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Abstract

Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated
principle called guilt by association states that genes which are associated or interacting are more likely to share function.
Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing
their quality in encoding functional information. In this work, we show that functional information within gene networks is
typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network.
In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot
even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of
interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale
computational analyses have typically assumed that high-performance cross-validation in a network is due to a
generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but
dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode
function and what information computational analyses use to extract functional meaning. We explore a number of
consequences of this and find that network structure itself provides clues as to which connections are critical and that
systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks.
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Introduction

It is widely thought that to understand gene function, genes

must be studied in the context of networks. Concurrent with this

appreciation of complexity – and partially driven by it – the

quantity of data available has grown enormously, especially for

networks of interactions among genes or their products. Such

networks can consist of millions of interactions across tens of

thousands of genes, derived from protein binding assays [1–4],

RNA coexpression analysis [5–7] and other methods [8–11]. In

systems biology, there is enormous interest in using high-

throughput approaches to systematically glean information from

these networks (e.g., [12–15]). Information from such networks is

now embedded in numerous studies and tools used by molecular

biologists (e.g., [16,17]), typically in combination with codifications

of gene function exemplified by the Gene Ontology [18]. If one

agrees that the function of a gene is partially a property

determined by its context or relationships in the network, assessing

the functional role of any given gene is challenging, as in principle

one must consider all the interactions of the gene, in the context of

the network.

Biologists have dealt with these challenges in part by leveraging

the biological principle commonly referred to as ‘‘guilt by

association’’ (GBA). GBA states that genes with related function

tend to be protein interaction partners or share features such as

expression patterns [19]. While not always referred to by name,

GBA is a concept used extremely commonly in biology and which

underlies a key way in which gene function is analyzed and

discovered, whether on a gene-by-gene basis or using high-

throughput methods. For example, an experimentalist who

identifies a protein interaction infers a functional relationship

between the proteins. Similarly two genes which interact

genetically can be inferred to play roles in a common process

leading to the phenotype [20]. This basic biological principle has

been exploited by computational biologists as a method for

assigning function in general, using machine learning approaches

[21,22]. This is made possible by the development of large

interaction networks, often created by aggregating numerous

isolated reports of associations as well as from high-throughput

data sets. It has been repeatedly shown that in such networks there

is a very statistically significant relationship between, for example,

shared Gene Ontology annotations and network edges. Indeed,

this relationship has even been used to ‘‘correct’’ networks so they

are more highly aligned with GO annotations [23,24], on the

assumption that parts of the network that do not align with known

function are more likely to be mistaken. Tremendous effort has

gone into improving computational GBA approaches for the

purpose of predicting function [25–32]. However, the number of

biologically proven predictions based on such high-throughput

approaches is still small and the promise of GBA as a general

unbiased method for filling in unknown gene function has not

come to fruition. In addition to their use in interpreting or
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inferring gene function, GBA approaches are also commonly used

to assess the quality of networks, under the assumption that a high-

quality network should map well onto known gene function

information (see, for example, [33,34]).

In computational applications of GBA, ‘‘performance’’ is

usually assessed using cross-validation, in which known functions

are masked from part of the network and the ability to recover the

information is measured. A common metric is the precision with

which genes sharing a function preferentially connect to one

another [13,25]; readers unfamiliar with prediction assessment

methods are also referred to [35] and Text S1 (section 1). Built into

this approach is the key assumption that GBA performance allows

one to make statements about the network as a whole.

Gene function is not the only way in which networks are

assessed. Another popular approach is to examine structural

properties of the network, such as the distribution of node degrees

in the network (number of associations per gene). It has been

observed that many biological networks show ‘‘scale-free-like’’

behaviour (as evidenced by a power-law distribution of node

degrees), or other related characteristics resulting in a heavy-tailed

distribution of node degrees [36]. Similar to the situation for gene

function, it is thought that a sign of high network quality is a

power-law distribution of node degrees and some authors have

even used this as a criterion for refining networks, on the

assumption that data which conflicts with a power-law distribution

is low-quality [37,38]. The relationship between such properties

and GBA has not been well-explored. While the significance of

being scale-free is the subject of some debate [39], it is still

commonly assumed that it reflects some more fundamental

‘‘biological relevance’’ of a network and contributes to the

function of the network (and thus can be thought of ‘‘encoding

functionality’’). This paper represents an attempt to assess these

types of assumptions, and in doing so derive some general

principles about how function is ‘‘encoded’’ in current gene

networks.

Previously, we showed that gene function can be predicted from

networks without using ‘‘guilt’’. We observed that a trivial ranking

of genes by their node degrees results in surprisingly good GBA

performance; about one-half of performance could be attributed

entirely to node degree effects [35]. Node degree is predictive

because genes that have high node degree tend to have many

functions (e.g. GO terms; we call such genes ‘‘highly multifunc-

tional’’). Thus for any given prediction task, algorithms that assign

any given function to high node-degree genes are rewarded by

good performance without using information on which genes are

associated with which. More concretely, when studying any

biological process, simply assuming P53 (for example) is implicated

will go a surprisingly long way, and networks encode this

completely generic information in their node degree.

In this paper, we show that multifunctionality has a second

effect on the interpretation of gene networks, and one that has

especially serious implications for the interpretation and utility of

GBA, and more generally for current assumptions about the how

networks encode function. We focus on the identification of small

numbers of connections between multifunctional genes, represent-

ing ‘‘exceptional edges’’ that concentrate functional information in

a small part of the network. We show that networks of millions of

edges can be reduced in size by four orders of magnitude while still

retaining much of the functional information. We go on to show

that this effect guarantees that cross-validation performance of

GBA as currently conceived is a useless measure of generalizability

with respect to the ability to extract novel information. Further,

because information about biological function is not encoded in

the network systemically, the edges that do encode function may

not overlap with those generating ‘‘important’’ network-level

properties, such as whether the network is scale-free. We

determine that as currently formulated, gene function information

is not distributed in the network as is commonly assumed. Instead,

almost all existing functional information is encoded either in a

tiny number of edges involving only a handful of genes, or not at

all. We conclude that computational attempts to scale up and

automate GBA have failed to capture the essential elements that

made it effective on a case-by-case basis.

Results

A key concept for our work is cross-validation, which is the

means by which it is inferred that gene function can be predicted.

In cross-validation, given one function of interest (for example,

‘‘inhibition of apoptosis’’) and some genes which are already

known to have that function (a ‘‘gold standard’’), the function of

some of those genes is masked (‘‘held-out’’). While there are some

nuances as to how this is arranged, in general the investigator

observes whether the algorithm can correctly assign function to the

held-out set, using the remaining genes as a training set (and

likewise that the function is not inappropriately assigned to genes

considered negative examples). This procedure is repeated using

different subsets of the data as training examples; each trial is

called a ‘‘split’’, referring to the division of the data into training

and testing examples. In the analysis of any given split, genes

which are ‘‘connected to’’ a training example are inferred to have

the function. The definition of ‘‘connected to’’ is algorithm-

dependent, but in a naı̈ve approach this can be taken literally.

Importantly, cross-validation only evaluates whether a function

can be correctly predicted; it does not provide new predictions.

This is the ‘‘generalization’’ problem: cross-validation is only

useful to the extent to which it provides a good estimate of the

accuracy of novel predictions. This is essential if one wants to

predict gene function, as opposed to merely test algorithms. We

will explore the problem of generalization by dissecting what part

of the network structure provides performance in cross-validation

and determining whether it has a large impact on future

predictions. More specifically, we ask which connections in the

networks are necessary and which connections are sufficient to

generate function prediction performance.

Author Summary

The analysis of gene function and gene networks is a
major theme of post-genome biomedical research. Histor-
ically, many attempts to understand gene function
leverage a biological principle known as ‘‘guilt by
association’’ (GBA). GBA states that genes with related
functions tend to share properties such as genetic or
physical interactions. In the past ten years, GBA has been
scaled up for application to large gene networks,
becoming a favored way to grapple with the complex
interdependencies of gene functions in the face of floods
of genomics and proteomics data. However, there is a
growing realization that scaled-up GBA is not a panacea. In
this study, we report a precise identification of the limits of
GBA and show that it cannot provide a way to understand
gene networks in a way that is simultaneously general and
useful. Our findings indicate that the assumptions
underlying the high-throughput use of gene networks to
interpret function are fundamentally flawed, with wide-
ranging implications for the interpretation of genome-
wide data.

Guilt by Association Is Not the Rule Among Genes
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The metric we use for assessment is based on precision-recall

curves, using the ‘‘average precision’’ (AP). AP is closely related to

the area under the precision-recall curve and is defined as:

AP~
1

k

Xk

i~1

i

ranki

where the gene group (e.g. genes having a certain GO term)

contains k genes and the algorithm provides a ranking of all genes.

Methods performing well will rank genes having the function

highly, yielding high average precisions. AP values can then be

averaged across groups (e.g. GO terms) to provide a global mean,

or MAP for ‘‘mean average precision’’. The AP values can also be

calibrated by comparing them to the distribution of APs obtained

for randomly-generated rankings.

In order to characterize the functionality of edges in a network,

we use some specific terminology. First, a ‘‘functionally relevant

edge’’ is a network edge that connects two genes that share a

function. Such edges encode functional information by the GBA

principle, but which edges are truly functionally relevant in the

network can only be evaluated using known information (or

independent verification). Ideally, the network would only contain

functionally relevant edges, but this is far from reality; the

relevance of an edge may be function-dependent (that is, relevant

to some functions and not others) and the networks likely contain

edges that are in some sense artifactual. Second, a ‘‘critical edge’’

is one which encodes most of the information about a function that

is present in the network (see Figure 1). Criticality can be

quantified by the effect removing an edge has on prediction

performance (throughout this paper, the term ‘‘prediction

performance’’ refers to gene function prediction assessed using

cross-validation). Criticality can be used as a proxy for functional

relevance, but it must be borne in mind that the relationship is not

necessarily straightforward. Finally, an ‘‘exceptional edge’’ is a

critical edge for many functional categories; that is, removing an

exceptional edge removes functional information for many groups.

Exceptionality can be quantified by the fraction of groups which

show (for example) a 10% drop in performance when the edge is

removed. We use these definitions and quantification approaches

throughout this paper. We concern ourselves with questions such

as the number and distribution of critical edges and exceptional

edges, and finally with the relationship these have to functionally

relevant edges.

While we focus on GO terms as the definition of gene function,

our findings are not specific to GO (see Text S1, section 2). Indeed

this is expected because function based on GO is highly correlated

with other gene organization schemes [35]. Our results are also

not dependent on the choice of learning algorithm or evaluation

metric (see Text S1, section 2).

Multifunctional connections in the mouse gene network
A key phenomenon is what happens when two highly

multifunctional genes are connected in the network. Such edges

will tend to be both critical and exceptional. An edge between two

genes that share a GO term is useful for prediction of that GO

term during cross-validation, thus such edges have an increased

probability of being critical compared to randomly selected edges.

Intuitively, the more GO terms two connected genes share, the

more GO terms for which that edge is likely to be critical. In

principle this can have dramatic effects. For example, considering

the ,20000 genes in the mouse genome, a network constructed

with just 100 edges among pairs of genes which share the largest

number of GO terms yields an MAP across GO terms of ,0.09,

much higher than the expected value of 0.002 if edges were

selected at random. That is, the average rank of genes predicted to

possess a given function based on their neighbours in the network

is substantially elevated across many functions, even using data for

only a few genes. This level of performance, with interactions

present for only 181 genes, is higher than that obtained with a real

network; for a carefully characterized mouse gene network of 4.5

million edges [25], the performance of the real network can be

matched with a network of only 23 edges among 45 genes

(MAP = 0.047; Figure 2A). These connections are therefore

sufficient to generate the results obtained with the real network.

Not all of these ‘‘most exceptional edges’’ necessarily exist in a real

network, but it turns out that many do and have a dramatic impact

on prediction. We assessed 10 mouse gene networks of different

types for their degree of overlap with the 100 exceptional edges.

The amount of overlapping is strongly predictive of the MAP

performance of the real networks (correlation 0.94, Figure 2B).

Because these networks incorporate data of diverse types (see

Table 1), this suggests the effects of exceptionality are not an

artifact of a particular type of network data. In the aggregated

mouse network mentioned earlier, removing the 26 edges (0.004%

of the total) overlapping with the top 100 exceptional edges from

the highest performing network results in a large drop in the MAP

(15%). This suggests that a tiny number of edges may account for a

large fraction of performance across most GO groups while using

no information about most genes and that not only are these

connections sufficient to obtain function prediction performance,

but they may also be necessary. Because the value of additional

edges in the ‘‘exceptional edge’’ network does not dramatically

decline when adding more edges (at 150 edges, the MAP is 0.11,

far above that of the original network), it is possible a small

number of edges accounts for virtually all performance in the real

network. These results strongly suggest that in the mouse network,

information on gene function is concentrated on too few genes to

be of much practical use, at least with regards to how gene

function is typically defined (e.g., GO).

Yeast gene network exceptional edges
We performed a detailed analysis of multiple Saccharomyces

cerevisiae gene interaction networks [1,2,4,40,41,42], which are

more tractable to analyze exhaustively than the mouse networks

due to their smaller size (much sparser as well as having 1/3 the

number of genes). We propose that these networks (and their

aggregate) are representative of the highest-quality data available

for gene function analysis.

Using an aggregate of five of the networks, we identified critical

edges by removing single edges and testing the average precision of

each of 1746 GO terms (see Methods), for each edge in the

network. This yielded a dataset consisting of gene function

prediction performance for each GO term in each of 72481

networks, each differing from the complete network by just one

edge. This data set allows us to determine which individual

connections are necessary to generate meaningful predictions for

any given function; it can be visualized as a matrix of 72481

connections by 1746 average precisions of gene function

prediction for that GO group using that network (missing one

connection). A critical edge, then, is one in which edge removal

changes precision substantially for a given GO group, while

exceptionality can be determined by aggregating the criticality of a

connection across all GO groups. Removing any single edge

usually has little effect on performance for any given GO term, but

when it does have an effect, it is drastic. In Figure 3A, a sub-

network for a representative GO term is shown; the distribution of

the average precision values for this GO term with edges removed

Guilt by Association Is Not the Rule Among Genes
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contains an extreme outlier (Figure 3B). These genes have 27

unique interactions with one another and over 1200 connections

to other genes. The average precision of this group using the

complete network is 0.057 (p,1024), high enough to be of

practical importance to an experimentalist (a functionally related

gene is expected among the top 20 genes associated with genes

within the GO group). However, the majority of functional

information comes from a single edge, in which a gene within the

GO group has a lone connection to another gene within the GO

group. From the point of view of function prediction, this is

problematic since most predictions going forward may have

Figure 1. A toy example illustrating how guilt by association can depend on critical edges. At the far left, the input network is shown with
the genes having the function (F) we wish to predict shaded black and edges which turn out to be critical are bolded. In the second column, an edge
is removed (for simplicity this is only shown for the critical edges). The third column shows three cases of treating a gene as having unknown function
(crossed-out grey nodes). At right, the predictions made using neighbor voting are shown (with grey meaning a split decision). In Case 1, a correct
prediction depends on one edge; removal of this edge will result in a false negative (circled). In Case 2, there is no single edge that can be removed to
cause an error, and the held out gene is correctly predicted. In Case 3, the critical edge of interest is between two genes that lack function F. If this
edge is removed, the circled gene is strongly predicted to have function F. In a cross-validation setting, this is considered a false positive. Our
experiments show that such effects account for most of the apparent performance of GBA in practice.
doi:10.1371/journal.pcbi.1002444.g001

Figure 2. A small number of edges dominate precision-recall in the mouse gene network. A) Average precision as exceptional edges are
added, B) Network performance is predicted by overlap with a network of the 100 edges predicted to be most exceptional. The 10 constituent
networks of the combined kernel are assessed individually for their precisions and overlap with the 100 edge network.
doi:10.1371/journal.pcbi.1002444.g002

Guilt by Association Is Not the Rule Among Genes
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nothing to do with that edge or the two genes the edge links, and

thus lack any evidence for being correct.

Using this edge removal method, for each of 1746 GO terms,

we identified the most critical edge. A single edge contributes very

strongly to performance for the majority of GO terms, with an

average contribution of 39% (see Figure S1). This means that

when predictions were made in cross-validation, at least one of the

folds had a ranking in which a true positive ‘‘hit’’ gene ranked

highly due to one connection. This includes many GO groups

where removing an edge has an effect greater than 100%

(removing the edge dropped performance below that expected

on average by chance; fixing the maximum possible effect at 100%

yields an average effect of 24%). We obtained very similar results

to these when testing six networks individually (our five constituent

networks plus YeastNet [23]), with two informative exceptions that

had fewer GO groups with a critical edge (see Figure S2). In the

case of YeastNet this is because the network had been specifically

tuned to reinforce GO learning in that edges were added or

removed using knowledge from GO [23]. In contrast, the yeast

genetic interaction network [34] suffers from a very low number of

significantly learnable GO groups (only 3% of GO group have

average precisions more than 0.01 above the expected value, in

contrast to the BioGRID protein interaction network [41], where

67% of GO groups have at least that level of performance);

networks without learnable information also don’t have critical

information (an alternative representation of genetic interactions,

which does show critical edges concomitant with higher

performance, is considered in Text S1, section 3).

It turns out that many of the GO groups share the same ‘‘most

critical edge’’ (see Figure S3): we identified 100 edges in the

aggregate yeast network that are the most critical for ,1/3 of the

GO groups. Using just these edges for prediction of all GO terms

we would expect a bimodal distribution of performance, in which

the ,1/3 of the GO groups for which the 100 edges are critical

would have average precisions of approximately 60% of the full

matrix (since critical edges account for ,40% of performance on

average), while 2/3 of GO groups would have a performance

drawn from the null distribution with most average precisions

below 0.005. In fact, as shown in Figure 3C, more GO groups are

learnable than expected (1/2), due to the presence of ‘‘nearly

critical’’ edges (see Text S1, section 4). Adding edges by their

average degree of criticality across all GO groups (their

exceptionality), we see the network performance quickly improves

above that of the full network (Figure 4A).

If we define a critical edge as one affecting the learnability of at

least one GO group by 10%, we obtain a network of 4870 edges

from the yeast data. We consider this larger set of edges to

determine which interactions may be necessary (rather than

merely sufficient) to generate function prediction performance.

While a very small number of edges are sufficient, it is possible that

redundancy in the network makes removing those few edges

insufficient to remove all functional information. Interestingly,

these 4870 edges are not necessarily between two members of the

GO group for which the edge is critical (an ‘‘internal’’ edge) and in

50% of these GO groups, at least one of the connections was an

external critical connection. Sometimes an edge is critical because

it correctly documents non-membership (an ‘‘external’’ edge). In

this case, a non-member gene connected to an in-set gene would

be highly ranked were it not for a critical connection to a gene

outside the set. The earlier ranking of connections by their

exceptionality gives a better sense of what connectivity is sufficient

to generate gene function prediction performance. A network with

as few as 350 connections generates better function prediction

performance in the remainder of the 72131 connections. As in the

mouse network, these critical connections provide essentially all of

the learnable information in the network (Figure 4B). These edges

are also important even in the context of the full network, since

their removal causes a significant decline in performance

(Figure 4B), and while their removal does not remove all functional

information from the network, they are also not redundant with it

(as seen in the decline in precision-recalls)

We noted that there is a small subset of GO groups with very

high learnability in the full network data (average precision.0.5).

No groups have such high performance when only exceptional

Table 1. Data sources used for gene function prediction and network construction.

Data type Data source Interaction density

Yeast aggregated interactions MPACT [2], DIP [4], MINT [1], BioGRID [41], Fields [42], Costanzo et al [40] 0.38%

Optimized yeast interactions Yeastnet [23] 0.51%

Yeast genetic interactions Costanzo et al [40] 0.22%

Human aggregated protein interactions iRefIndex [48], InnateDB [49], HPRD [50], BIND [51], OPHID [52], MINT [53] 0.047%

Mouse expression profiles Mouse gene atlas [25,57] 0.31%

Zhang et al [25,58] 0.26%

SAGE mouse atlas [25,59] 0.30%

Mouse sequence Pfam [25,60] 0.27%

InterPro [25,61] 0.28%

Mouse protein interaction OPHID [52] 0.12%

Mouse phenotypes MGD [25,62] 0.06%

Mouse conservation profile EnsMart [25,63] 0.29%

Inparanoid [25,64] 0.28%

Mouse disease associations OMIM [25,65], NCBI [65,66] 0.0013%

Mouse aggregated data Mousefunc [25] 1.9%

Primary networks assessed individually and in aggregate are shown with sparsities calculated over the full genes set.
doi:10.1371/journal.pcbi.1002444.t001

Guilt by Association Is Not the Rule Among Genes
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edges are used, suggesting something other than critical edges is

responsible. A cursory inspection reveals these outliers are highly

enriched for GO terms representing protein complexes. Such GO

terms have an extremely high MAP on average (0.33; N = 91;

Figure S4; Text S1, section 5). The network properties of these

groups are also unusual, with a ‘‘clique-like’’ structure in contrast

to other GO terms that tend to have very sparse connections

among the members (Figure S4). Because of this property, we

would not expect any edge to be critical. In addition, edges within

the complex have a very different ‘‘meaning’’ than edges

connecting complex members with genes outside. In particular,

the former can be used to infer complex membership, but the

latter obviously cannot. There is no reason to think the high

learnability of protein complexes would reflect well on predicting

the function of genes interacting with but not in the complex; nor

can it be used to infer anything about the learnability of other

functional groups.

A remaining issue is whether there are any GO terms for which we

might expect some generalizable predictability. For this to be the

case, the group should be learnable in cross-validation, but not have

any especially – meaning dominantly - critical edges (or equivalently

have many edges strongly improving average precision). This would

at least increase the confidence that other edges (used for extracting

novel information) are functionally relevant. Unfortunately GO

groups that lack critical edges altogether tend not to be learnable in

cross-validation and very rarely do GO groups have very many

critical connections (Table S1).

Pruning the network for functional links
We argue that the presence of exceptional edges is a problem,

and ideally the network would not contain them. This is because

they concentrate most of the apparent functional information in a

tiny fraction of the network and are not specific to any one

function, and therefore cannot provide specific functional

information about most genes. On the other hand, critical edges

are the only readily available correlate for functionally relevant

connections. Thus the ideal network would contain only critical

edges (which are hopefully the functionally relevant ones), but few

exceptional edges. However, it is not satisfactory to evaluate

criticality using impact on learnability, as this would result in

overfitting. It is therefore desirable to identify more general

properties of critical edges other than their impact on learnability.

We sought a correlate of criticality which can be used to prioritize

some connections over others.

Based on our previous research showing that high node degree

genes are generic in their functionality [35], we suspected that

edges involving genes with high node degree (hubs) are less likely

to be critical. This is because losing a gene’s only connection is

more likely to damage learning performance than removing one of

dozens. In addition, hubs may represent highly-studied genes

potentially more open to the accumulation of false positive

connections. In Figure S5, we can see that the fraction of critical

edges a gene possesses decreases as a function of its total number of

connections. We propose, then, to prune the network by

privileging connections on low node degree genes. This is

Figure 3. Critical edges exist in networks. A) The subnetwork for a GO group (‘‘Cellular polysaccharide biosynthetic process’’) is shown with in-
group connections shaded in black and outgroup connections in grey. The arrow points to a critical connection. B) The distribution of average
precisions resultant from the family of network differing by removing one connection from the original full network. One connection has a huge
effect. C) Including only critical edges (grey dashed) results in performance that is similar to the original network (solid black), in part, or almost
completely absent.
doi:10.1371/journal.pcbi.1002444.g003
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consistent with our previous work showing that hubs tend to

attract computational predictions at the expense of less-well-

characterized genes (‘‘rich get richer’’) [35].

This pruning yields a network that, even with 1/2 of

connections removed, performs similarly to the original network

(Figure 5A). The specific predictions made are also very similar,

with genes that are predicted strongly in the original network

tending to have similar relative ranks in the pruned network (Text

S1, section 6 and Figure S7). While this has not necessarily

improved the situation with respect to generalizing, removing

edges from the network implies that fewer predictions will be made

in the first place, which is helpful in that it removes potentially

misleading results. It further suggests that, at least with respect to

GO, gene networks contain many irrelevant edges that can

potentially be identified using principled means. We tested this

pruning procedure in an independently constructed network of

human protein interaction data. We find that pruning the human

network by half did not remove functional information, as

determined from the function predictions (Figure 5B). We

confirmed that this network pruning worked by preferentially

selecting exceptional edges by examining the human network for

criticality, as in the yeast network. We found roughly comparable

criticality, with the 1475 GO groups with average precision above

0.01 having a critical connection average effect of 44% of their

performance (the threshold of 0.01 allows for the fact that fewer

GO groups are learnable from the human data). One possibility is

that the ability to discern criticality in both networks merely

reflects interactions present in both networks through homologies.

In fact, mapping the criticality of connections between the two

networks through homology reveals no correlation between the

two (r = 20.02); what is critical in one network is no more likely

than average to be critical in the other.

Functional connectivity and network structure
We have suggested that a major problem with the existence of

exceptional edges is that they reduce supposedly ‘‘network-wide’’

properties to the properties of a very small part of the network. As

a specific example of this problem (beyond describing the

information encoded in networks), we consider a well-studied

network property, whether the network is scale free (or at least

scale-free-like, with a very heavy tail to the degree distribution)

[43]. Our original yeast protein interaction network has a ‘‘scale

free’’ structure, as exhibited in the distribution of its node degree

(see Figure S6). However, our results show that connections of

high node degree genes are preferentially free of specific functional

information, suggesting that the two most famous properties of

biological networks, functional association and approximate scale

freeness, are largely independent. To demonstrate this, we

perform the pruning by node degree in the yeast network which

we know improves GBA performance, but has the effect of

truncating the node degree distribution (Figure S6). While

truncated power-law distributions for networks have been

previously discussed [44], this degree of scaling is generally not

reported, and there is clearly a dominant scale in the network. The

pruned network node degree distribution is well characterized by

its average node degree of 12 and the distribution does not appear

at all to follow a power law distribution. The power law node

degree structure in this network was preferentially encoded in

connections that contain no known functional information.

Characterizing exceptional edges
Because exceptional edges preferentially encode function, one

reasonable expectation might be that they are higher quality in terms

of their experimental support. To test this, we employed the HIPPIE

database (http://cbdm.mdc-berlin.de/tools/hippie/) which charac-

terizes protein interactions by the strength of evidence supporting

them (including experimental techniques employed). There is a weak

but significant rank correlation between exceptionality and data

quality as judged by HIPPIE (r = 0.09, p,0.01); higher quality data

is more likely to encode exceptionality. While we would not expect a

particularly strong trend across the network at large (due to our

emphasis on the role of outliers), another factor is serving to weaken

the correlation. Edges that encode no known function, and therefore

accrue exceptionality only by virtue of encoding non-membership in

a function (these are the ‘‘external’’ edges discussed above), show a

trend in the opposite direction to those edges which largely encode

functionality ‘‘internally’’ (or are strongly functionally relevant as

judged by a high semantic similarity of GO annotations; Jaccard

index.0.75). Edges which encode non-functionality are significantly

associated with better quality linkage (p,0.05), while those that

encode direct functionality are significantly associated with lower

quality linkage (p,0.05). One possible interpretation of this result is

that it reflects differences in the degree to which genes are studied,

and that highly multi-functional genes may more readily accumulate

‘‘high quality’’ interaction data with one another than they may

accumulate low-quality connections with less studied genes [45].

To further examine how exceptional edges arise, we looked at

the role they play in randomly constructed networks, in which any

given connection is equally likely to occur. We first conducted

experiments using randomly defined ‘‘GO groups’’ of fixed size (20

genes; see Methods). The distribution of MAP values across 1000

random networks was approximately normal (p,0.5, Kolmo-

gorov-Smirnov test), but as expected most networks generated in

this way do not yield significantly high MAP values. We used the

statistical parameters from our initial simulations to pick a MAP

threshold (more than 3 standard deviations from the mean) for

100000 random networks. Averaging across the 876 such networks

produced during our simulation, we obtain exceptional edges in

the sense that the 24 connections most frequently reoccurring

across those networks yields a (very small) network which performs

well (z-score.3; that is, above the threshold used to select the 876

individual networks). Examining these edges, they have an

elevated semantic similarity in their ‘‘pseudo-GO’’ annotations

(Jaccard similarity of 0.09 compared to an expected value of 0.01;

p,0.01). Based on this, it appears that exceptional connections

occur in high-scoring random networks for the simple reason that

it is easier to accidentally obtain small number of highly impactful

(exceptional) edges than many edges with smaller effects on

performance (the latter would be expected if there was systemic

encoding of function throughout the network). We obtained

similar results with the same type of random networks trained

using on the real Gene Ontology, suggesting that the appearance

of criticality in gene function prediction is not an artifact of GO

structure.

Figure 4. Functional information is not distributed throughout the network. A) Removing exceptional edges from the network causes a
decline in performance, while adding them to an empty network causes a very rapid rise in performance, above even that possessed by the full
network. B) Removing all of the 4870 potentially exceptional edges from the network removes most of its performance (black solid line), while adding
only those edges (grey dashed) yields high performance across all GO groups.
doi:10.1371/journal.pcbi.1002444.g004
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Figure 5. Critical edges are identifiable from network structure. A) Performance over networks as connections are added to an empty
network based on node degree (low node degree connections get added back first). Performance rises to the same as the real network well before
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Discussion

Gene function is commonly thought of as being a network

property, and in the types of networks considered here, it is often

assumed that gene function is ‘‘encoded’’ in the associations. Our

results challenge this assumption, since the primary evidence for

the distribution of function in the networks are things like patterns

of GO annotations. We have demonstrated that in a wide variety

of gene networks, known information on gene function is

concentrated in a handful of ‘‘exceptional edges’’. One implication

is that it is very misleading to use functional analysis such as GBA

to bolster the case that a gene network is of high quality. A second

implication is that current computational strategies for predicting

gene function from networks are deeply flawed. We also provide

evidence that the ‘‘scale-free-like’’ behaviour of gene networks is

independent of gene functional relationships, raising the question

of how such properties should be interpreted.

Scalability of GBA
One way of viewing our findings is that the GBA principle,

which is fruitfully applied by biologists on a small scale when

analyzing genes one at a time, does not scale easily to networks.

Our results suggest that, for any given function, most associations

are either useless or misleading. This is likely to be partly due to

noise but also the fact that large networks are not constructed with

a particular gene (or function) in mind. Small-scale studies do not

escape this problem, but when testing the associations of a single

gene under more controlled conditions, especially in ‘‘function-

specific’’ conditions, biologists can more efficiently reject spurious

findings and enrich for functionally-relevant associations. For these

reasons we suspect that large-scale attempts to analyze gene

function will continue to be frustrated by the mismatch between

the content of the network and ‘‘gene function’’ as it is currently

systematized. The notable exception is protein complexes. The

problem with the mismatch between gene function and the

networks could also be seen as lying either with GO (and other

systems of defining gene function), or with the networks

themselves. Indeed, our results suggest that the apparent

agreement of GO and gene networks is largely an illusion (again,

with the exception of protein complexes). Thus function

information might be extracted from networks, but not routinely

using schemes like GO as a guide. However, as mentioned above it

is also likely that the gene networks themselves are problematic, in

that they likely contain many edges that are not functionally

relevant. The ‘‘ever more data’’ approach common to the field

runs the risk of filling gene networks with false positives as the

occasional errors in individual experiments are aggregated, and it

is very difficult to prove the lack of an interaction. In support of

this, protein interactions in the BioGRID network have declined in

average apparent functionality over the past fifteen years (Figure

S8), with the Jaccard similarity for connections added in a given

year declining on average (r = 20.95, p,0.01). This problem is

exacerbated by the necessary reliance on computation, which

makes it harder to see which part of the data is providing learning

performance.

Reinterpreting networks
It seems one has to decide whether it makes more sense to ‘‘fix’’

the networks so that they are more functionally relevant, or to

discard GO and its relatives for this purpose in favour of an

alternative (potentially equally problematic) that matches the

networks better. The former makes sense if one is interested in

predicting GO group membership. While this is treated as an

important goal by many, it has in fact been thrust upon the field as

a default; predicting GO terms has become a proxy for predicting

gene function in general. Our results on network pruning by node

degree suggest that current networks can be cleaned up extensively

without hurting GO prediction in cross-validation, but generaliz-

ing to make useful new predictions is still a very serious problem.

Replacing GO also seems very challenging: all current systema-

tizations of gene function that we are aware of are currently highly

correlated with GO (or indeed directly mapped to GO), such as

KEGG, MIPS, EC numbers, Pfam, and so on; we are certainly not

aware of any systematization which is more learnable than GO (if

there was, GO would not be used as much for this purpose).

There is at least a third alternative, to use the network itself to

define function, where the main function to be ‘‘predicted’’ is

‘‘gene X interacts with gene Y’’. This is of course a common

exploratory way to use the data (‘‘What is my gene connected

to?’’), but the quality of the network itself becomes paramount, and

as a definition of function it verges on the trivial. Furthermore,

‘‘gene X interacts with gene Y’’ is most definitely not a function

that is any meaningful sense ‘‘distributed’’ in the network. Guilt by

association (in the most general sense) has provided essentially the

sole principled interpretation of network data from a functional

perspective. Without it, rather than providing information on

function, connectivity in this sense is only information on

mechanisms; we must essentially switch from a top-down

perspective, informed by GBA, to a bottom-up perspective based

on the specific insight interactions provide. If interaction data has

a purely observational meaning, then network quality can only be

assessed by its replicability and consistency, standards by which

most network data would probably perform poorly. Other

network-derived definitions of gene function such as ‘‘hubbiness’’

or ‘‘betweenness centrality’’ [46] that are less sensitive to network

quality are potentially more useful, but only help throw the

limitations of the network for deriving more precise statements

about gene function into relief. We note that while we have not

directly addressed all variants of GBA which focus on predicting

protein interactions, regulatory relationships, or the effects of

mutations, these either amount to making statements about the

network itself (filling in missing edges, or interpreting an edge), or

are likely to behave similarly to GO prediction. We conclude that

gene networks encode information on gene function, but primarily

in ways that are highly localized and with very limited predictive

ability.

How should networks encode function?
Many gene function prediction methods explicitly treat

‘‘protein-complex’’-like structures (cliques) as an optimal way to

encode function (e.g. [25,47]). Functional information encoded in

this way is readily retrievable by algorithmic means and shows

optimal ‘‘guilt by association’’. While this captures some functions,

it is not what one would expect or desire as a general property of a

gene network for function prediction purposes. If those cliques are

not connected together (allowing perfect GBA for the functions

encoded by the clique), one cannot predict any additional

functions. On the other hand, if the cliques are connected

together, one must ask what the desired structure of that ‘‘coarser’’

network should be (treating cliques like genes). If the answer is that

the network is fully reconstructed. B) The sparser human network (grey) shows a distribution of GO performances similar to the original network
(black); slightly higher in most GO groups, with slightly lower coverage.
doi:10.1371/journal.pcbi.1002444.g005
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it should also be clique-like in order to optimize GBA, one rapidly

exhausts the network in a small set of hierarchical modules. This

might be satisfactory if one supposes that gene function is strongly

hierarchical (and also fairly simply organized), but this is clearly

counter to the state of affairs. Indeed, in real networks genes with

similar functional annotations tend to be connected together not

just for ‘‘protein complexes’’ but for most functions (the GO

annotation Jaccard similarity matrix in our yeast data yields a high

MAP of 0.65).Thus, it is possible in principle to encode

functionality more broadly, without requiring cliques, and without

relying on multiple networks to obtain specificity. While we have

highlighted the role of exceptional edges as a problem, we also

believe that recognizing the importance of exceptional edges more

clearly replicates the way biologists work with data; thus, the

classification of interactions with greater detail is a step toward

‘‘fixing’’ guilt by association.

Conclusions
Our results lead to some concrete recommendations for gene

network analysis. First, if one is assessing network quality using

GBA-like approaches, it is essential to test the effect of critical

edges. Because exhaustively identifying critical edges is computa-

tionally intensive, our approach for pruning edges based on node

degree provides a useful and easy-to-compute diagnostic. If

pruning (say) K of the network has little effect on GBA

performance, it is obvious that most of the (measurable)

functionally-relevant information is concentrated in a very small

fraction of the network, making global statements about network

quality unlikely to be of use. A separate assessment of the network

for the completeness of recovery of protein complexes is also

reasonable, bearing in mind that these have very distinct

properties. Our second set of recommendations is directed at

investigators who are attempting to create gene function

prediction tools. Cross-validation performance will be a useless

measure of the quality of new predictions unless it is first shown

that, for any given classification task, performance is not due to a

single edge. Again, doing this exhaustively is computationally

expensive, but our results provide some rules of thumb. One

should test the effect of the removal of edges that involve an in-

group gene; such edges are at least enriched for critical edges (bear

in mind that a critical edge can involve two out-of-group genes, so

negative results for this test are not conclusive). These tests should

be used in conjunction with our previous suggestion that learning

performance be compared to that provided by node-degree

ranking [35].

Methods

Additional information on the methods, implementations and

data is available at www.chibi.ubc.ca/critcon.

Gene networks: The mouse network data consisted of 10 data

matrices representing associations among 21603 genes, with 774

GO groups (10–300 genes each) being used for assessment as in

[25]. Our yeast PPIN was obtained by aggregating data from

[1,2,4,40,41,42] and contained 72481 unique interactions Our

human PPIN was obtained by aggregating data from [48–53] and

contained 100623 unique interactions. Additional detail on the

component networks is provided in Table 1.

Gene lists: We analyzed the list of 20710 human genes from the

UCSC GoldenPath database [54] ‘‘known gene’’ table. The 6200

yeast gene list was obtained from NCBI [55]. The mouse gene list

was as used in [25].

Algorithm: For guilt by association analysis, we ranked genes by

a voting scheme within the training set (by ranked coexpression)

relative to genes outside the training. Despite its simplicity, this

method gives performance comparable to the best-performing

algorithms [56], with the benefit of being extremely fast.

Cross-validation: Eight-fold cross-validation was used in assess-

ing the mouse data, and three-fold cross validation was used to

detect critical connections in the yeast and human data and for

assessment consistency. Performance was assessed by taking the

precision averaged across all true positives within a particular

testing set (that is, the discrete sum), yielding the area under the

precision-recall curve or average precision (see Text S1, section 1).

Our findings hold for other measures such as receiver operating

characteristic (ROC) curves, but as shown in [35], ROC curves

are sensitive to node degree effects. In contrast precision-recall

curves allow us to more effectively isolate the effect of critical

edges.

Critical edges were detected by performing the full gene

function cross-validation across all GO groups for each of the

networks resultant from removing one edge from the full network,

in both the human, yeast, and constituent networks. Exceptional

edges were chosen by aggregating the average precision the

network resultant from a given edge being removed, across all GO

groups. The more performance is degraded across all GO groups,

the higher the exceptionality of the edge. Exceptional edges were

predicted by selecting the gene pair possessing the largest number

of overlapping GO functions, weighting each GO function by the

inverse of the number of times it had already been used to add

gene pairs, and repeating until the desired number of edges were

obtained.

Simulations: Random networks were constructed of size 1000

genes with sparsity 0.002 (1000 edges) and assessed for functional

performance using a random set of gene groupings (100 groups of

size 20). MAP across the groups was assessed using neighbour-

voting, and those networks scoring more than three standard

deviations above the mean of 1000 simulations were aggregated to

determine commonalities in their connectivity.

Supporting Information

Figure S1 Figure showing most GO groups are strongly affected

by removing a single connection. Shown is the fraction of average

precision performance contributed by a single critical edge for

each GO group.

(EPS)

Figure S2 Figure showing most GO groups in most networks are

affected by removing a single connection. For each of our

constituent networks, plus the Yeastnet network, we assess the

importance of removing each connection in the context of that

network. Yeastnet and the genetic interaction network are

somewhat outliers due to optimization with respect to GO

(Yeastnet) and low performance of direct interactions in the

genetic interaction network.

(EPS)

Figure S3 Figure showing most GO terms share critical edges.

The number of GO groups with their critical edges included rises

more rapidly than the number of connections, due to overlap of

critical edges; we call such critical edges ‘‘exceptional’’.

(EPS)

Figure S4 Figure showing protein complexes have distinctive

properties. A) Protein complexes have exceptionally high preci-

sion-recalls in GBA B) The density of in-group connections is very

high in protein complexes, and uniquely so, so that if a given

group (by GO) of genes forms a fully connected sub network, it

is assuredly a protein complex. C) Because of their density of
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in-group connections, protein complexes contribute very strongly

to the GO groups not dominated by critical edges, despite their

low prevalence.

(EPS)

Figure S5 Figure showing that in the yeast network, node degree

is a correlate of average criticality of the connections for that gene.

For each node degree, the fraction of connections which are

critical for that node are shown, and clearly declines with

increasing node degree.

(EPS)

Figure S6 Figure showing heavy-tails are characteristic of the

original protein interaction network but not the pruned network.

A) The node degree distribution of the original network is shown,

as well as the power-law fit, showing the very heavy tail. B) The

node-degree distribution of the pruned network is shown, as well

as the power-law fit, showing no heavy tail, as well as exhibiting a

characteristic node degree to the distribution.

(EPS)

Figure S7 Figure showing pruning retains significant predictions.

A) For a particular GO group, the average precision of individual

genes from complete prediction is shown along the X axis, and the

similarity of those precisions to those determined in the pruned

network is shown along the y-axis, by rank. B) The trend between

precisions pre and post pruning is shown averaged across all GO

groups, with the black line individuating the mean for a given decile,

and the grey lines showing the standard deviation.

(EPS)

Figure S8 Figure showing interaction reports are becoming less

functional over time. The relationship between the year of an

interaction report (by citation in BioGRID), and the average

functionality (as encoded by semantic similarity) of edges is plotted.

(EPS)

Table S1 Table showing unusually critical gene ontology

groups. All GO groups with 10% or more of their connections

exhibiting more than a 0.01 effect upon average precision. The

vast majority of GO groups have relatively few connections that

might be thought to encode functional information about the

group.

(DOC)

Text S1 Text describing additional experiments and results,

including details on cross-validation (section 1), alternatives to

‘‘basic GBA’’ and critical edges (section 2), genetic interaction

profile data (section 3), additivity of critical edges effects (section 4),

protein complexes (section 5), and pruning networks (section 6).

(DOC)

Acknowledgments

Sara Mostafavi and Quaid Morris generously provided the Matlab

implementation of GeneMANIA.

Author Contributions

Conceived and designed the experiments: JG PP. Performed the

experiments: JG. Analyzed the data: JG PP. Wrote the paper: JG PP.

References

1. Cesareni G, Chatr-aryamontri A, Licata L, Ceol A (2008) Searching the MINT

database for protein interaction information. Curr Protoc Bioinformatics

Chapter 8: Unit 8 5.

2. Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, et al. (2006)

MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:

D436–441.

3. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, et al. (2002)

Comparative assessment of large-scale data sets of protein-protein interactions.

Nature 417: 399–403.

4. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, et al. (2002) DIP, the

Database of Interacting Proteins: a research tool for studying cellular networks of

protein interactions. Nucleic Acids Res 30: 303–305.

5. Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, et al. (2008) Annotating

genes of known and unknown function by large-scale coexpression analysis.

Plant Physiol 147: 41–57.

6. Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of

human genes across many microarray data sets. Genome Res 14: 1085–1094.

7. Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with

coexpression networks and metabolomics – ‘majority report by precogs’. Trends

Plant Sci 13: 36–43.

8. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999)

Assigning protein functions by comparative genome analysis: protein phyloge-

netic profiles. Proc Natl Acad Sci U S A 96: 4285–4288.

9. Pu S, Ronen K, Vlasblom J, Greenblatt J, Wodak SJ (2008) Local coherence in

genetic interaction patterns reveals prevalent functional versatility. Bioinfor-

matics 24: 2376–2383.

10. Tong AH, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global mapping of

the yeast genetic interaction network. Science 303: 808–813.

11. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, et al. (2008) High-

throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods

5: 781–787.

12. Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, et al. (2009)

Empirically controlled mapping of the Caenorhabditis elegans protein-protein

interactome network. Nat Methods 6: 47–54.

13. Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, et al. (2007) Exploring

the functional landscape of gene expression: directed search of large microarray

compendia. Bioinformatics 23: 2692–2699.

14. Kaplan S, Bren A, Dekel E, Alon U (2008) The incoherent feed-forward loop

can generate non-monotonic input functions for genes. Mol Syst Biol 4: 203.

15. Balazsi G, Barabasi AL, Oltvai ZN (2005) Topological units of environmental

signal processing in the transcriptional regulatory network of Escherichia coli.

Proc Natl Acad Sci U S A 102: 7841–7846.

16. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, et al. (2006) Gene

prioritization through genomic data fusion. Nat Biotechnol 24: 537–544.

17. Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, et al. (2009)

Computationally driven, quantitative experiments discover genes required for

mitochondrial biogenesis. PLoS Genet 5: e1000407.

18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nat Genet 25: 25–29.

19. Oliver S (2000) Guilt-by-association goes global. Nature 403: 601–603.

20. Mani R, St Onge RP, Hartman JLt, Giaever G, Roth FP (2008) Defining

genetic interaction. Proc Natl Acad Sci U S A 105: 3461–3466.

21. Arabidopsis Interactome Mapping Consortium (2011) Evidence for network

evolution in an Arabidopsis interactome map. Science 333: 601–607.

22. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, et al. (2011)

Independently evolved virulence effectors converge onto hubs in a plant immune

system network. Science 333: 596–601.

23. Lee I, Li Z, Marcotte EM (2007) An improved, bias-reduced probabilistic

functional gene network of baker’s yeast, Saccharomyces cerevisiae. PLoS One

2: e988.

24. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, et al. (2005) Discovery of

biological networks from diverse functional genomic data. Genome Biol 6:

R114.

25. Pena-Castillo L, Tasan M, Myers CL, Lee H, Joshi T, et al. (2008) A critical

assessment of Mus musculus gene function prediction using integrated genomic

evidence. Genome Biol 9 Suppl 1: S2.

26. Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T (2001) Assessment of

prediction accuracy of protein function from protein–protein interaction data.

Yeast 18: 523–531.

27. Tsuda K, Shin H, Scholkopf B (2005) Fast protein classification with multiple

networks. Bioinformatics 21 Suppl 2: ii59–65.

28. Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein

function prediction from protein-protein interaction networks. Nat Biotechnol

21: 697–700.

29. Wolfe CJ, Kohane IS, Butte AJ (2005) Systematic survey reveals general

applicability of ‘‘guilt-by-association’’ within gene coexpression networks. BMC

Bioinformatics 6: 227.

30. Zhou X, Kao MC, Wong WH (2002) Transitive functional annotation by

shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A 99:

12783–12788.

31. Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and

topological weight to predict protein function from protein-protein interactions.

Bioinformatics 22: 1623–1630.

Guilt by Association Is Not the Rule Among Genes

PLoS Computational Biology | www.ploscompbiol.org 12 March 2012 | Volume 8 | Issue 3 | e1002444



32. Weston J, Elisseeff A, Zhou D, Leslie CS, Noble WS (2004) Protein ranking:

from local to global structure in the protein similarity network. Proc Natl Acad

Sci U S A 101: 6559–6563.

33. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY (2010) Rational

association of genes with traits using a genome-scale gene network for

Arabidopsis thaliana. Nat Biotechnol 28: 149–156.

34. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The

genetic landscape of a cell. Science 327: 425–431.

35. Gillis J, Pavlidis P (2011) The impact of multifunctional genes on ‘‘guilt by

association’’ analysis. PLoS One 6: e17258.

36. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118: 4947–4957.

37. Gomez SM, Lo SH, Rzhetsky A (2001) Probabilistic prediction of unknown

metabolic and signal-transduction networks. Genetics 159: 1291–1298.

38. Zhang B, Horvath S (2005) A general framework for weighted gene co-

expression network analysis. Stat Appl Genet Mol Biol 4: Article17.

39. Tanaka R, Yi TM, Doyle J (2005) Some protein interaction data do not exhibit

power law statistics. FEBS Lett 579: 5140–5144.

40. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The

genetic landscape of a cell. Science 327: 425–431.

41. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The

BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36: D637–640.

42. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions

in yeast. Nat Biotechnol 18: 1257–1261.

43. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

44. Mossa S, Barthelemy M, Eugene Stanley H, Nunes Amaral LA (2002)

Truncation of power law behavior in ‘‘scale-free’’ network models due to

information filtering. Phys Rev Lett 88: 138701.

45. Yu X, Ivanic J, Memisevic V, Wallqvist A, Reifman J (2011) Categorizing biases

in high-confidence high-throughput protein-protein interaction data sets. Mol

Cell Proteomics 10: M111.012500.

46. Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the

yeast protein interaction network. J Biomed Biotechnol 2005: 96–103.

47. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008)

GeneMANIA: a real-time multiple association network integration algorithm

for predicting gene function. Genome Biol 9 Suppl 1: S4.

48. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein

interaction database with provenance. BMC Bioinformatics 9: 405.

49. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, et al. (2008) InnateDB:

facilitating systems-level analyses of the mammalian innate immune response.

Mol Syst Biol 4: 218.

50. Prasad TS, Kandasamy K, Pandey A (2009) Human Protein Reference

Database and Human Proteinpedia as discovery tools for systems biology.
Methods Mol Biol 577: 67–79.

51. Gilbert D (2005) Biomolecular interaction network database. Brief Bioinform 6:

194–198.
52. Brown KR, Jurisica I (2005) Online predicted human interaction database.

Bioinformatics 21: 2076–2082.
53. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, et al. (2010)

MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:

D532–539.
54. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.
55. NCBI (2002) The NCBI handbook [Internet]. Bethesda (MD): National Library

of Medicine (US), National Center for Biotechnology Information.
56. Gillis J, Pavlidis P (2011) The role of indirect connections in gene networks in

predicting function. Bioinformatics 27: 1860–6.

57. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of
the mouse and human protein-encoding transcriptomes. Proc Natl Acad

Sci U S A 101: 6062–6067.
58. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, et al. (2004) The

functional landscape of mouse gene expression. J Biol 3: 21.

59. Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, et al. (2005) A mouse
atlas of gene expression: large-scale digital gene-expression profiles from

precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad
Sci U S A 102: 18485–18490.

60. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, et al. (2006)
Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–251.

61. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2005)

InterPro, progress and status in 2005. Nucleic Acids Res 33: D201–205.
62. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE (2007) The mouse

genome database (MGD): new features facilitating a model system. Nucleic
Acids Res 35: D630–637.

63. Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, et al. (2004)

EnsMart: a generic system for fast and flexible access to biological data. Genome
Res 14: 160–169.

64. O’Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive
database of eukaryotic orthologs. Nucleic Acids Res 33: D476–480.

65. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA (2000) Online
Mendelian Inheritance in Man (OMIM). Hum Mutat 15: 57–61.

66. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2007)

Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res 35: D5–12.

Guilt by Association Is Not the Rule Among Genes

PLoS Computational Biology | www.ploscompbiol.org 13 March 2012 | Volume 8 | Issue 3 | e1002444


