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Abstract

Animals can exhibit complex movement patterns that may be the result of interactions with their environment or may be
directly the mechanism by which their behaviour is governed. In order to understand the drivers of these patterns we
examine the movement behaviour of individual desert locusts in a homogenous experimental arena with minimal external
cues. Locust motion is intermittent and we reveal that as pauses become longer, the probability that a locust changes
direction from its previous direction of travel increases. Long pauses (of greater than 100 s) can be considered reorientation
bouts, while shorter pauses (of less than 6 s) appear to act as periods of resting between displacements. We observe power-
law behaviour in the distribution of move and pause lengths of over 1.5 orders of magnitude. While Lévy features do exist,
locusts’ movement patterns are more fully described by considering moves, pauses and turns in combination. Further
analysis reveals that these combinations give rise to two behavioural modes that are organized in time: local search
behaviour (long exploratory pauses with short moves) and relocation behaviour (long displacement moves with shorter
resting pauses). These findings offer a new perspective on how complex animal movement patterns emerge in nature.
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Introduction

An essential focus of experimental and theoretical studies of

animal movement is to reveal the underlying drivers (internal and

external) of the complex statistical patterns of animal motion that

appear in nature [1]. Such patterns can be considered to emerge

as a result of interactions between organisms and their environ-

ment [1], or they may be directly the mechanism by which

behavioural processes are governed [2,3,4]. Examining how

animals move and the properties of their movement at different

scales is critical in understanding the drivers of the complex

patterns found in animal movement, and one of the main goals of

ecological research [5].

Observations of animal locomotion have shown that intermit-

tent movements are a common feature [6,7,8]. Movement is not

constant or continuous but rather intrinsically discrete, interrupted

by accelerations, decelerations or pauses [9]. Intermittent loco-

motion can be found in terrestrial, aquatic and aerial environ-

ments and occur in a range of ecological contexts, such as search

behaviour, habitat assessment or the pursuit of prey [6]. It implies

that animals can discretize their movement behaviourally in a

series of move lengths, pauses, and turns in response to certain

cues of the changing environment [2,6,8,10]. Behavioural

intermittence may perhaps be due to an animal’s energetic

restrictions, to allow an animal to recover from fatigue, for prey

detection [6], or for navigation, such as path integration [11].

Interruptions to continuous motion are also thought to be

adaptive in search processes, resulting in increased search efficiency

[9,10,12]. They can facilitate sharp reorientations that may break

the animal persistence of its previous directional motion and,

depending on the temporal pattern, can thereby allow it to explore

effectively an area [2,9,10]. Such a process may be beneficial to

animals living in dynamic and fluctuating environments, where

situations are likely to change as time progresses [13]. This idea that

interruptions might be adaptive by enhancing behavioural plasticity

is not new [14], but is yet to be explored empirically for animal

movement behaviour. In addition, if there is alternation of scanning

and non-scanning phases, the search process itself becomes

intermittent. Theoretical models have shown that random searches

with optimal proportions of scanning/non-scanning phases enhance

encounter success [15,16,17].

Behavioural intermittence appears as an essential characteristic

of the movement patterns exhibited by many animals [8] and has

long since been documented [18], and detailed experiments on

intermittency are becoming increasingly common [7,19,20,21,22,

23,24,25]. Therefore there is limited knowledge about the causes

of movement: is an organism’s motion internally governed or a

reflection of their external environment? Thus far, few studies

have examined long-term animal motion under limited external

cues and there is a limited understanding of the null movement

patterns of motion without contributing external influences

[26,27].
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One of the greatest challenges of movement ecology is linking

the statistical properties of movement to specific behaviours [28]

and identifying behavioural transitions in the movement patterns.

To achieve this, an elemental view of the movement path is

needed, with identification of all displacements and pauses in a

trajectory and associating these to the behaviour of the organism

[1]. Getz and Saltz (2008) suggested identifying the potential

determinants of movement using canonical activity modes (CAMs)

consisting of shorter duration fundamental movement elements

(FMEs) [29]. Behavioural modes have previously been identified in

elk, defined by relocation distances and turning behaviour [30],

and switching between different behavioural modes has been

observed at various spatiotemporal scales [31]. Such studies

highlight the importance of examining high temporal resolution

data over different scales in order to identify the mechanistic

determinants of movement.

Previous ecological studies often involve short length (spatial or

temporal) empirical data, which makes it difficult to assess the

statistical properties of movement behaviour [32,33,34,35] or,

more recently, contain high resolution long length movement data

of animals in their natural environment but under uncontrolled

conditions [19,22,24,25,36,37,38]. Unravelling the drivers of the

complex statistical patterns (including intermittence) observed in

animal movement requires high resolution data on animal

movement over large spatiotemporal scales [4,12], and controlled

conditions (for example, in the absence of strong environmental

fluctuations or interactions with other individuals).

Here we examine the movement of isolated individual juvenile

desert locusts, Schistocerca gregaria, in a homogeneous experimental

arena, thus minimizing environmental fluctuations that may

influence motion. Desert locusts are typically found in relatively

barren land where the location of resources may be scarce and/or

unpredictable, hence, the experiment depicts a common ecological

situation of the species. We record locusts’ movements by locating

them at a fine temporal resolution (every 0.2 s) for 8 h. Under

such simple conditions, we consider in detail the nature of

behavioural intermittency and provide a comprehensive view of

the complex structure and the long-term variability of the

intermittent patterns observed in locusts. We quantify the role of

pauses as a turning (reorientation) mechanism, and we examine

the distribution of move and pause lengths. We also quantify short

and long-term correlation properties of moves and pauses,

unveiling the overall organization of move and pause sequences.

The analysis allows us to determine the relationship between the

key features of locusts’ movement: moves, pauses and reorienta-

tions, and therefore to understand how complex search patterns

are generated by organisms under minimal external sensory

stimuli.

Materials and Methods

Experiments
Healthy, intact freshly moulted gregarious desert locusts

(Schistocerca gregaria) in the 5th (final nymphal) instar, reared under

conditions described in Roessingh et al. [39], were placed in groups

of 20 individuals per plastic cage (30620610 cm), each with a

mesh roof, containing sawdust, an expanded aluminium perch and

a water supply. These were fed one of three dry, granular synthetic

diets ad libitum for 48 h, as described in [40]. We found no

significant differences among diets on the frequency distribution of

moves and pauses (comparing the power-law scaling exponent, m
among diets; ANOVA: F(2,90) = 0.041, p = 0.959, data were log

transformed to achieve normality; and ANOVA: F(2,90) = 1.906,

p = 0.154, respectively). Furthermore, Bazazi et al. (2011) previ-

ously found that nutritional state has minimal influence on the

proportion of time spent moving and on the speed of isolated

locusts. Marching and feeding behaviour are low and irregular

24 h post moult [18] but by 48 h locusts have high and uniform

marching and maintain a high food intake.

After 48 h a single locust was placed in a ring-shaped

experimental arena (80 cm diameter, walls 52.5 cm high and a

central dome 35 cm diameter [41]). 40 W fluorescent lamps

illuminate the arena and reduce visual stimuli available to locusts

above the arena. This setup effectively simulates a large featureless

environment within a reasonable space both for experimental

tractability and for the purposes of tracking, which has inherent

restrictions due to resolution constraints. The motion of the locusts

in the arena was then filmed for 8 h using a digital video camera

(Canon XM2). Automated digital tracking software [41,42], which

captured images at a rate of 5 times per s, was used to analyse the

video footage and obtain information regarding the position, speed

and direction of an individual between successive frames. Each

trial was started in the morning between 9:00AM–10:00AM. We

carried out a total of 93 experimental trials (93 individuals). A

video clip of an experimental trial is available in Supporting

Information (Video S1). No individual was used more than once.

Data analysis
Intermittent movement: moves and pauses. The ob-

served motion of individual locusts was made up of moves and

pausing bouts of variable length (see Figure 1). Thus the motion of

individuals can be discretized into a series of moves and pauses

with ‘‘moving’’ defined as displacement greater than 0.3 cm

between successive frames (0.2 s) and a pause as displacement less

than or equal to 0.3 cm (during which a locust can show resting or

fidgeting behaviour [43]). The threshold for moving was calculated

by plotting histograms of locusts’ speeds between successive frames

and selecting the speed just below the second peak in the

distribution (the first peak was at speed = 0). This threshold is

similar to that used in Bazazi et al. [40,41] and Buhl et al. [42].

Using these criteria we determined whether a locust was moving in

each frame, and therefore the duration of moves and pausing

bouts. Data from individuals that were found within 3 cm of the

outer wall and central dome were excluded from the analysis to

remove edge effects (analysis with the inclusion of data from

Author Summary

The movement of organisms is an essential feature of life
and is fundamental to almost all ecological and evolution-
ary processes. The motion of animals can have a significant
impact on the environment, for example on the distribu-
tion of resources, habitat fragmentation or the spread of
pests and diseases. Locusts exhibit one of the most
devastating examples of animal movement, where locust
swarms are a significant global pest. Therefore identifying
the mechanisms of such movements is critical in under-
standing a range of ecological processes. An important
challenge in studying animal motion is identifying the
drivers of the complex movement patterns generated by
organisms. Movement patterns may be the result of
interactions between animals and their environment or
may be directly the mechanism by which their behaviour is
governed. Here we examine the movement behaviour of
individual desert locusts in a homogenous experimental
arena with minimal external cues. These findings offer a
new perspective on how complex animal movement
patterns emerge in nature.

Intermittent Motion in Desert Locusts
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individuals found within 3 cm of the arena wall show similar

qualitative results for the distribution of move and pause lengths

and suggest that move length truncation might be an intrinsic

property of locusts’ movement rather than simply an artefact of the

experimental design- see Figure S1).

In order to understand the behaviour of an individual during

pauses, we examined the number of changes in direction during a

pause for all pauses, for all locusts. Our experimental setup,

consisting of a circular arena and central dome, meant locusts

were able to move continuously around the arena, and allowed us

to reduce the system to a one dimensional representation of locust

movement (as in Buhl et al. [42]). Thus we determined whether a

locust showed a change in direction (turn) by examining whether it

switched its head direction from clockwise (CW) to anti-clockwise

(ACW) or vice versa between time steps. To do this we calculated

the change in the sign of the cross product of its positions between

successive frames. Thus we examined whether or not there had

been a change of direction, from CW-ACW movement, rather

than measuring the turning angle. We defined a turn as a change

from CW to ACW movement or vice versa. We quantified the

CW-ACW switching behaviour within pauses and moves (see also

Figure 2A) and the proportion of CW-ACW switches within a

pause/move. This information allowed us to compare the

probability of turning and the proportion of turns within moves

and pauses, and therefore determine whether a pause can be

considered a reorientation bout. Furthermore we determined

whether there had been a change from CW to ACW movement or

vice versa between the time steps immediately before and after a

pause in order to see how the duration of a pause affects this

probability.

Behavioural mode analysis. In order to understand the

relationship between moves and pauses, we carried out correlation

analyses for move lengths, pause lengths and between moves and

pauses (see Text S1 for details). In addition we classified local

search and relocation behavioural modes based on a partial sums

(PS) approach [44]. The PS algorithm is a form of the Cumulative

Sum Analysis [45], widely used in many disciplines (e.g. industrial

engineering, economics, and medicine) to analyse the deviations of

a process from a target or reference value. This method uses a

cumulative sum equation to generate a sequence of observations

(time series), which is then analysed to identify the main transitions

between different phases/modes/regimes in the variable of

interest. The PS algorithm can allocate sequences of moves and

pauses into two behavioural modes: i) local search, i.e. sequences

of long pauses and short moves, and ii) relocations, i.e. sequences

of long moves and short (non-turning) pauses.

We have adapted Knell and Codling (2011)’s algorithm [44] in

the following way. For each experiment, we modified the move

and pause length time series by assigning negative signs to pauses

and positive signs to moves. We used the value T = 0 as the

reference value in order to unambiguously distinguish the

contribution of moves and pauses to the cumulative sum equation

Figure 1. The intermittent nature of movement. Individual
motion can be discretized into a series of move, blue, and pause, red,
lengths. The black lines indicate switches between these states. The
pattern of movement is shown for an individual with Brownian motion
(A) and for individual locusts observed in experiments (B–E) for 40 s.
We calculated a total of 44,710 move lengths and 60,103 pause lengths
for all individuals. Since our measurements of locusts’ movements were
recorded per frame, we treated move and pause length durations as
pre-binned (discrete) data, rather than continuous (following Edwards
et al. [68]).
doi:10.1371/journal.pcbi.1002498.g001 Figure 2. Individual behaviour after and within a pause.

(A) showing our calculation of locust turning behaviour within moves
or pauses, or after a pause. We define a turn as a change from CW to
ACW movement or vice versa. Arrows indicate the time steps for which
the switch between CW to ACW was considered. Within a move or
pause only consecutive time steps were examined (dotted arrows). For
turning after a pause, the time steps immediately before and after the
pause were considered (solid arrow). (B) shows the mean probability of
changing direction after a pause for observed pause lengths (s), using
log-binned averages. The left and right dashed lines show 6 s and
100 s, respectively. (C) shows the mean probability of changing
direction after a pause for pause lengths of up to 20 s on a normal
scale. (D) shows the mean probability of turning within a pause for
different pause lengths. We have presented pause lengths up to 6 s as
pause lengths greater than 6 s show a probability of one. For (B–D)
error bars show 95% confidence intervals of the mean. (E) shows the
relationship between the mean proportion of turns within a pause and
the probability of changing direction after a pause for pause lengths of:
less than 6 s (blue squares); between 6 s and 100 s (red triangles); and
greater than 100 s (black circles). Each data point is a mean calculated
from data within logged bin classes for pause length.
doi:10.1371/journal.pcbi.1002498.g002
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[44,45]. In the PS algorithm one assumes minimum time duration

for a behavioural mode to exist, i.e., the time threshold parameter

(e). The latter allows the allocation of breakpoints in the

cumulative time series, distinguishing distinct modes. We chose

e= 5 minutes (other threshold values were also tested but did not

qualitatively change the results- see Figure S2). In addition, we also

identify fast and slow moves by measuring the angular speed, a

measure of how fast the locust moves around the arena (see Text

S1 for details).

Detection of power-law distributions. In order to under-

stand the statistical properties of locusts’ movement we examined

the frequency distribution of move lengths and pausing bout

lengths for each locust. We fitted several simple probabilistic

models, often observed in dispersal or movement data [46,47] to

our data: a bounded (truncated) power-law model, a pure power-

law model, and a bounded exponential model. A mathematical

description of these models can be found in Text S1. In order to

determine which probabilistic model best fits the distribution of

moves and pauses for each locust, we carried out sequential

pointwise model comparison (SPWMC) tests. The SPWMC

analysis consisted of conducting point-wise maximum likelihood

estimates, and based on Akaike weight computations (wAIC)

examining the relative likelihood of each model compared with the

likelihood of the best-fit model [36]. The value of the wAIC gives

the weight of evidence in favour of a model, where wAIC = 1 is the

maximum weight of evidence. The analysis also explored whether

different models could fit different regimes of the data.

In order to determine accurately the scaling exponent m of the

bounded power-law behaviour observed in the data, we used

maximum likelihood techniques and fitted two general models

consisting of: (i) a power-law model with a stretched exponential

function for the tail (i.e. large moves/pause lengths), and [48] the

same model as (i) but including an exponential distribution for the

small moves/pause lengths (for more details on the models see

Text S1). Despite some variability at shorter moves/pause lengths,

which show both power-law and exponential variability, most of

the individual locusts behaved similarly in statistical terms above

certain move/pause length values. A power-law model with a

stretched exponential tail function could be well fitted to data from

all individuals (for individual locust data analyses see Text S1,

Figure S3, Figure S4, Table S1, Table S2). The stretched

exponential distribution is an exponential distribution with a

parameter, b (where 0,b,1), which accounts for deviations from

exponential behaviour at the tail (b= 1 represents pure exponen-

tial behaviour, and the smaller the b value, the fatter the tail). We

pooled the data for all locusts together to get more statistical power

on our analysis. We computed the distributions of move/pause

lengths to represent the behaviour of an ‘‘average’’ locust and

fitted a power-law with a stretched exponential tail model to these

data.

We computed the empirical complementary cumulative distri-

bution functions (CCDFs) by plotting for a variable x (here either

move or pause lengths in seconds) the proportion of observations

that were equal to or larger than x, i.e., P(X$x) on a logarithmic

scale [38,49]. We also computed the empirical probability density

functions (PDFs) for the move and pause lengths (see Text S1 for

calculations). We excluded pause lengths greater than 1000 s

(which account for 0.02% of all pause lengths) to remove the

effects of those locusts considered to be exhibiting atypical

behaviour. Once we performed a fit of our model to the empirical

data, we carried out model criticism on our analysis by visually

examining how our observed distributions deviate from the

expected distribution +/22 SD [38,50].

Results

Pauses as reorientation bouts or rests
Our quantification of locusts’ turning behaviour both within

pauses and within moves demonstrates that a change in direction

is more likely to be found in a pause than during a move. The

mean proportion of pauses with changes in direction from total

bouts (moves and pauses) with changes in direction is 0.8609 (+/

20.0966, one SD). By contrast the mean proportion of moves with

changes in direction is 0.098 (+/20.0726, one SD). Therefore we

can consider moves as displacements without reorientations, and

pauses as opportunities for turns.

We then considered whether the duration of the pause

influences the mean probability that a locust changes direction

after a pause (Figure 2B). This probability shows a strong positive

relationship with pause length for pauses lasting up to 6 s

(Figure 2B and Figure 2C). For pauses between 6 s and 100 s,

very little correlation appears with the probability of changing

direction, remaining between 0.2 and 0.3 (Figure 2B). Increasing

pause length beyond 100 s results in a further increase in the mean

probability of changing direction (Figure 2B). Our data also show

that the mean probability of turning within a pause, reflecting the

fidgeting behaviour of locusts, increases as the pause duration

increases, and plateaus to one at 6 s (Figure 2D).

The mean proportion of turns within a pause is significantly

higher for pause lengths of 100 s or greater (0.6505+/20.0191,

one SD) than for pause lengths between 6 s and 100 s (0.5771+/

20.1049, one SD; T-test: p,0.0001, T-statistic = 210.7966,

Df = 4830). There also exists a positive relationship between

turning behaviour within a pause and the probability of changing

direction after a pause (Figure 2E) for pauses shorter than 100 s.

For pauses longer than 100 s the probability of turning within a

pause remains just above 0.6, and does not affect the probability of

changing direction after the pause. Therefore increasing turning

within a pause, that is, increasing fidgeting while paused, increases

the likelihood that after the pause the locust changes direction, but

only for pauses lasting less than 100 s (Figure 2E).

We also calculated the most influential pause length for changes

in direction after a pause, which emerges from the combination of

the distribution of pause lengths and the probability of changing

direction for a given pause length (Figure S5). We find that even

though the probability of turning is very low in the smaller pause

lengths, the latter contribute more to turning behaviour, when

considering the overall locust trajectory motion, because they are

overwhelmingly abundant.

Detecting power-laws in move and pause length
distributions

The results of the SPWMC tests for the moves and pauses

averaged for all individuals are shown in Figure 3A–B. For shorter

moves we see an overlap between the exponential and bounded

power-law models. This indicates that shorter moves follow a

mixture of probabilistic models. However for longer moves (the

tails), the bounded power-law model is more dominant (Figure 3A).

The dominance of the bounded power-law model in Figure 3B

strongly favours a very heterogeneous (fat-tailed) distribution of

pauses. We note that SPWMC tests do not show actual fits, but

instead are meant to be a first explorative analysis to compare

among a reasonable set of models.

Figure 3C–D shows the CCDFs and the PDFs, respectively, for

the moves and pauses once the data have been pooled (for

individual locust analyses results see Text S1, Figure S3, Figure S4,

Table S1, Table S2). The value of the Lévy exponent m in the

negative power-law equation fitted to the data is 1.49 for moves

Intermittent Motion in Desert Locusts
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and 1.67 for pauses. For moves, h, the cut-off where the stretched

exponential tail begins (also determined from the model fit), is 8 s,

and for pauses h is 15.27 s.

Figure 3E–F also allows us to check visually how well our model

fits our observed data. We find that most deviations exist at the

beginning and at the tail of the move and pauses length

distributions, with pauses showing larger deviations. However

the deviations are small and do not show a systematic pattern.

Error accumulations in the smallest and largest regimes of our

variables are responsible for the spurious results when using

standard goodness-of-fit tests (see Text S1 for further details).

However, Figure 3 demonstrates that our model (a power-law with

a stretched exponential tail) provides a reasonably good fit to the

data for moves and pause distributions.

Defining behavioural modes: combining moves and
pauses

When we examined the relationship between moves and pauses

we observed strong, negative, first-order correlations (Figure 4A

inset and Figure S6). Short pauses are associated with moves of all

lengths. Longer pauses however are more likely to be associated

with shorter moves. Furthermore locusts tend not to exhibit large

move lengths and large pauses together. We therefore carried out

more complete correlation analyses on moves and pauses. Our

partial autocorrelation results reveal that moves show much

stronger local correlations than pauses (Figure 4A). Cross-

correlation analysis between moves and pauses reinforce the idea

that there is a negative correlation, particularly at local scales

(Figure 4B). Thus long moves tend to be associated with short

Figure 3. Detailed analyses of moves and pauses. The SPWMC analysis with bounded power-law, red, pure power-law, green, and bounded
exponential, blue, for moves (A) and pauses (B). A value of weighted Akaike information criteria (wAIC) of one gives the maximum weight of
evidence in favour of the models. The results here are means for all individuals. Error bars indicate +/2 one SD. The probability density functions (C)
and the complementary cumulative distribution plots (D) and for moves, blue, and pauses, red, showing the empirical data and the model fits for the
power law with a stretched exponential tail model (black line). m is the scaling parameter of the power-law, b is a parameter that tells us the deviation
of the tail from an exponential. For moves: m= 1.49, b= 0.55; for pauses: m= 1.67, b= 0.23. (E–F) shows the observed and expected distributions for
moves and pauses. Log-log plot of the frequency distribution of different move (E) and pause lengths (F). Open circles show the observed
distribution from our data and dots show the expected distribution from the model fit (a power-law with a stretched exponential tail model). We
assume a Poisson distribution for the deviations from the expected values for each bin. The black error bars show +/22 SD from our expected value.
doi:10.1371/journal.pcbi.1002498.g003

Intermittent Motion in Desert Locusts
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pauses and vice versa. In addition, long moves account for faster,

and more energetic, circling in the arena. Thus, non-turning short

pauses could allow for some energy recovery. In particular we

observed that the average angular speed increased as move lengths

increased, reaching a saturation of 15 degrees/s, at moves of 15 s

in duration (see Figure S7).

For each experiment, the PS algorithm allocates sequences of

moves and pauses into two behavioural modes: i) local search, i.e.

sequences of long pauses and short moves, and ii) relocations, i.e.

sequences of long moves and short (resting and non-turning)

pauses. At the population-level, that is, averaging over all the

individuals, we can obtain the probability that a locust is in one

mode or another over time. The data show that the probability

that a locust performs relocation behaviour at the beginning of the

experiment is small (0.2) but increases as the experiment

progresses to approximately 0.6. Conversely a locust performs

local search at the beginning of the experiment at a probability

fluctuating around 0.8 within the first 1.5 hrs but this decreases as

the experiment progresses. After almost 5 hours there is a shift and

both modes stabilize around 0.5, with the probability of relocation

being slightly larger than the probability of local search.

Discussion

We have carried out a thorough statistical description of isolated

locusts’ motion using a large data set (93 experimental trials, each

lasting 8 h, with positions and orientations acquired every 0.2 s).

Controlled laboratory conditions were used to study movement,

pausing and turning behaviours, thereby minimizing the amount

of interference from external cues to individual motion. This is not

to neglect the influence of environmental factors, but rather to

help elucidate whether complex statistical properties of movement

Figure 4. Correlation analysis for moves and pauses and behavioural modes. Partial autocorrelation analysis results (A) for moves, blue
circles, and pauses, red triangles, reveals that moves are positively correlated and pauses show a slight positive, if any, correlation, therefore moves
show much stronger local correlations than pauses. Inset shows first order correlation between moves and pauses (see Figure S6). A cross correlation
of moves and pauses (B) shows a high negative correlation at a local scale, circles, which persists for larger time scales. The shuffled data are also
shown (triangles) for comparison. (C) shows the probability that a locust performs two different behaviours (local search and relocation) over the
course of the 8 hr experiment. Relocation behaviour (blue asterisks) is defined as long moves preceded or followed by short pauses. Local search
behaviour (red circles) is defined as long pauses preceded or followed by short moves. Behavioural modes are classified using the Partial Sums
algorithm with a minimum time threshold of 5 min.
doi:10.1371/journal.pcbi.1002498.g004

Intermittent Motion in Desert Locusts
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may be generated in their absence. Our results show that

intermittence with Lévy signatures can be considered the

behavioural template for search in individual locusts. It is however

also clear from our analysis that intermittent patterns are

constrained, perhaps by biomechanical, physiological or neurobi-

ological factors, and in addition, can be modulated by the animal’s

internal state.

Our examination of turning behaviour during pauses suggests

that pauses serve different functions, depending on their duration.

Longer pauses (beyond 100 s) appear to act as reorientation bouts,

which may serve to interrupt the persistence of previous

directional motion since they are most likely to result in a

complete change in direction of movement after the pause

(Figure 2B). In addition longer pauses involve more turning within

the pause itself, resulting from body rotation without displacement

(Figure 2D–E). Such fidgeting behaviour could perhaps be the

stochastic effect resulting from a locust scanning (and barely

moving from) its surroundings. As locusts use optic flow to gather

information from their environment, they are able to ‘‘see’’ their

surroundings both when in motion and during fidgeting behaviour

that involves head movements [51]. The shortest pauses (of less

than 6 s) appear to act as periods of resting between displace-

ments, as they do not involve a high probability of changing

direction after the pause (Figure 2B–C) or greater turning within

the pause (Figure 2D–E), and are associated with moves of variable

length (Figure S6).

Our correlation analyses reveal that move and pause lengths are

negatively correlated with one another (Figure 4B and Figure S6).

The correlations of short (slow)/long (fast) moves with long

(reorientation)/short (resting) pauses lead to different relative

proportions of local search and relocation behaviour, which are

organized in time (Figure 4).

Local search is characteristic of ‘pottering’ behaviour, during

which a locust moves then stops at intervals to test its environment

with its palps and antennae, resulting in frequent changes in

direction [18]. Relocation behaviour may be associated with

‘marching’ activity, consisting of continuous locomotion in a

persistent direction [18,52]. Our results suggest that the two

behavioural modes identified are steadily decreasing (local search)

or increasing (relocations) up to approximately 6 hours, after

which both behavioural modes show stationary fluctuations. We

acknowledge the statistical issue of the degree of independence in

sequential time series data of this sort. However this is an inherent

problem with all such analyses, including that of this work.

The motivation resulting in an increase in relocation activity

towards the end of our experiments is not explicitly explored here.

However previous studies on locusts have revealed that increased

marching may be associated with hunger; as the amount of food in

their gut decreases, marching activity increases [18,40]. Locusts

may be investing more time in local explorations at the start of the

experiment. As the cumulative information of non-available

resources becomes stronger, local search and relocations appear

to happen with more similar proportions: a stationary exploratory

behaviour seems to emerge.

In our analysis of the distribution of moving and pausing step-

lengths we observe that the probability of very long moves or very

long pauses is small but not negligible (far beyond the Gaussian tail

expectation), and that locusts’ movements are better described by

means of a general class of random walks known as Lévy walks

[53,54]. Our results show that power-law behaviour is naturally

bounded to some range of scales [7,55,56], meaning that the time

over which an individual can move or pause in a single bout is

limited, perhaps owing to some physical constraints or to some

strategic advantage [38].

When we pool our data for all individuals together (to obtain the

average), we observe power-law behaviour of over 1.5 orders of

magnitude for moves and pauses after which there is a cut-off and

the stretched exponential tail begins (Figure 3). These results

suggest power-law behaviour with additional complexity. The

scaling exponents obtained from our data (m= 1.49 for moves,

m= 1.67 for pauses) lie within the range expected from a Lévy walk

(1,m#3) [54]. We find that locust behaviour shows movement

patterns that are not entirely Ballistic (with exponent of m<1).

Ballistic motion is useful to a foraging animal if targets are

homogeneously located far away with respect to the initial

searching position. Lévy patterns with m<2 [57,58,59,60] become

optimal in patchy landscapes, where far away and nearby targets

exist [9,61]. Recent results show the impact of landscape

heterogeneity in optimal random search strategies, and suggest

that the over dispersed and highly heterogeneous nature of desert

vegetation [62,63] could have promoted intermittent motion

within the Lévy range: 1,m#2 [61], which we observe here in

locusts.

The presence of power-law regimes in empirical distributions of

animal movement data has generated much debate

[2,4,10,49,64,65,66,67,68], however, there is strong empirical

evidence for power laws in animal movement within natural

habitats [36,37,38,69,70] and under experimental conditions

[26,27]. Our results suggest that while these patterns may result

from interactions with the environment, they can also be

generated internally. However Lévy distributions do not fully

characterize locusts’ movements. The behavioural template of

locusts in the absence of environmental cues results from the

relationship between moving, pausing and turning and involves

both some physical constraints and some higher-order movement

structure. In our experiments, internal state behavioural modula-

tion may exist in association with a ‘‘starvation/satiation state’’, or

a ‘‘present/absent food memory’’ [9,71]. The switch from local

search behaviour at the beginning of the experiment towards

relocation behaviour may be due to the general effects of food

deprivation, which is known to result in increased marching

[18,40], either as food memory is lost or starvation levels increase.

We may understand complex intermittence as the interweaving

of different behavioural modes [26] that are likely to be

constrained by species-specific physical and biological factors.

For example, fidgeting is physically impossible at small pauses but

is constant at large pauses and large moves need to be interspersed

with small (resting but not turning) pauses so that locusts can make

large scale-free displacements in random directions. Future

experiments should be designed to determine whether such

behavioural constraints are driven at the biomechanical, the

physiological or the neurobiological level. The idea of a null scale-

free (Lévy-like) behavioural template may be in concordance with

neuronal activity patterns, which in desert locusts also show a Lévy

distribution with an exponent of approximately 1.5 [72,73].

Overall, our results add upon the random paradigm debate in

movement ecology [28] on whether internal states or external stimuli

drive behavioural variability. Our findings suggest that the complex

intermittent patterns observed are mainly internally shaped and

governed. Therefore spontaneous and/or internally driven variabil-

ity should be considered in order to achieve a comprehensive

understanding of animal motor reactions to the environment, which

is the ultimate goal in the field of movement ecology.

Supporting Information

Figure S1 Complementary cumulative distribution
functions including and excluding boundary data. The
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complementary cumulative probability distribution plots for moves

(A) and pauses (B). The plots show the empirical data either

including, blue, or excluding, red, data from individuals within

3 cm of arena walls. As we define move lengths based on

rotational direction (CW/ACW), contact with the border could be

included in on our definition of move length. Nevertheless, such

contact can introduce new behavioural components that we have

avoided to include in our main analysis. Analysis with the inclusion

of data from individuals found within 3 cm of the arena wall show

similar qualitative results for the distribution of move lengths (A);

the power-law spans over slightly longer time scales and the

stretched exponential tail starts later (fitted parameters: m= 1.33,

h= 14 s, b= 0.75). For the distribution of pauses (B), the inclusion

of data from the borders results in the stretched exponential tail

being less pronounced such that the power-law spans over much

longer time scales (fitted parameters: m= 1.45, h= 89.9 s,

b= 0.579).

(DOC)

Figure S2 Behavioural mode thresholds. The probability

of being in local search or relocation modes over time for different

time duration thresholds. In the PS algorithm used to detect the

two behavioural modes, the time duration threshold parameter

represents the minimum time threshold for a behavioural mode to

be sustained in order to be considered different from the previous

mode. It is a constant numerical value that allows the allocation of

breakpoints in the cumulative deviation series (Knell and Codling

2011) thereby distinguishing distinct modes, according to this

minimum behavioural mode time duration threshold. Time

thresholds of 1 min (top panel), 5 min (middle panel) and

10 min (bottom panel) were tested, meaning that a mode should

last at least 1, 5, or 10 minutes. All thresholds tested yield the same

qualitative results.

(DOC)

Figure S3 Complementary cumulative distribution
functions for move lengths. Each subplot shows a log-log

plot of the complementary cumulative distribution function of the

empirical data (blue) of different move lengths, (x) exhibited by

each individual locust and the best model fit, either the

exponential followed by power-law with exponential tail model

fit (red) or the power-law with exponential tail model fit (black).

Numbers in each subplot indicate individual number (1 to 93).

(DOC)

Figure S4 Complementary cumulative distribution
functions for pause lengths. Each subplot shows a log-log

plot of the complementary cumulative distribution function of the

empirical data (blue) of different pause lengths (x) exhibited by

each individual locust and the best model fit, either the

exponential followed by power-law with exponential tail model

fit (red) or the power-law with exponential tail model fit (black).

Numbers in each subplot indicate individual number (1 to 93).

(DOC)

Figure S5 The influence of pause length on the proba-
bility of turning after a pause. Bar chart showing, on the left

axis, the proportion of data points (white) and the mean

probability of turning after a pause (black) for each pause length

bin class (log binned classes). The influence (grey) of the data

points on the mean probability of turning after a pause for each

pause length is also shown (right axis). This was calculated by

multiplying the mean probability of turning by the proportion of

data points within each pause length bin class.

(DOC)

Figure S6 Pause lengths and move lengths proceeding
or following pauses. The relationship between pause length (s)

and move length (s) for moves immediately preceding (A) or

following (B) pauses for all locusts. The relationship between pause

length and the following move length, or pause length and the

preceding move length show a similar pattern (since moves after

one pause are before another).

(DOC)

Figure S7 Angular speed for different move lengths. The

angular speed (in degrees per s), v, is measured as dh/dt, where dh
is the angle (in degrees) moved between the first and last frame of

the move, and dt is the move length in s. The black line shows a

non-linear least squares fit (of the type: a � (1{exp({x=c)),
where a = 3; c = 18, in Matlab 2010b) to the data. The mean

angular speed saturates to 15 degrees/s at move lengths of 15 s.

(DOC)

Table S1 Individual model fit results for moves. For the

distribution of moves of each individual locust we calculated: the

best fit model to the data, either model 1 or model 2, Model; the

total number of move lengths, N; the maximum move length, Max

(in s), for each individual (the minimum move length for all

individuals is 0.2 s); the Lévy exponent, m; the parameter that tells

us the deviation of the tail from an exponential, b (where b= 1 is

an exponential tail, and b= 0 is a power-law tail); for model 1 the

mean lifetime (or characteristic) move length (in s), h (1) ; for model

2 the move length value (in s) delimiting the beginning of the

power law regime, x2(2); move length value (in s) delimiting the

end of the power law regime, x3, (the dots in column x3 show

where model 1 was a better fit than model2); the negative log-

likelihood function, NegLogLik; the goodness of fit test statistic

value, GOF; the p-value from a goodness-of-fit test telling us

whether the model is reliable or not (from Edwards et al. (2007)),

where p-values.0.1 are a good fit of the model to the data

(highlighted).

(DOC)

Table S2 Individual model fit results for pauses. For the

distribution of pauses of each individual locust we calculated: the

best fit model to the data, either model 1 or model 2, Model; the

total number of pause lengths, N; the maximum pause length, Max

(in s), for each individual (the minimum pause length for all

individuals is 0.2 s); the Lévy exponent, m; the parameter that tells us

the deviation of the tail from an exponential, b (where b= 1 is an

exponential tail, and b= 0 is a power-law tail); for model 1 the mean

lifetime (or characteristic) pause length (in s), h (1); for model 2 the

pause length value (in s) delimiting the beginning of the power law

regime, x2(2); pause length value (in s) delimiting the end of the

power law regime, x3, (the dots in column x3 show where model 1

was a better fit than model2); the negative log-likelihood function,

NegLogLik; the goodness of fit test statistic value, GOF; the p-value

from a goodness-of-fit test telling us whether the model is reliable or

not (from Edwards et al. (2007)), where p-values.0.1 are a good fit of

the model to the data (highlighted).

(DOC)

Text S1 The supporting text provides further details of
the materials and methods used. These include correlation

analyses between moves and pauses, the behavioural modes

analysis, and the quantification of move speeds. In addition, the

supporting text also shows the mathematical description of the

probabilistic models used in SPWMC, details of individual locust

data analyses, and calculations of the different models used in our

investigation.

(DOC)
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Video S1 A video clip of an experimental trial showing
the movements of a single locust in the experimental
arena.
(AVI)

Acknowledgments

We thank the help of E. Raposo for the development of the equations for

the PDFs, CCDFs, and the likelihood functions of the two models fitted to

the locust data, and Joan Garriga for help with the behavioural modes

analysis. The authors also thank Susana Bernal, Vishwesha Guttal,

Christos Ioannou, and Colin Torney for helpful discussions.

Author Contributions

Conceived and designed the experiments: SB IDC. Performed the

experiments: SB. Analyzed the data: SB FB. Contributed reagents/

materials/analysis tools: FB JJH. Wrote the paper: SB FB IDC. Designed

the software used in analysis: JJH.

References

1. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, et al. (2008) A

movement ecology paradigm for unifying organismal movement research. Proc

Natl Acad Sci U S A 105: 19052–19059.

2. Bartumeus F (2009) Behavioral intermittence, Lévy patterns, and randomness in
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(2000) Lévy flights in random searches. Physica A 282: 1–12.
59. Viswanathan GM, Afanasyev V, Buldyrev SV, Havlin S, da Luz MGE, et al.
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