main components:

1) spike generation, 2) spike propagation, 3) generation of the

postsynaptic potential, and 4) membrane potential aggregation.

The equations describing each component are provided in Text

S1 and were developed either by using theoretical approaches or

by experimentally fitting observed data using an appropriate

function. The mean field approximation was employed during this

procedure [17].

Cortical laminar connection
The LCM exploits the laminar architecture of the cortex. Five

cortical layers (layer I to VI) are considered (cortical layers II and

III are combined). Each layer is simulated using the continuum

cortex model, and the layers are connected by laminar synaptic

connections (see Figure 1). A synaptic connection map is created

and used to control the connection between and within cortical

layers (see Table S1 in Text S2). This connection map was based

on empirical observations of the number of synapses formed

between different types of neurons by Binzegger [22] (see Text S2).

The connection map classifies the afferent synapses on each group

of cortical neurons into three categories: 1) intracortical synapses,

from within the visual cortex (wic), 2) cortico-cortical synapses,

from other cortical areas (wcc), and 3) thalamic synapses,

projections from neurons in the lateral geniculate nucleus (LGN,

wth).

The LCM allows simulation of centimeter and column scale

(micrometer) cortical regions [17]. Since the grid elements of the

centimeter scale model correspond to the size of cortical columns,

the connections between cortical laminae are assumed to be local.

This means that elements in the same horizontal position of all

cortical layers are connected vertically (see Figure 1B). In contrast,

the column scale implementation is approximately the size of one

cortical column. Therefore, connections between cortical layers

are global, and the average spike rate of a cortical layer is the input

to other cortical layers. The work here is focused on simulating

LFPs produced in the visual cortex. Hence, results are limited to

the application of the centimeter scale model.

Visual stimulus
We simulated the effect of visual stimulation on LFPs using the

LCM. Different forms of visual stimulation were assumed to form

different spike trains projecting from the LGN to deeper cortical

layers of the visual cortex (Layer IV, V and VI, see Table S1 in

Text S2). Three states of visual stimulation were examined in the

model: 1) spontaneous activity without visual stimulation, 2)

constant visual stimulation, and 3) intermittent light stimulation.

As illustrated in Figure 2, these conditions correspond to afferent

spike trains with the shape of small amplitude white noise, large

Author Summary

Local field potentials (LFPs) are low-frequency fluctuations
of the electric fields produced by the brain. They have
been widely studied to understand brain function and
activity. LFPs reflect the activity of neurons within a few
square millimeters of the cerebral cortex, an area contain-
ing more than 10,000 neurons. To avoid the complexity of
simulating such a large number of individual neurons, the
continuum cortex model was devised to simulate the
collective activity of groups of neurons generating cortical
LFPs. However, the continuum cortex model assumes that
the cortex is two-dimensional and does not take into
account the laminar architecture of the cerebral cortex. We
developed a three-dimensional laminar cortex model
(LCM) by combining laminar architecture with the contin-
uum cortex model. This expansion enables the LCM to
simulate the detailed three-dimensional distribution of the
LFP within the cortex. We used the LCM to simulate LFPs
within the visual cortex under different conditions of visual
stimulation. The LCM reproduced the key features of LFPs
observed in electrophysiological experiments. We con-
clude that the LCM is a potentially useful tool to
investigate the underlying mechanism of LFPs.

Figure 1. The configuration of the LCM. (A) The LCM simulates five cortical layers. Cortical layers are discretized to a grid of elements, which
contain two neuron groups: excitatory and inhibitory. (B) The laminar connection between cortical layers is illustrated. Only the strong connections
are shown in the figure. For the complete connection map please refer to Table S1 of Text S2. (C) The connections between neuron groups within a
lamina are shown.
doi:10.1371/journal.pcbi.1002733.g001

Laminar Cortex Model
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amplitude white noise (the random number generator from [23]

was adopted), and recurring Gaussian peaks, respectively.

Apart from the synapses projecting from neurons in LGN and

the visual cortex, there are also a large number of synapses

originating from other cortical areas (see Table S1 in Text S2). We

assume that spikes from these synapses contribute to background

noise, which was modeled as low-amplitude white noise.

Model parameters
The LCM has over 150 parameters, which fall into four

categories relating to: 1) electrophysiological properties of neurons,

2) spike propagation, 3) synaptic transmission, and 4) connections

between cortical laminae. Most of these parameters were

estimated from experimental data, while others were left as free

parameters. However, the cortex is complex, to the extent that our

simplified parameters may not represent its physiology, morphol-

ogy and architecture exactly. We found that a small deviation of

the parameter values do not change the results reported here

significantly. This is because a similar LFP outcome can be

achieved by tuning free parameters.

Parameters relating to the electrophysiological properties of

neurons are well established in the literature. We used the same

values, derived from experimental data, as the continuum cortex

model [17].

Spike propagation parameters and their values used are listed in

Table 1. The propagation speed of spikes in the horizontal (lateral)

direction (vh) was set to 0.24 m/s, which is consistent with

experimental measurements of the speed of spread of spikes in the

cortex [24,25]. Since collateral branches are usually smaller in

diameter than the main axon, the speed of vertical (inter-laminar)

propagation of spikes (vv) was set to 1.2 times the speed of

horizontal propagation. The spike propagation range parameters

were set to the similar values as continuum cortex model [17].

There is a wide range of published values for synaptic

transmission parameters [26,27]. We chose the middle parameter

value when a range was provided and the average when multiple

values were reported. The excitatory and inhibitory synaptic gains

ge and gi, were treated as free parameters. Their values were

determined by fitting experimental data to the LFPs generated

using the LCM.

The best set of parameter values was selected as those fulfilling

the following criteria: 1) the LFP power spectrum fitted the 1=f {n

function with R2
v0:1 [28]. 2) with simulated visual stimulation,

there was an increase in gamma frequency in the power spectrum;

3) membrane potentials of neuron groups were less than 10 mV

above their resting membrane potentials [29].

Simulation
The simulation program was written using the ANSI C

language and compiled with the Intel C compiler (http://

software.intel.com/intel-compilers/). The program was compiled

and executed on a Linux workstation (DellH Precision T7500) with

Ubuntu version10.10 (686_64, http://www.ubuntu.com).

OpenMP (http://www.openmp.org), a shared-memory parallel

programming library, was used to parallelize the code to speed up

program execution.

In this paper, the LCM was used to simulate a cortical area of

size 1|1 cm2. The domain was discretized to a 20|20 grid. At

the beginning of each execution of the program, the simulation

time was initialized to zero, and every neuron state variable was set

to its resting state value (see Text S2). The iteration time step was

one millisecond. After initialization, the program executed without

particular visual stimulation for 60 seconds at which time the

system is assumed to have reached steady state. Constant visual

stimulation or intermittent light stimulation was then applied for

20 seconds (time = 60–80 sec). LFPs were simulated for conditions

of spontaneous activity and for each mode of visual stimulation.

Data analysis
In the simulation, the membrane potentials of all neuron groups

in the middle element of a layer are recorded during the entire

execution. Data of the last 1.024 second prior to visual stimulation

and after stimulation were used for frequency spectrum analysis.

For comparisons with experimental data, the LFPs of the

simulated cortical area are assumed to be the average of neuronal

membrane potentials of the central elements of all layers, stated as:

LFP~

P
all ly NlyVly
P

all ly Nly

ð1Þ

where Nly are the numbers of neurons in the central element of

layer ly and Vly are the potentials of the central elements of layer

ly, which is the average of membrane potentials of neurons in the

element, that is

V~
NeVezNiVi

NezNi

ð2Þ

where Ne, Ni are the numbers of excitatory and inhibitory neurons

and Ve and Vi are the (average) membrane potentials of excitatory

and inhibitory neuron populations respectively. The frequency

spectrum of the LFPs was computed using the fast Fourier transform

as implemented in MATLAB 2010a (http://www.mathworks.

com). The LFP frequency power spectra were compared with

experimentally measured data.

Figure 2. Afferent spike rates corresponding to visual stimu-
lations. (A) Spike rates correspond to spontaneous activity followed by
constant visual stimulation, and (B) spike rates represent to spontane-
ous activity prior to intermittent light stimulation.
doi:10.1371/journal.pcbi.1002733.g002

Table 1. Spike propagation parameters.

Parameter Representing Value

v Spike propagation speed Horizontal: vh~0:24 m=s

Vertical: vv~0:288 m=s

c Spike propagation range Excitatory: ch
e ~2|10{3 m

Inhibitory: ch
i ~1|10{3 m

doi:10.1371/journal.pcbi.1002733.t001

Laminar Cortex Model
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LFPs produced by LCM were also used to estimate current

source density. The standard one-dimension current source

density calculation method was used [30,31]

Ii~{s
L2u

Lz2
~{s

ui{1{2uizuiz1

h2
: ð3Þ

Here s is electric conductance of the cortex, and was set to 0.3 S/

m, ui is the potential at the ith point, and h is the distance between

two adjacent points. To reduce spatial noise, the three-point

Hamming filter was applied [32,33]

ufilt
i ~0:23uiz1z0:54uiz0:23ui{1: ð4Þ

Results

Parameter sensitivities
We examined the behaviour of the LCM using different

parameter values. For each parameter combination, around 100

executions of the LCM were conducted, and the average LFP

frequency spectrum was computed.

Figure 3 shows the power spectra of the LFPs obtained with

different synaptic gains. The LCM was able to generate LFPs with

different types and envelopes of oscillation, depending on the

combination of excitatory and inhibitory synaptic gains used in the

simulation. For example, when either excitatory or inhibitory

synaptic gain was small, the frequency spectrum of background

activity had an inverse-frequency shape. Stimulation resulted in an

increase in gamma frequency. In contrast, when the excitatory and

inhibitory synaptic gains were both large, particular frequency

peaks dominated the LFP power spectra. Thus, variations of

synaptic gains had a strong impact on LFP frequencies.

For large synaptic gains, the peaks in the power spectra did not

change position with variation in synaptic gain. Dependence of

peak position on other parameters was also examined by

generating LFP power spectra with different parameter values.

The time course of the postsynaptic potential (PSP) was found to

be strongly correlated with the positions of the peaks. Peak

frequency decreased with increasing PSP time course. (Four

examples of LFP power spectra with different PSP time courses are

shown in Figure S2). This suggests that the dominant oscillation

frequency is controlled by the feedback between excitatory and

inhibitory neurons.

The shape of the power spectrum of LFPs generated by the

LCM is controlled by the balance between excitatory and

Figure 3. The effect of changing synaptic gains on the LFP power spectra. (A) LFP power spectra were obtained using LCM with different
combinations of excitatory (ge) and inhibitory (gi) synaptic gains. Black lines show the power spectra of spontaneous LFPs and red lines correspond to
the activated LFPs. A more detailed synaptic gain dependent frequency map is provided in Figure S1. (B) The time serials of LFPs obtained in one run
with two synaptic gain combinations (i) ge~gi~2|10{7 V/spike, and (ii) ge~gi~3|10{7 V/spike, as corresponding to sub-figures (i) and (ii) in (A).
doi:10.1371/journal.pcbi.1002733.g003

Laminar Cortex Model
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inhibitory postsynaptic potentials (PSPs). These are influenced by

many parameters simultaneously, including synaptic gains, spike

propagation ranges and synapse numbers. Changes in PSPs

caused by variation of one parameter could be compensated by

other parameters. For example, increase of synaptic gains may not

change PSP when the corresponding synapse number is decreased.

Therefore, the LCM could produce similar LFPs using different

combinations of parameter values.

Experimental models of neocortical epileptic foci suggest that

reduced synaptic inhibition in layer IV plays an important role in

epileptogenesis [34,35]. Focal cortical dysplasias characterized by

an absence or significant reduction in layer IV are also very

frequently associated with epilepsy [36]. Figure 4 shows the LFP

power spectrum shapes generated by the LCM when the numbers

of synapses formed with presynaptic neurons in layer IV are

decreased by 50%. Compared to Figure 3A, the power spectra

show a small shift to small inhibitory gain. For example, for LFPs

produced using excitatory and inhibitory synaptic gains of

2|10{7 V/spike, the power spectrum changed from a frequen-

cy-inverse 1=f shape to one with spectral peaks as would be

expected with seizures when presynaptic neurons of layer IV

decrease by 50%. This suggests that, changes in neuron or synapse

density may change the way LFPs oscillate dramatically. These

alterations in dynamics may increase our understanding of how

abnormalities in cortical architecture lead to seizures.

Spontaneous and visually stimulated local field
potentials

Figure 5 shows the time courses of membrane potentials in a

single run of the LCM. We found that in every cortical layer,

membrane potentials oscillated with amplitudes of 0.05–0.2 mV;

the amplitudes are much larger in layers IV and VI (around

0.1 mV) than in other layers (around 0.05 mV). During stimula-

tion, the membrane potentials and its oscillation amplitudes

increased in all layers except layer I. The power spectra in all

layers, as provided in Figure 5, all showed inverse-square

decreasing frequency background activities, which is observed

experimentally [37]. Stimulation also increased high-frequency

membrane potential oscillation of all deep layers.

The laminar distribution of the LFP power spectrum amplitude

was examined. Figure 5C shows the laminar distribution of the

average of the LFP power distribution in the gamma frequency

(30–100 Hz) and sub-gamma frequency (5–20 Hz) ranges for

spontaneous activity and general stimulation. Higher frequency

powers were observed in layers IV and VI. This is in agreement

with experimentally measured laminar LFP amplitude profiles in

the primary visual cortex [38]. Since layers IV and VI are the

main layers of the visual cortex receiving and sending projections

to the LGN, the observed variation in LFP power spectra

Figure 4. The effect of changing cortical architecture on LFP
power spectrum. This figure shows power spectra produced by LCM
configured with different synaptic gains, and presynaptic neurons in
layer IV decreased by 50%. The red lines and black lines illustrate the
power spectra of activated and spontaneous LFPs.
doi:10.1371/journal.pcbi.1002733.g004

Figure 5. The temporal variations and power spectrum of membrane potentials in cortical layers. Illustrated are (A) simulated field
potentials of layer I, II/III, IV, V and VI, and (B) their corresponding power spectra for the general visual stimulation experiment, and (C) the average
power spectra of LFPs in the gamma frequency (30–100 Hz, circles) and sub-gamma frequency (5–20 Hz, triangles) during spontaneous activity (black
lines) and general stimulation (red lines). In (B) the black lines depict the resting state LFPs and red lines show the outcome of stimulation. The data
are obtained using ge~gi~2|10{7V=spike.
doi:10.1371/journal.pcbi.1002733.g005

Laminar Cortex Model
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amplitudes between layers most likely results from these projec-

tions. We simulated the propagation of one spike source in the

cortex using LCM. In Figure 6 we provide the result when a spike

source is placed in the four central elements of layer IV for

20 milliseconds after 60 seconds of spontaneous activity. Follow-

ing spike onset, a strong potential is observed in the center of all

cortical layers except layer I. The potential is decreased in

elements surrounding the source, simulating surround inhibition.

We display the temporal profiles of current source density along a

transverse line through the central point in layer IV and for the

central elements of each cortical area in Figure 7.

Steady-state visual evoked potentials (SSVEPs)
Many electrophysiological experiments have demonstrated that

with intermittent light stimulation, neuronal activity in the visual

cortex synchronizes with stimulus frequency [39–42]. Further-

more, EEG responses are enhanced at this frequency (fundamental

harmonics), as well as at half the stimulus frequency (first sub-

harmonic), and at multiples of the stimulus frequency (multiple

harmonics). The responses to visual stimulation at specific

frequencies, termed steady-state visual evoked potentials

(SSVEPs), can be observed on both scalp EEG recordings [39]

and invasive recordings of LFPs [40]. We used SSVEPs to

examine the effect of cortical architecture on LFPs.

The LCM was used to simulate LFPs with 10 Hz intermittent

light stimulation represented by a Gaussian distribution of spike

rates for neurons projecting from the LGN to the visual cortex.

The peak and standard deviation of the Gaussian shape was 30

spikes/second and 6.25 milliseconds, respectively (see Figure 2).

Figure 8 shows the variation of LFPs with time and the associated

power spectra. Simulations using the LCM reproduced the power

spectra reported in experimental data [39]. The LFP power

spectrum had peaks at frequencies that were multiples of the

stimulus frequency (i.e. capturing multiple harmonics). Notably,

the amplitude of fundamental harmonic (i.e. frequency peak at

10 Hz) was smaller in layer II/III than other layers. This is

Figure 6. Potentials in the cortex driven by a single transient source. The four central elements in layer IV are driven by 100 spike/sec LGN
input starting after 60 seconds of spontaneous activity. The spike source lasts for 20 milliseconds. The following parameters were used:
ge~5|10{7V=spike, gi~{1|10{7V=spike, wLGN~0:01spike=sec for spontaneous activity and wLGN~30spike=sec for a spike source in the central
four elements of layer IV.
doi:10.1371/journal.pcbi.1002733.g006

Figure 7. Current source densities (CSD) generated by the LCM.
Shown are (A) CSDs for the central elements of each cortical layer, and
(B) temporal profile for current source density of the central line of layer
IV (see Figure 6). The CSD plots show the difference between CSD at
each time point and the mean value in the entire epoch. Time values
are in milliseconds after the onset of transient LGN input. A positive
CSD value indicates a current source. Results are calculated from the
same dataset as Figure 6.
doi:10.1371/journal.pcbi.1002733.g007

Laminar Cortex Model
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probably because there are fewer projections from LGN to layer

II/III than other layers. Experimentally observed sub-harmonics

were not obvious in simulations using the LCM [39].

Discussion

This paper introduces the LCM and describes its use to simulate

LFPs in the primary visual cortex. The LCM has the advantage

that it incorporates the architecture of the visual cortex allowing

the simulation of LFPs with high spatial and temporal resolution.

We were able to simulate the membrane potential in each cortical

layer, as well as its temporal variations. We used the LCM to

investigate the relationship between visual stimulation and LFPs.

We validated the model using two different experimental

simulations: constant visual stimulation and intermittent light

stimulation. Our results were comparable to relevant experimental

measurements. We also simulated the effects of changes in

neuronal density in layer IV, often observed in epileptic cortical

dysplastic tissue. For certain parameter combinations the changes

in the power spectra were those expected in seizures. CSD maps

showed comparable features to experimental data and intralam-

inar CSD profiles following transient LGN input had the

appearance of surround inhibition.

With constant visual stimulation, the LCM produced LFPs

oscillating in two different ways determined by the combination of

parameters used in the simulation. When the cortex was activated

with low levels of background noise and stimulus input (small

synaptic gains), the LFP oscillation was governed by the pool of

excitatory neurons. Synaptic transmission acts as a filter due to the

convolution in the membrane potential aggregation function of

LCM (refer to Equation S1.8 in Text S1). Effectively, this dampens

high frequency oscillations and results in an inverse-squared

decreasing LFP spectrum. However, when the cortex is highly

activated, inhibitory neurons play a more dominant role, resulting

in oscillations in which initial activation of inhibitory neurons leads

to suppression of the membrane potential of all neurons, including

the inhibitory pool followed by a burst of activity cause by

excitatory input.

The LFPs produced using low synaptic gains are comparable to

experimentally observed LFPs in the normal brain, while the LFPs

obtained with large synaptic gains are similar to those measured

during seizures [37]. This suggests that changes in neuronal

physiology can result in a change in the LFP power spectrum and

may help to explain frequency changes in the EEG observed in

certain neurological disorders. There are some differences between

LFPs from the LCM and experimentally measured LFPs. The

amplitude of low frequency (,10 Hz) LFPs produced by the

model is lower than measured experimentally. A possible

explanation is that the low frequency oscillation results from

feedback loops between the visual cortex and other brain areas

[43], which are not considered in the LCM. The gamma

frequency (40–200 Hz) power of stimulated LFPs is also smaller

than experimental measurements. We postulate that this is because

extracellular potential changes caused by synaptic activities and

spike conduction are not included in the calculation of LFPs.

These are reported to have a greater influence on high frequency

LFPs [44–46]. The LCM simplifies synaptic processes and spike

propagation to a signal delivery level. It does not simulate the burst

of synaptic transmission and spikes.

The CSDs calculated from LCM recreates several features from

experimental observations [47]. Within layers, the CSD profile

simulated surround inhibition [48]. Across cortical layers, the

temporal profile of CSDs was similar to those observed by Schroeder

et al. [47] with transition from sink to source following stimulation.

We used SSVEPs, to test the effects of incorporating cortical

architecture on simulation output. In our intermittent light

stimulation study, we used the LCM to reproduce the behaviour

of SSVEPs. The fundamental and high order harmonics were

apparent in the visual cortex. The first sub-harmonics, shown to be

present empirically [39], may be brought about by feedback loops

between the primary visual cortex and other visual cortical areas.

These connections are not included in the LCM.

The LCM may be used to simulate abnormal responses to

intermittent light stimulation such as the photoparoxysmal

response observed in forms of genetic generalized epilepsy. This

can be achieved by varying LCM parameters, and comparing the

simulation output with measured EEG data. This has the potential

to generate testable hypotheses relating to underlying neurophys-

iological mechanisms.

Although we showed that LCM is able to reproduce some of the

results of electrophysiological experiments, it has some limitations.

Firstly, only two populations of neurons (excitatory and inhibitory)

are considered. The behaviour of excitatory neurons may not be

best captured by a single category. For example, fast-spiking

Figure 8. Power spectra of membrane potentials for SSVEPs generated with the LCM. The figure shows (A) the power spectra of
membrane potential in layers I, II/III, IV, V, VI and (B) power spectra of the LFP produced by the LCM under intermittent light stimulation. The black
lines show power spectra of spontaneous LFPs, and red lines illustrate stimulated LFP power spectra. In (C) an example of LFPs before and after
intermittent light stimulation in a single run is also shown. The following parameters were used: ge~gi~2|10{7 V=spike, wLGN~5spike=sec for
spontaneous activity.
doi:10.1371/journal.pcbi.1002733.g008

Laminar Cortex Model
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neurons generate spikes differently from other excitatory neurons

[27]. In future work we will extend the LCM to include multiple

categories of excitatory neurons. Secondly, simulation of neuro-

transmission in the LCM may be oversimplified. For example, in

its current form it cannot simulate the effects of activating fast

(AMPA) and slow (NMDA) excitatory glutamatergic receptors on

LFPs. Thirdly, the physiological parameters used in our simulation

were obtained from the results of experiments conducted in

different species. In our simulations, LFPs were calculated as the

aggregate membrane potential dynamics of populations of

neurons, an approach commonly employed in simulation studies

e.g. [49]. This approach may be inaccurate because it does not

take into account the filtering properties of the neural membrane

[44,45]. Methods based, for example, upon summation of

conductance of synapses to pyramidal neurons [2,45,50] are

inapplicable to the LCM, which simulates the collective activity of

neuron groups. A future hybrid model is required to link

continuum cortical models and models based on simulating the

properties of individual neurons.

Supporting Information

Figure S1 Detailed map of synaptic gain dependent LFP
frequency spectra. Provided is the detailed map of LFP

frequency spectra produced by LCM using different excitatory

and inhibitory gains. The red lines show the frequency spectra of

stimulated LFPs, while the black lines depict that of spontaneous

LFPs.

(TIF)

Figure S2 The shift of frequency peaks with different
PSP time courses. Provided are LCM produced LFP frequency

spectra while the peaks of EPSP time courses are (A) doubled and

(B) decreased by half, and the peak of IPSP time course is (C)

doubled and (D) decreased by half. The following parameter

values were used: ge~gi~4|10{7V=spike.

(TIF)

Text S1 The state equations of the laminar cortex
model.

(DOC)

Text S2 The meanings and values of the parameters
used in the laminar cortex model.

(DOC)
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