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Abstract

Animals living in groups make movement decisions that depend, among other factors, on social interactions with other
group members. Our present understanding of social rules in animal collectives is mainly based on empirical fits to
observations, with less emphasis in obtaining first-principles approaches that allow their derivation. Here we show that
patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the
presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic
matching. In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into
account personal information about the environment and social information collected by observing the behaviors of other
animals. In the probability matching stage, each animal chooses a behavior with a probability equal to the Bayesian-
estimated probability that this behavior is the most appropriate one. This model derives very simple rules of interaction in
animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals
and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of
observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The
quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other
fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing
the relationship between estimation and collective behavior.
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Introduction

Animals need to make decisions without certainty in which

option is best. This uncertainty is due to the ambiguity of sensory

data but also to limited processing capabilities, and is an intrinsic

and general property of the representation that animals can build

about the world. A general way to make decisions in uncertain

situations is to make probabilistic estimations [1,2]. There is

evidence that animals use probabilistic estimations, for example in

the early stages of sensory perception [3–11], sensory-motor

transformations [12–14], learning [15–17] and behaviors in an

ecological context such as strategies for food patch exploitation

[18–20] and mate selection [21], among others [13,17,21,22].

An additional source of information about the environment may

come from the behavior of other animals (social information) [23–

28]. This information can have different degrees of ambiguity. In

particular cases, the behavior of conspecifics directly reveals

environmental characteristics (for example, food encountered by

another individual informs about the quality of a food patch).

Cases in which social information correlates well with the

environmental characteristic of interest have been very well

studied [29–37]. But in most cases social information is ambiguous

and potentially misleading [26,38]. In spite of this ambiguity, there

is evidence that in some cases such as predator avoidance [39,40]

and mate choice [41], animals use this kind of information.

Social animals have a continuous flow of information about the

environment coming from the behaviours of other animals. It is

therefore possible that social animals use it at all times, making

probabilistic estimations to counteract its ambiguity. If this is the

case, estimation of the environment using both non-social and

social information might be a major determinant of the structure

of animal collectives. In order to test this hypothesis, we have

developed a Bayesian decision-making model that includes both

personal and social information, that naturally weights them

according to their reliability in order to get a better estimate of the

environment. All members of the group can then use these

improved estimations to make better decisions, and collective

patterns of decisions then emerge from these individuals

interacting through their perceptual systems.

We show that this model derives social rules that economically

explain detailed experiments of decision-making in animal groups

[42,43]. This approach should complement the empirical

approach used in the study of animal groups [42–47], finding

which mathematical functions should correspond to each

experimental problem and to propose experiments relating

estimation and collective motion. The Bayesian structure of our

model also builds a bridge between the field of collective behavior

and other fields of animal behavior, such as optimal foraging

theory [18–22] and others [21,22]. Further, it explicitly includes in
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a natural way different cognitive abilities, making more direct

contact with neurobiology and psychology [3–10,17].

Results

Estimation model
We derived a model in which each individual decides from an

estimation of which behavior is best to perform. These behaviors

can be to go to one of several different places, to choose among

some behaviors like forage, explore or run away, or any other set

of options. For clarity, here we particularize to the case of choosing

the best of two spatial locations, x and y (see Text S1 for more than

two options). ‘Best’ may correspond to the safest, the one with

highest food density or most interesting for any other reasons. We

assume that each decision maker uses in the estimation of the best

location both non-social and social information. Non-social

information may include sensory information about the environ-

ment (i.e. shelter properties, potential predators, food items),

memory of previous experiences and internal states. Social

information consists of the behaviors performed by other

decision-makers. Each individual estimates the probability that

each location, say y, is the best one, using its non-social

information (C) and the behavior of the other individuals (B),

P(Y jC,B), ð1Þ

where Y stands for ‘y is the best location’.

P(X jC,B)~1{P(Y jC,B), because there are only two locations

to choose from. We can compute the probability in Eq. 1 using

Bayes’ theorem,

P(Y jC,B)~
P(BjY ,C)P(Y jC)

P(BjX ,C)P(X jC)zP(BjY ,C)P(Y jC)
: ð2Þ

By simply dividing numerator and denominator by the numerator

we find an interesting structure,

P(Y jC,B)~
1

1za S
, ð3Þ

where

a~
P(X jC)

P(Y jC)
ð4Þ

and

S~
P(BjX ,C)

P(BjY ,C)
: ð5Þ

Note that a does not contain any social information so it can be

understood as the ‘‘non-social term’’ of the estimation. We can

also understand S as the ‘‘social term’’ because it contains all the

social information, although is also depends on the non-social

information C. The non-social term a is the likelihood ratio for the

two options given only the non-social information. This kind of

likelihood ratio is the basis of Bayesian decision-making in the

absence of social information [5,11–14]. Eq. 3 now tells us that

this well known term interacts with the social term S simply

through multiplication.

We are seeking a model based on probabilistic estimation that

can simultaneously give us insight into social decision-making and

fit experimental data. For this reason we simplify the model by

assuming that the focal individual does not make use of the

correlations among the behaviour of others, but instead assumes

their behaviours to be independent of each other. This is a strong

hypothesis but allows us to derive simple explicit expressions with

important insights. The section ‘Model including dependencies’ at

the end of Results shows that this assumption gives a very good

approximation to a more complete model that takes into account

these correlations.

The assumption of independence translates in that the

probability of a given set of behaviors is just the product of the

probabilities of the individual behaviors. We apply it to the

probabilities needed to compute S in Eq. 5, getting

P(BjY ,C)~Z P
N

i~1
P(bijY ,C), ð6Þ

where B is the set of all the behaviors of the other N animals at the

time the focal individual chooses, B~ bif gN
i~1, and bi denotes the

behavior of one of them, individual i. Z is a combinatorial term

counting the number of possible decision sequences that lead to

the set of behaviors B, that will cancel out in the next step.

Substituting Eq. 6 and the corresponding expression for P(BjX ,C)
into Eq. 5, we get

S~ P
N

i~1

P(bijX ,C)

P(bijY ,C)
: ð7Þ

Instead of an expression in terms of as many behaviors as

individuals, it may be more useful to consider a discrete set of

behavioral classes. For example, in our two-choice example, these

behavioral classes may be ‘go to x’ (denoted bx), ‘go to y’ (by) and

‘remain undecided’ (bu). Frequently, these behavioral classes (or

simply ‘behaviors’) will be directly related to the choices, so that

each behavior will consist of choosing one option. For example,

behaviors bx and by are directly related to choices x and y,

respectively. But there may be behaviors not related to any option

as the case of indecision, bu, or related to choices in an indirect

way. These behaviors can still be informative because they may be

more consistent with one of the options being better than the other

(for example, indecision may increase when there is a predator, so

Author Summary

Animals need to act on uncertain data and with limited
cognitive abilities to survive. It is well known that our
sensory and sensorimotor processing uses probabilistic
estimation as a means to counteract these limitations.
Indeed, the way animals learn, forage or select mates is
well explained by probabilistic estimation. Social animals
have an interesting new opportunity since the behavior of
other members of the group provides a continuous flow of
indirect information about the environment. This informa-
tion can be used to improve their estimations of
environmental factors. Here we show that this simple idea
can derive basic interaction rules that animals use for
decisions in social contexts. In particular, we show that the
patterns of choice of Gasterosteus aculeatus correspond
very well to probabilistic estimation using the social
information. The link found between estimation and
collective behavior should help to design experiments of
collective behavior testing for the importance of estima-
tion as a basic property of how brains work.

Bayesian Collective Behavior
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the presence of undecided individuals may bias the decision

against the place where the non-social information suggests the

presence of a predator). Let us consider L different behavioral

classes, fbkgL
k~1. We do not here consider individual differences

for animals performing the same behavior (say, behavior b1), so

they have the same probabilities P(b1jX ,C) and P(b1jY ,C).
Thus, if for example the n1 first individuals are performing

behavior b1, we have that P
n1
i~1

P(bijX ,C)

P(bijY ,C)
~

P(b1jX ,C)

P(b1jY ,C)

� �n1

.

We can then write Eq. 7 as

S~ P
L

k~1
s

nk
k , ð8Þ

where nk is the number of individuals performing behavior bk, and

sk~
P(bkjX ,C)

P(bkjY ,C)
: ð9Þ

The term sk is the probability that an individual performs behavior

bk when x is the best option, over the probability that it performs

the same behavior when y is the best choice. The higher sk the

more reliably behavior bk indicates that x is better than y, so we

can understand sk as the reliability parameter of behavior bk. If

sk~?, observing behavior bk indicates with complete certainty

that x is the best option, while for sk~1 behavior bk gives no

information. For skv1, observing behavior bk favors y as the best

option, and more so the closer it is to 0. Note that P(bkjX ,C) and

P(bkjY ,C) are not the actual probabilities of performing behavior

bk, but estimates of these probabilities that the deciding animal

uses to assess the reliability of the other decision-makers. These

estimates may be ‘hard-wired’ as a result of evolutionary

adaptation, but may also be subject to change due to learning.

To summarize, using Eqs. 3 and 8, the probability that y is the

best choice, given both social and non-social information is

P(Y jC,B)~ 1za P
L

k~1
s

nk
k

� �{1

, ð10Þ

with a in Eq. 4 and sk in Eq. 9.

Decision rule: Probability matching
We have so far only considered the perceptual stage of decision-

making, in which the deciding individual estimates the probability

that each behavior is the best one. Now it must decide according

to this estimation. A simple decision rule would be to go to y when

P(Y jC,B) is above a certain threshold. This rule maximizes the

amount of correct choices when the probabilities do not change

[48], but is not consistent with the experimental data considered in

this paper. Applying this deterministic rule strictly, without any

noise sources, one would obtain that all individuals behave exactly

in the same way when facing the same stimuli, but in the

experiments considered here this is not the case. Instead, we used a

different decision rule called probability matching, that has been

experimentally observed in many species, from insects to humans

[49–55]. According to this rule an individual chooses each option

with a probability that is equal to the probability that it is the best

choice. Therefore, in our case the probability of going to y (Py), is

the same as the estimated probability that y is the best location

(P(Y jC,B)), so

Py~P(Y jC,B): ð11Þ

Probability matching does not maximize the amount of right

choices if we assume that the probabilities stay always the same,

but in many circumstances it can be the optimal behavior, such as

when there is competition for resources [56,57], when the

estimated probabilities are expected to change due to learning

[53,55], or for other reasons [53,58].

Finally, using Eqs. 10 and 11 we have that the probability that

the deciding individual goes to y is

Py~ 1za P
L

k~1
s

nk
k

� �{1

: ð12Þ

The assumption of probability matching has the advantage that

the final expression for the decision in Eq. 12 is identical to the one

given by Bayesian estimation in Eq. 10, with no extra parameters.

Alternative decision rules could be noisy versions of the threshold

rule, but at the price of adding at least one extra parameter to

describe the noise. Also, decision rules might not depend on

estimation alone, but also on other factors or constraints. These

more complicated rules fall beyond the scope of this paper.

In the following sections, we particularize Eq. 12 to different

experimental settings to test its results against existing rich

experimental data sets that have previously been fitted to different

mathematical expressions [42,43].

Symmetric set-up
We first considered the simple case of two identical equidistant

sites, x and y, Fig. 1A. For a set-up made symmetric by

experimental design there is no true best option. But deciding

individuals must act, like for any other case, using only their

incomplete sensory data to make the best possible decision. Even

when non-social sensory data indicates no relevant difference

between the two sites, the social information can bias the

estimation of the best option to one of the two sites.

Using Eq. 12 and that the three possible behaviors are ‘go to x’

(bx), ‘go to y’ (by) and ‘remain undecided’ (bu), we obtain

Py~ 1za snx
x s

ny
y s

N{nx{ny
u

� �{1

, ð13Þ

where nx and ny are the number of individuals that have already

chosen x and y, respectively, and Nz1 is the size of the group

containing our focal individual and other N animals. As the set-up

is symmetric, the sensory information available to the deciding

individual is the same for both options so P(X jC)~P(Y jC)
and then a~1 according to Eq. 4. Also, since indecision is

not related to any particular choice, symmetry imposes

P(bujX ,C)~P(bujY ,C), so indecision is not informative, su~1
(Eq. 9). For the other two behaviors, going to x (bx) and going to y
(by), Eq. 9 gives

sx~
P(bxjX ,C)

P(bxjY ,C)

sy~
P(byjX ,C)

P(byjY ,C)
:

ð14Þ

P(bxjX ,C) and P(byjY ,C) are the estimated probabilities of

making the right choice, that is, going to x when x is the best

option, or going to y when y is the best option. Since in this case

the sensory information is identical for both options, the

probability of making the correct choice must be the same for

both options, P(bxjX ,C)~P(byjY ,C). An analogous argument

Bayesian Collective Behavior
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holds for the incorrect choices, P(bxjY ,C)~P(byjX ,C), giving

sx~1=sy: ð15Þ

In cases in which sx~1=sy, we find it convenient to express

reliability more generally as

s:sx~1=sy, ð16Þ

which is the ratio of the probability of making the correct choice

and the probability of making a mistake, for both behaviors. Using

this definition and given that a~au~1, Eq. 13 reduces to

Py~ 1zs{Dn
� �{1

, ð17Þ

with the variable Dn:ny{nx. Eq. 17 describes a sigmoidal

function that is steeper the higher the higher the value of s
(Fig. 1B). Therefore, for very reliable behaviors (high s, meaning

individuals that are much more likely to make correct choices than

erroneous ones), Py grows fast with Dn and the deciding individual

then goes to y with high probability when taking into account the

behaviors of only very few individuals.

The behavior of the group is obtained by applying the decision

rule in Eq. 17 sequentially to each individual (see Methods). After

each behavioural choice, we update the number of individuals at x
and y, using the new nx and ny for the next deciding individual

(Fig. 1C, bottom). Repeating this procedure for all the individuals

in the group, we can compute the probability for each possible

final outcome of the experiment (Fig. 1C, top).

The relevance of the symmetric case is that the model has a

single parameter and a single variable, enabling a powerful

comparison against experimental data. We tested the model using

an existing rich data set of collective decisions in three-spined

sticklebacks [42], a shoaling fish species. This data set was

obtained using a group of Ntot fish choosing between two identical

refugia, one on their left and another one on their right (Fig. 2A),

equivalent to locations x and y in the model (Fig. 1A). At the start

of the experiment, mx (my) replica fish made of resin were moved

along lines on the left (right) towards the refugia (Fig. 2A). The

experimental results consisted on the statistics of collective

decisions between the two refugia for 19 different cases using

different group sizes Ntot = 2, 4 or 8 and different numbers of

replicas going left and right, mx : my = {1:1, 2:2, 0:1, 1:2, 0:2, 1:3,

0:3} (Fig. 2B, blue histograms). To compare against these

experimental data, we calculated the probability of finding a

collective pattern applying the individual behavioural rule in Eq.

17 iteratively over each fish for the 19 experimental settings. We

found a good fit of the model to the experimental data using for

the 19 graphs the same value s~2:2 (Fig. 2B, red line). The model

is robust, with good fits in the interval s~2{4 (Fig. 3, red line).

Despite the simplicity of the behavioral rule in Eq. 17, it

reproduces the experimental results, including the dependence on

the total number of fish Ntot, even though the rule is independent

of this parameter, except for determining the range of possible

values of Dn. The dependence of the final distributions on Ntot

emerges from the application of the rule to the Ntot individuals in

the group, as is illustrated in Fig. 4. Each small box represents a

state of the system in which nx : ny fish have already decided to go

to x and y, respectively. The lines connecting each box with

another two boxes on top represent the decision made by the next

Figure 1. Model with individuals estimating which of two identical places is best. (A) Schematic diagram of individuals choosing between
two identical locations x and y when there are already nx (ny) individuals at x (y). (B) Probability of going to y as a function of the difference between
the number of individuals at y and x, Eq. 17. (C) Sequential application of the behavioural rule in Eq. 17 with s~2:5, for the simple case of a group of
two individuals (bottom). The width of the arrows is proportional to the probability of each transition. The 3 possible final configurations, with
different proportion of individuals going to y (0, 0.5 and 1), have different probabilities of taking place, with both fish together at x or y being more
probable than a group split (top).
doi:10.1371/journal.pcbi.1002282.g001
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deciding individual, that takes the system to the next state. The

width of the lines is proportional to the probability of the decision.

As more individuals decide, the central states become less likely

simply because they accumulate more unlikely decisions. There-

fore, the U-shape or J-shape becomes more pronounced for larger

groups, even though the individual decision rule in Eq. 17 is

independent of the total number of individuals Ntot.

Group decision-making in three-spined sticklebacks shows a

single type of distribution in which probability is minimum at the

center and increases monotonically towards the edges, denoted

here as U-shaped distribution (or J-shaped when there is a bias to

one of the two options). However, the model in Eq. 17 also gives

two other types of distributions, Fig. 5A. For non-social behavior

(s~1) the histogram is bell-shaped due to combinatorial effects.

However, a bell-shape is also compatible with social animals for

a certain range of s and group size (white region on the bottom-

left of Fig. 5A). For higher values of s, the histograms are M-

shaped, with two maxima located between the center and the

sides (region coloured in black and blue in Fig. 5A). However, the

M shape becomes clear only with enough number of bins

because the drop in probability near the edge or at the center of

the distribution disappears when binning is too coarse,

producing a bell-shaped or U-shaped histogram, Fig. 5B. This

is an important practical issue, because the amount of data that

can be collected rarely allows for more than 5 bins. The

colorscale in Fig. 5A reflects the number of bins needed to

observe the M shape (black has been reserved for exactly 5 bins).

For high values of s, the histograms are U-shaped (white region

on the top of Fig. 5A). Also, all the M-region above the black

zone becomes of type U when the binning is too coarse.

An interesting prediction of our model is that, for a given

number of bins, the shape of the distribution of choices changes

with the number of decided individuals, and the dynamics of this

change depends on s. For high values of s, the probability is U-

Figure 2. Comparison between model and stickleback choices
in symmetric set-up. (A) Schematic diagram of symmetric set-up with
a group of sticklebacks (in black) choosing between two identical
refugia and with different numbers of replica fish (in red) going to x and
y. (B) Experimentally measured statistics of final configurations of fish
choices from 20 experimental repetitions [42] (blue histogram) and
results from the model in Eq. 17 in the main text (red line using
reliability parameter s~2:2; red region: 95% confidence interval; green
line with s~2:5). Different graphs correspond to different stickleback
group sizes and different number of replicas going to x and y.
doi:10.1371/journal.pcbi.1002282.g002

Figure 3. Goodness of fit for different values of the reliability
(s). Red: Symmetric case (plots in Fig. 2). Green: Case with different
replicas at each side (plots in Fig. 6. The ratios sr=sR are re-optimized for
each value of s). Blue: Asymmetric set-up with predator on one side
(plots in Fig. 7 ; Parameter a is re-optimized for each value of s). (A) Root
mean squared error between the data and the probabilities predicted
by the model. Grey dashed line shows the mean RMSE for the three
cases. The absolute values for each case depend on the shape of the
data and are not comparable, only the trends and the position of the
minima should be compared. (B) Logarithm of the probability that the
data come from the model. The height of each curve depends on the
number of data for each experiment, only the trend and the position of
the maxima should be compared. Grey dashed line shows the sum of
the three coloured lines, but shifted by 1000 so that it fits on the scale.
The peak of this global probability indicates the value of s that best fits
the three datasets (s~2:5).
doi:10.1371/journal.pcbi.1002282.g003
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shaped from the beginning and becomes steeper as more

individuals decide (as is the case for the stickleback dataset),

Fig. 5C. For lower values of s, we observe M-shaped distributions

for the first individuals and then U-shaped ones when more

individuals decide, Fig. 5D. For even lower values of s, we observe

bell-shaped distributions for the first individuals, then M-shaped

and finally U-shaped, Fig. 5E,F.

Symmetric set-up with modified replicas of animals
An interesting modification of the experimental set-up consists

in using replicas of the animals that we can modify to potentially

alter their reliability estimated by the animals. We considered the

particular case, motivated by experiments in [43], of two types of

modified replicas with different characteristics (for example, fat or

thin), Fig. 6A. We considered 7 behaviors: ‘animal goes to x’ (bfx),

‘animal goes to y’ (bfy), ‘most attractive replica goes to x’ (bRx),

‘most attractive replica goes to y’ (bRy) ‘least attractive replica goes

to x’ (brx), ‘least attractive replica goes to y’ (bry), and ‘animal

remains undecided’ (bfu). The probability of going to y in Eq. 12
then reduces to

Py~ 1za s
nfx
fx s

nfy
fy s

nRx
Rx s

nRy
Ry snrx

rx s
nry
ry s

Nf {nfx{nfy
fu

� �{1

, ð18Þ

where subindex ‘f’ refers to real fish and ‘R’ (‘r’) to replicas of the

most (least) attractive type. As in the previous section, symmetry

imposes that a~1 and sfu~1. It also imposes the following

relations between the reliability parameters, sf:sfx~1=sfy,

sR:sRx~1=sRy, sr:srx~1=sry. Therefore,

Py~ 1zs
{Dnf
f s

{DnR
R s{Dnr

r

� �{1

, ð19Þ

where Dnf:nfy{nfx, DnR:nRy{nRx and Dnr:nry{nrx. In the

particular case of only two different replicas, one going to x and

the other to y and for notational simplicity taking the convention

that the most (least) attractive replica goes to y (x), we have

DnR~1 and Dnr~{1. Therefore,

Py~ 1z
sr

sR

s
{Dnf
f

� �{1

: ð20Þ

Note that the probability in Eq. 20 does not depend on sr and sR

separately, but only on their ratio. Therefore, in this case the model

uses only two parameters (sf and sr=sR). We compared the model

with the stickleback data set from [43], Fig. 6. The data in Fig. 6B has

a different type of replica pair in each row, so in principle we would fit

a different ratio sr=sR for each row. But note that the first three rows

correspond to experiments with the same three replicas (large,

medium and small), combined in different pairs. The same can be

Figure 4. Illustration of the decision-making process in the
model. Bottom: Decision-making process according to Eq. 17 (with
s~2:5). Time runs from bottom to top. Each box represents a state with
a given number of fish having already decided x or y (nx : ny). Each
state can lead to another two states in the following time step,
depending on whether the focal fish decides to go to x or y. The width
of the lines connecting states is proportional to the probability of that
transition (equal to the probability of the prior state times the
probability of the focal fish making the decision that leads to the later
one). Top: Probability of each state after 8 fish have made their
decisions. (A) Case with no replicas, in which the final outcome is U-
shaped. (B) Case with one replica going to y (so initial state is already
0:1), in which the final outcome is J-shaped.
doi:10.1371/journal.pcbi.1002282.g004

Figure 5. Types of distributions and dynamics for different
values of reliability parameter s and group size. (A) Shape of
histogram of final configurations as a function of s and the group size.
Bell-shaped: white region on the bottom-left. M-shaped: region
coloured in black and blue. As the observation of the M shape depends
on the number of bins, the colorscale reflects the number of bins
needed to observe the M shape (black has been reserved for exactly 5
bins). U-shape: white region on the top. Also, all the M-region above the
black zone becomes U when the binning is too coarse. There is also a
small region below the black zone where the M shape becomes a bell
shape when the binning is too coarse. (B) Dependence of the apparent
shape on the number of bins: Top, 80 bins. Middle, 10 bins. Bottom, 5
bins. On the left, a probability that seems U-shaped for 5 bins, but is M
shaped for a higher number of bins. On the right, a probability that
stays M-shaped for any number of bins. (C–F) Dynamics of the
probability as the number of individuals increases for (C) s~2, (D)
s~1:62, (E) s~1:35 and (F) s~1:05.
doi:10.1371/journal.pcbi.1002282.g005

Bayesian Collective Behavior

PLoS Computational Biology | www.ploscompbiol.org 6 November 2011 | Volume 7 | Issue 11 | e1002282



said for the second and third threesomes of rows. Therefore, there are

only two free parameters for each three rows. On the other hand, sf

should have the same value for all cases. The model again reproduces

the experimental results reported in reference [43], obtaining the best

fit for sf~2:9 (Fig. 6B). The result is robust, with good fits for

sf~2{4 (Fig. 3, green line) in accord with the value obtained for the

case shown in Fig. 2B.

Asymmetric set-up
We finally considered the case in which sites x and y are

different and the three behaviors are ‘go to x’ (bx), ‘go to y’ (by)

and ‘remain undecided’ (bu). Eq. 12 reduces to

Py~ 1za snx
x s

ny
y s

N{nx{ny
u

� �{1

: ð21Þ

The term a~P(X jC)=P(Y jC) represents the non-social informa-

tion and in general a=1 because the set-up is asymmetric by

design. This asymmetry might also affect how a deciding animal

takes into account the behaviours of other animals depending on

which side they chose, making in general sx=1=sy. Also,

indecision might be informative. For example, if non-social

information indicates the possible presence of a predator at y,

the indecision of other animals might confirm this to the deciding

individual, further biasing the decision towards x. Therefore, we

may have su=1. But it may also be the case that the set-up’s

asymmetry does not affect the social terms, so we also tested a

simpler model in which s:sx~1=sy and su~1, giving

Py~ 1za s{Dn
� �{1

: ð22Þ

The stickleback dataset reported in reference [42] is ideally

suited to test the asymmetric model for the experiments that were

performed with a replica predator at the right arm (Fig. 7A). The

model in Eq. 22 fits best the data with s~2:6 (Fig. 7B) and it is

robust with a good fit in s~2{4 (Fig. 3, blue line). The more

complex model in Eq. 21 gives fits very similar to those of simpler

model. Specifically, parameter su was rejected by the Bayes

Information Criterion [59,60], suggesting that fish do not rely on

undecided individuals. The fact that fish rely differently on other

fish depending on the option they have taken could not be ruled

out by the Bayes Information Criterion, but in any case the impact

of this difference on the data is small.

In the experiments in Fig. 2 and Fig. 7, we have assumed that

the replicas are perceived by fish as real animals. However, it is

reasonable to think that fish might perceive the difference, and rely

differently on replicas and real fish. To test this, we considered

different behaviors for fish and replicas, such as ‘fish goes to x’ and

‘replica goes to x’. Making that distinction, we get that Eq. 12
reduces to

Py~ 1za s
nfx
fx s

nfy
fy snrx

rx s
nry
ry s

Nf {nfx{nfy
fu

� �{1

: ð23Þ

The Bayes Information Criterion rejects only parameter sfu.

However, the addition of the new parameters that distinguish

replica from real fish give very small improvements in the fits

compared to results of the simpler models in Eq. 17 and Eq. 22
(see Fig. S1 and S3), suggesting that fish follow replicas as much as

they follow real fish.

Model including dependencies
In this section we will remove the hypothesis of independence

among the behaviors of the other individuals (Eq. 6). We now

consider that the focal individual not only takes into account the

behaviors of the other animals at the time of decision but the

specific sequence of decisions that has taken place before, fbigK{1
i~1 ,

being K{1 the number of individuals that have decided before

the focal one. For example, the sequence fx,yg may give different

information to the focal individual than the sequence fy,xg. This

Figure 6. Comparison between model and stickleback choices
with two differently modified replicas. (A) Schematic diagram of
symmetric set-up with a group of sticklebacks (in black) choosing
between two identical refugia and with one replica fish going to x and
a different one (in size, shape or pattern) going to y (in red). (B)
Experimentally measured statistics of final configurations of fish choices
from 20 experimental repetitions [43] (blue histogram) and results from
model in Eq. 20 in the main text (red line using reliability parameter
sf~2:9 and sr=sR = 0.35, 0.7, 0.5, 0.52, 0.69, 0.75, 0.43, 0.55, 0.78, 0.43,
for each row from top to bottom; red region: 95% confidence interval;
green line with sf~2:5 and same ratios sr=sR as for red line). Different
graphs correspond to different stickleback group sizes and different
types of replicas going to x and y.
doi:10.1371/journal.pcbi.1002282.g006
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is illustrated in Fig. 8A, where there are two possible paths leading

to states labeled as 1:1, but these two states are in different

branches of the tree (in contrast with Fig. 4, in which these two

states were collapsed in a single one).

To calculate the probability of the observed sequence of

behaviors provided that Y is the correct choice,

P(fbigK{1
i~1 jY ,CK ), ð24Þ

one can apply P(A,B)~P(AjB)P(B) repeatedly to obtain

P(fbigK{1
i~1 jY ,CK )~ P

K{1

k~1
P(bkjY ,CK ,fbigk{1

i~1 ): ð25Þ

This expression substitutes the assumption of independence in Eq.

6. Each of the terms in the product is simply the probability that

the k{th individual makes its decision, given the previous

decisions, and also given that y is the correct choice. This result

was expected since if we look at the tree in Fig. 8A we see that the

probability of reaching a given state is simply the product of the

probabilities of choosing the adequate branches in each step.

So the problem reduces to computing the individual decision

probabilities P(bkjY ,CK ,fbigk{1
i~1 ). We assume in the following

that these probabilities are calculated by the focal individual by

assuming that all animals use the same rules to make a decision.

The rule for the focal individual is, as in previous sections,

PyK
~P(Y jfbigK{1

i~1 ,CK )~
1

1zaK SK

, ð26Þ

where the non-social and social terms are

aK~
P(X jCK )

P(Y jCK )
, ð27Þ

and

SK~
P(fbigK{1

i~1 jX ,CK )

P(fbigK{1
i~1 jY ,CK )

, ð28Þ

respectively, and where we have added subscript K to S, a and C
to reflect that they apply to the focal individual, that makes its

decision in the K{th place.

The assumption that all animals apply the same rules translates

into the following. To apply an equation like Eq. 26 but on a

different individual (say, individual k) it is necessary to know the

non-social information Ck. Remember that all these computations

are made from the point of view of the focal individual, and

obviously the focal individual does not have access to the non-

social information of the other individuals. It may seem reasonable

for the focal animal to assume that all the other individuals have

the same non-social information (CK ), but this would result in no

social behavior at all (if the other individuals have the same non-

social information, their behaviors will not give any extra

information). Instead, one can assume that the other individuals

may have a different non-social information, C’. Furthermore, this

non-social information depends on which is the best choice,

because if for example x is the best choice the other individuals

have some probability of detecting it, and therefore their non-

social information will be on average biased towards x. We

Figure 7. Comparison between model and stickleback choices
in asymmetric set-up. (A) Schematic diagram of asymmetric set-up
(predator at y, large fish depicted in red) with a group of sticklebacks (in
black) choosing between two refugia, and replica fish (small fish
depicted in red) going to y. (B) Experimentally measured statistics of
final configurations of fish choices from 20 experimental repetitions [42]
(blue histogram) and results from model in Eq. 22 in the main text (red
line using s~2:6, a~9:5; red region: 95% confidence interval. Green
line using s~2:5 and same a as for red line). Different graphs
correspond to different stickleback group sizes and different number of
replicas going to y.
doi:10.1371/journal.pcbi.1002282.g007

Figure 8. Model taking into account dependencies. (A) Decision-
making process according to the model with dependencies, Eq. 25–33.
Time runs from bottom to top. Each box represents one state, and each
edge represents one option of the deciding individual, that either goes
to x or to y. Edge width is proportional to the probability of the
decision. (B) Probability of choosing y as a function of the difference of
the number of individuals that have already chosen each option
(Dn~ny{nx), for a’X ~5. In the new model the probability does not
depend any more on Dn alone, so states with the same Dn have
different values for the probability (black dots). The area of the dots is
proportional to the probability of observing each state. Red line shows
the expected value of the probability for each value of Dn. The green
line shows the probability for the model that neglects dependencies
(Eq. 17), 1zs{Dn

� �{1
for s~2:5.

doi:10.1371/journal.pcbi.1002282.g008
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approximate this average bias by assuming that, if x (y) is the best

choice, all the other individuals will have non-social information

C’X (C’Y ) that will bias the decision towards x (y). It is therefore

the same to assume that x (y) is the best option as to assume that all

the other individuals have non-social information C’X (C’Y ).

Therefore, for the probabilities of individual behaviors in Eq. 25,

we have that

P(bkjY ,CK ,fbigk{1
i~1 )~P(bkjC’Y ,CK ,fbigk{1

i~1 ), ð29Þ

where now c’Y applies to the k{th individual, so we can compute

this probability simply by applying Eq. 26 to the k{th individual,

Pyk ,Y ~
1

1za’Y Sk

, ð30Þ

where

a’Y ~
P(X jC’Y )

P(Y jC’Y )
: ð31Þ

Then, if we denote Pbk ,Y:P(bkjC’Y ,CK ,fbigk{1
i~1 ), we have that

Pbk ,Y ~Pyk ,Y if bk~y

Pbk ,Y ~1{Pyk ,Y if bk~x:

(
ð32Þ

These are the individual probabilities needed in Eq. 25, that takes

into account the correlations among the other individuals. So we

can already calculate Sk using Eq. 28,

Sk~
Pk{1

i~1 Pbi ,X

Pk{1
i~1 Pbi ,Y

, ð33Þ

Eqs. 30 and 33 have a recursive relation, because we need the

probabilities up to step k{1 to compute Sk, and then we need Sk

to compute the probabilities in step k. At the beginning no

individual has made any choices, so we start with S1~1 and work

recursively from there until we obtain the probabilities for

individual K{1, that allow to compute SK . Then, we can already

use Eq. 26 to compute the decision probability of the focal

individual, this time using its actual non-social term aK (which is 1

for the symmetric cases, and fitted to the data in the non-

symmetric case).

The equations above constitute the model taking into account

dependencies. The new parameters of this model are a’X and a’Y ,

which substitute sx and sy in the previous models, so the number

of parameters is exactly the same. In the symmetrical case we must

have that a’X ~1=a’Y , so the model has a single parameter. For

the non-symmetrical case these parameters may be independent of

each other, but we find good results even assuming that they are

not, as was the case for the simplified model. So for simplicity we

always assume that

a’X ~1=a’Y : ð34Þ

For the case with different replicas at each side, each of them has a

different value of a’X , thus making one replica more attractive

than the other.

The new model also matches very well with the experimental

data discussed in this paper. Results for the case of two different

replicas are shown in Fig. 9, for the symmetric case in Fig. S4 and

for the case with predator in Fig. S5. Fits are robust, and all cases

are well explained by the model with the same value of a’X ~5,

Fig. S6. See Figs. S1, S2, S3 for a comparison of all models.

We now ask how different is the model including dependencies

from the model that neglects them. To compare the two models,

we plot the probability of going to y as a function of Dn~ny{nx

for the new model, as we did in Fig. 1B for the old one. The

Figure 9. Comparison between model including dependencies
and stickleback choices with two differently modified replicas.
(A) Schematic diagram of symmetric set-up with a group of sticklebacks
(in black) choosing between two identical refugia and with one replica
fish going to x and a different one (in size, shape or pattern) going to y
(in red). (B) Experimentally measured statistics of final configurations of
fish choices from 20 experimental repetitions [43] (blue histogram) and
results from model that takes dependencies into account (red line, with
a’X ,fish~4:8 and a’X ,replicas = 21.4, 11.8, 0.6, 9.9, 4.8, 0.9, 13, 8, 0.7, 14.5,
0.9, for each type of replica (large, medium, small, fat, etc.); red region:
95% confidence interval; green line with a’X ,f ish~5 and same a’X ,replicas

as for red line). Different graphs correspond to different stickleback
group sizes and different types of replicas going to x and y.
doi:10.1371/journal.pcbi.1002282.g009
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inclusion of dependencies has the consequence that the probability

of going to y does not depend only on Dn, since now different

states with the same Dn may have different probabilities.

Therefore, when we plot the probability of going to y as a

function of Dn we obtain different values of the probability for

each value of Dn. This is shown by the black dots in Fig. 8B, where

the size of the dots is proportional to the probability of observing

each state when starting from 0:0. The red line shows the average

probability for each Dn, taking into account the probability of each

state. Both the dots and this line correspond to a’X ~5, which is

the one that fits best the data. The green line corresponds to the

probability for the simplest model neglecting dependencies, with

the value that best fits to the data (s~2:5). This line is close to the

mean probability for the new model and to the values with highest

probability of occurrence, so the simple model is as a good

approximation to the model with dependencies.

We find an interesting prediction of the new model: There are

some states in which the most likely option is to choose the option

chosen by fewer individuals (for example, note in Fig. 8D that some

points with Dnv0 are above 0.5). This surprising result comes

from the fact that, as more fish accumulate at one side, their

choices become less and less informative (because it is very likely

that they are simply following the others). If then one fish goes to

the opposite side, its behavior is very informative, because it is

contradicting its social information. This effect can be so strong

that it may beat the effect of all the other individuals, resulting in a

higher probability of following this last individual than all the

individuals that decided before.

Discussion

We have shown that probabilistic estimation in the presence of

uncertainty can explain collective animal decisions. This approach

generated a new expression for each experimental manipulation,

Eq. 17–22, and was naturally extended to test for more refined

cognitive capacities, Eq. 23. The model was found to have a good

correspondence with the data in three experimental settings

(Figs. 2, 6 and 7), always giving a good fit with the social reliability

parameter s in the interval 2–4. Indeed, all the data have a very

good fit with s~2:5 (Figs. 2, 6 and 7, green lines). According to

Eq. 9, this value for s has the interpretation that, for the behaviors

relevant for these experiments, the fish assume that their

conspecifics make the right choice 2.5 times more often than the

wrong choice.

For the data used in this paper, previous empirical fits used

more parameters [42] (Figs. S1, S2, S3, blue line), and added more

complex behavioral rules when the basic model failed [43] (Fig.

S2, blue line). Our approach thus gains in simplicity. It also finds

an expression for each set-up with expressions for complex set-ups

obtained with add-ons to those of simpler set-ups, making the

model scalable and easier to understand in terms of simpler

experiments. Also, taking the models as fits to experimental data,

the bayesian information criterion finds our models to be better

than those in [42] and [43] (see captions in Figs. S1, S2, S3 for

details).

Collective animal behavior has been subject to a particularly

careful quantitative analysis. Previous studies have given descrip-

tions led by the powerful idea that complex collective behaviors

can emerge from simple individual rules. In fact, some systems

have been found empirically to obey rules that are mathematically

similar or the same as some of the ones presented in this paper,

further supporting the idea that probabilistic estimation might

underlie collective decision rules in many species. For example, a

function like the one in Eq. 17 has been used to describe the

behavior of Pharaoh’s ant [61], a function like Eq. 22 for mosquito

fish [62], and a function like the one in the right-hand-side of Eq.

22 for meerkats [63]. But despite the importance of group

decisions in animals, little is known about the origin of such simple

individual rules. This paper argues that probabilistic estimation

can be an underlying substrate for the rules explaining collective

decisions, thus helping in their evolutionary explanation. Also, this

connection between patterns in animal collectives and a cognitive

process helps to explain the similarities that exist between decision-

making processes at the level of the brain and at the level of animal

collectives [64,65].

Our model is naturally compatible with other theories that use a

Bayesian formalism to study different aspects of behavior and

neurobiology, thus contributing to a unified approach of

information processing in animals. For example, it may be

combined with the formalism of Bayesian foraging theory [18],

through an expansion of the non-social reliability a. Related to this

case, a very well studied example of use of social information is the

one in which one individual can observe directly the food collected

by another individual [29–33]. In this case the social information is

as unambiguous as the non-social one, so in this case both types of

information should have a similar mathematical form [29–33].

This is consistent with our model, that in this case will give a

similar expression for a and S. Other kinds of social information

(such as another individual’s decision to leave a food patch or

choices of females in mating [41]) would enter naturally in our

reliability terms sk. In discussing these and similar problems, it has

been proposed that animals should use social information when

their personal information is poor, and ignore it otherwise

[25,26,41]. Our model provides a quantitative framework for this

problem, predicting that social information is always used, only

with different weights with respect to other sources of information.

Bayesian estimation is also a prominent approach to study

decisions in neurobiology and psychology [3–17] and it would

be of interest to explore the mechanisms and role played by the

multiplicative relation between non-social and social terms.

Our approach also makes a number of predictions. For

example, it derives the probability of choosing among M options

(see Eq. S16 of the Text S1), that for the symmetric case reduces to

Pm~ 1z
XM
m=m

s{ nm{nmð Þ
 !{1

, ð35Þ

predicted also to fit the data for cases with Mw2 options.

We also predict a quantitative link between estimation and

collective behavior. The parameters a and sk in our model are in

fact not merely fitting parameters, but true experimental variables.

Manipulations of a and sk should allow to test that changes in

collective behavior follow the predictions of the model. A

counterintuitive prediction about the manipulation of sk is that

external factors unrelated to the social component can nevertheless

modify it. For example, a fish that usually finds food in a given

environment should interpret a sudden turn of one of his mates as

an indication that it has found food, and therefore will follow it. In

contrast, another fish that is not expected to find food in that

environment will not interpret the sudden turn as indicative of

food, and will not follow. Thus, the model predicts that the a priori

probability of finding food (to which each fish can be trained in

isolation) will modify its propensity to follow conspecifics. An

alternative approach that would not need manipulation of the

reliabilities sk would consist in showing that the probability of

copying a behavior increases with how reliably the behavior

informs about the environment.
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We can also extend the estimation model to use, instead of the

location of animals, their predicted location. We would then find

expressions like the ones in this paper but for the number or

density of individuals estimated for a later time. Consider for

example the case without non-social information, described in Eq.

17 for two options and in Eq. 35 for more options. We can rewrite

these equations as Pm~Vsnm with m one of the options and V is the

normalization, V~
PM

m~1 snm , where M is the number of options.

Then, we would have P(~xx)~Vsr(~xx;tzDt) for the continuous case

using prediction. Future positions at times tzDt (where Dt does

not need to be constant) in terms of variables at present time t

would be given by~xxz~vvDt for animals moving at constant velocity

~vv. Consider then a simple case of an animal located at ~xx and

estimating the future position of a compact group at ~xxg and

moving with velocity~vvg. The deciding animal would be predicted

to move with a high probability in the direction

~xxg(t){~xx(t)
� �

zDt~vvg(t). Estimation of future locations thus

naturally predicts in this simple case a particular form of

‘attraction’ and ‘alignment’ forces of dynamical empirical models

[46,66] as attraction to future positions, but in the general also

deviations from these simple rules.

Methods

Obtaining group behavior from the model of an
individual

The estimation rules presented in this paper refer to a single

individual. To simulate the behavior of a group, we use the

following algorithm: The current individual decides between x and

y. After the decision, we recompute the relevant parameters of the

model and use the new values for the next deciding individual.

The undecided individuals are only those that are waiting for their

turn to decide. We tested an alternative implementation in which

individuals may remain undecided or in which two individuals can

decide simultaneously, obtaining no relevant differences.

For the case of the model including dependencies, the model

always starts at state 0:0, with S~1. Most experiments have initial

conditions in which several replicas are already going to either

side, and the fish have no information about the path followed to

reach this state. In these cases, we average the probabilities of all

the paths that might have possibly led to the initial state to

compute the initial value of S.

Protocol S1 and Protocol S2, contain Matlab functions that run the

models (extensions of the files must be changed from .txt to .m to

make them operative). Protocol S1 corresponds to the model

without dependencies, and Protocol S2 corresponds to the model

with dependencies. These functions have been used to generate all

the theoretical results presented in this paper.

Fits
We computed log likelihood as the logarithm of the

probability that the histograms come from the model. We

searched for the model parameters giving a higher value of log

likelihood, corresponding to a better fit. This search was

performed by optimizing each parameter separately (keeping

the rest constant) and iterating through all parameters until

convergence. In all cases convergence was rapidly achieved. We

performed multiple searches for best fitting parameters starting

from random initial conditions and always found convergence to

the same values, suggesting there are no local maxima. Indeed,

we observed that log-likelihood is smooth and with a single

maximum in all the cases with 1 or 2 parameters (see Fig. 3 for

an example).

Bayesian Information Criterion
For model comparison we used the Bayesian Information

Criterion (BIC) [59,60], which takes into account both goodness of

fit and the number of parameters. According to this criterion,

among several models that have been fitted to maximize log

likelihood, one should select the one for which

BICi~Li{
1

2
ki log (h) ð36Þ

is largest, where Li is the logarithm of the probability that the data

comes from the i{th model once its parameters have been

optimized to maximize this probability, ki is its number of

parameters of the i{th model and h is the number of

measurements (which in our case is the same for all models).

More intuitive than the direct BICi values in Eq. 36 are the BIC

weights, defined as [60]

wi~
exp (BICi)P

j

exp (BICj)
, ð37Þ

when we assume that all models are a priori equally likely. Roughly

speaking, wi can be interpreted as the probability that model i is

the most correct one [60].

We used BIC to compare different versions of our model, and

also to compare our model with those of references [42,43] (see

Figs. S1, S2, S3). The models of refs. [42,43] were originally fitted

by minimizing the mean squared error instead of by maximizing

logprob. For this reason, they score very poorly in BIC with their

reported parameters. For this reason, we re-optimized for

maximum logprob all their model parameters (these parameters

are, using the notation of refs. [42,43], a, k, T , m and r, with r
only applicable in the case of predator present). For the case of

different replicas going to each side, parameter pbias takes a

different value for each row in the figure, adding up to 10

parameters. The model in ref. [43] is computationally expensive,

so it is not feasible to re-optimize these many parameters.

Therefore, we treated them as if they were independently

measured: we fixed pbias in each case so that the results of the

trials with a single individual matched exactly the model’s

prediction (as reported in [43]). We also followed this procedure

with the ratios sr=sR of our model without dependencies, and the

pairs a’X ,replicas in our model with dependencies. Then, we

performed BIC taking into account neither these parameters (pbias

the ratios sr=sR and the pairs a’X ,replicas) nor the data from trials

using single individuals.

Supporting Information

Figure S1 Comparison between different models for the
symmetric set-up. Experimentally measured statistics of final

configurations of fish choices from 20 experimental repetitions

[42] (blue histograms). Red line: results from our single-parameter

model assuming independence in Eq. 17 in the main text (s~2:2).

Green line: Enhanced model assuming independence with

different reliability for the replicas (sf~3, sr~1:76). Yellow line:

Model including dependencies (a’X ~4:9). Blue line: Empirical

model presented in Ref. [42], using the parameters reported there.

Different graphs correspond to different stickleback group sizes

and different number of replicas going to x and y. According to

Bayesian Information Criterion (BIC, see Methods), the best model

is our model with dependencies (yellow line, logprob L~{394,

and BIC weight w~0:996. Second-best is the complicated version
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of the model without dependencies (green line, logprob L~{396,

and BIC weight w~0:004). Third-best is our one-parameter

model assuming independence (red line, L~{419, w~3:10{11).

And last (but not far from the third one) the model from Ref. [42]

(blue line, L~{411 w~5:10{13). For the model from Ref. [42],

L and w correspond to a re-optimization of the model as described

in Methods, because using the parameters reported in [42] would

perform worse).

(TIF)

Figure S2 Comparison between different models for the
condition with two different replicas. Experimentally

measured statistics of final configurations of fish choices from 20

experimental repetitions [43] (blue histograms). Red line: results

from model in Eq. 20 in the main text (sf~2:9, sr=sR = 0.35, 0.7,

0.5, 0.52, 0.69, 0.75, 0.43, 0.55, 0.78, 0.43 for each row from top

to bottom). Yellow line: Model including dependencies (a’X ~4:8,

a’X ,replicas = 21.4, 11.8, 0.6, 9.9, 4.8, 0.9, 13, 8, 0.7, 14.5, 0.9 for

each type of replica (large, medium, small, etc.). Blue line:

Empirical model presented in Ref. [43], using the parameters

reported there. Different graphs correspond to different stickleback

group sizes and different types of replicas going to x and y.

According to Bayesian Information Criterion (BIC, see Methods),

our model neglecting dependencies gives the best representation of

the data (red line, logprob L~{783, and BIC weight

w~0:9985). Second-best is out model including dependencies,

(L~{788, w~0:001). Last, but near the second one, is the model

from ref. [43] (blue line, L~{781 w~0:0005. For the model

from Ref. [43], these values of L and w correspond to a re-

optimization of the model as described in Methods, because using

the parameters reported in [43] would perform worse). The values

of logprob (L) reported here do not include the data of the single-

individual experiments (see Methods).

(TIF)

Figure S3 Comparison between different models in the
asymmetrical set-up. Experimentally measured statistics of

final configurations of fish choices from 20 experimental

repetitions [42] (blue histograms). Red line: results from model

neglecting dependencies in Eq. 22 in the main text (s~2:6,

a~9:5). Green line: Enhanced model neglecting dependencies

with different reliability for the fish going to different locations and

for the replicas (a~5:5, sfx~50, sfy~2=3, sry~0:36. srx has no

effect because there are no replicas going to x). Yellow line: Two-

parameter model including dependencies (a~9:94, a’X ~8:66).

Blue line: Empirical model presented in Ref. [42], using the

parameters reported there. Different graphs correspond to

different stickleback group sizes and different number of replicas

going to y. According to Bayesian Information Criterion (BIC, see

Methods), the best two models are our complicated version

neglecting dependencies (green line, logprob L~{225, and

BIC weight w~0:52) and our two-parameter model including

dependencies (yellow line, L~{231, w~0:38). Next (but very

near) is our simplified model (red line, L~{232, w~0:098). And

last (and significantly worse) the model from Ref. [42] (blue line,

L~{234 w~2:5:10{6. For the model from Ref. [42], the values

of L and w correspond to a re-optimization of the model as

described in Methods, because using the parameters reported in

[42] would perform worse. In two of the graphs for group size 1

that there are no data the prediction of the model from Ref. [42]

and our model (especially the simplest version) are opposite. It

might be that the results changed completely, depending on the

results of these graphs, were the experiments performed. But we

found that this is not the case: We performed simulations, adding

experimental data in these two graphs. Even in the extreme case

that the fabricated results matched exactly the predictions of the

model in Ref. [42], BIC would still favour two of our models (we

would get L~{254, w~0:99 for our model with dependence,

L~{252, w~0:01 for our complicated model neglecting

dependence, L~{268, w~8:10{7 for our simplified model

neglecting dependence and L~{258, w~3:10{6 for the model

in [42]).

(TIF)

Figure S4 Comparison between model including depen-
dencies and stickleback choices in symmetric set-up. (A)

Schematic diagram of symmetric set-up with a group of

sticklebacks (in black) choosing between two identical refugia

and with different numbers of replica fish (in red) going to x and y.

(B) Experimentally measured statistics of final configurations of fish

choices from 20 experimental repetitions [42] (blue histogram) and

results from the model that takes into account dependencies (red

line using a’X ~4:9; red region: 95% confidence interval; green

line with a’X ~5). Different graphs correspond to different

stickleback group sizes and different number of replicas going to

x and y.

(TIF)

Figure S5 Comparison between model including depen-
dencies and stickleback choices in asymmetric set-up. A)

Schematic diagram of asymmetric set-up (predator at y, large fish

depicted in red) with a group of sticklebacks (in black) choosing

between two refugia, and replica fish (small fish depicted in red)

going to y. (B) Experimentally measured statistics of final

configurations of fish choices from 20 experimental repetitions

[42] (blue histogram) and results from the model that takes into

account the dependencies (red line using a’X ~8:7, a~9:9; red

region: 95% confidence interval. Green line using a’X ~5 and

a~6:28). Different graphs correspond to different stickleback

group sizes and different number of replicas going to y.

(TIF)

Figure S6 Goodness of fit of the model including
dependencies for different values of a’X . Red: Symmetric

case (data in Fig. S4). Green: Case with different replicas at each

side (data in Fig. 9. The parameters a’X ,replicas are re-optimized for

each value of a’X ). Blue: Asymmetric set-up with predator on one

side (data in Fig. S5; Parameter a is re-optimized for each value of

a’X ). (A) Root mean squared error between the data and the

probabilities predicted by the model. Grey dashed line shows the

mean RMSE for the three cases. The absolute values for each case

depend on the shape of the data and are not comparable, only the

trends and the position of the minima should be compared. (B)

Logarithm of the probability that the data come from the model.

The height of each curve depends on the number of data for each

experiment, only the trend and the position of the maxima should

be compared. Grey dashed line shows the sum of the three

coloured lines, but shifted by 1000 so that it fits on the scale. The

peak of this global probability indicates the value of a’X that best

fits the three datasets (a’X ~5).

(TIF)

Protocol S1 Algorithm for the model that neglects
dependencies. This file contains Matlab code that runs the

model without dependencies. Please, change extension from .txt to

.m to make it operative. It can be run without any input argument.

Once the extension is changed to .m, simply type ProtocolS1 in

Matlab’s command window to get results for default parameters.

Documentation is given inside the file. Type help ProtocolS1 in

Matlab’s command window to see the documentation.

(TXT)
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Protocol S2 Algorithm for the model that takes depen-
dencies into account. This file contains Matlab code that runs

the model with dependencies. Please, change extension from .txt to

.m to make it operative. It can be run without any input argument.

Once the extension is changed to .m, simply type ProtocolS2 in

Matlab’s command window to get results for default parameters.

Documentation is given inside the file. Type help ProtocolS2 in

Matlab’s command window to see the documentation.

(TXT)

Text S1 Derivation of the model with more options. This

file contains the derivation of the model for the more general case of

M different options (instead of only 2, as presented in the main text).

(PDF)

Acknowledgments

We acknowledge useful comments by Sara Arganda, Larissa Conradt, Iain

Couzin, Jacques Gautrais, David Sumpter, Guy Theraulaz, Julián Vicente

Page and COLMOT 2010 participants.

Author Contributions

Conceived and designed the experiments: APE GGdP. Performed the

experiments: APE GGdP. Analyzed the data: APE GGdP. Wrote the

paper: APE GGdP.

References

1. Box G, Tiao G (1973) Bayesian inference in statistical analysis. New York: Addison-

Wesley, Available: http://onlinelibrary.wiley.com/doi/10.1002/9781118033197.
fmatter/summary.

2. Jaynes ET, Bretthorst LG (2003) Probability Theory: The Logic of Science

(Vol 1) Cambridge University Press.

3. Helmholtz H (1925) Physiological Optics, Vol. III: The perceptions of Vision.
RochesterNY, USA: Optical Society of America.

4. Mach E (1980) Contributions to the Analysis of the Sensations. ChicagoIL, USA:

Open Court Publishing Co.

5. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural

coding and computation. Trends Neurosci 27: 712–9.

6. Jacobs R (1999) Optimal integration of texture and motion cues to depth. Vision
Res 39: 3621–3629.

7. Knill DC, Saunders JA (2003) Do humans optimally integrate stereo and texture

information for judgments of surface slant? Vision Res 43: 2539–2558.

8. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in

a statistically optimal fashion. Nature 415: 429–33.

9. Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and
auditory signals for spatial localization. J Opt Soc Am A 20: 1391.

10. Alais D, Burr D (2004) The ventriloquist effect results from near-optimal

bimodal integration. Curr Biol 14: 257–262.

11. Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about
sensory stimuli. Trends Cogn Sci 5: 10–16.

12. Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning.

Nature 427: 244–247.

13. Körding KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor

control. Trends Cogn Sci 10: 319–26.

14. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30: 535–74.

15. Courville AC, Daw ND, Touretzky DS (2006) Bayesian theories of conditioning

in a changing world. Trends Cogn Sci 10: 294–300.

16. Kruschke JK (2006) Locally Bayesian learning with applications to retrospective

revaluation and highlighting. Psychol Rev 113: 677–99.

17. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to Grow a
Mind: Statistics, Structure, and Abstraction. Science 331: 1279–1285.

18. Oaten A (1977) Optimal foraging in patches: A case for stochasticity. Theor

Popul Biol 12: 263–285.

19. Biernaskie JM, Walker SC, Gegear RJ (2009) Bumblebees learn to forage like
Bayesians. Am Nat 174: 413–423.

20. Alonso J (1995) Patch use in cranes: a field test of optimal foraging predictions.

Anim Behav 49: 1367–1379.

21. McNamara JM, Green RF, Olsson O (2006) Bayes theorem and its applications

in animal behaviour. Oikos 112: 243–251.

22. Valone TJ (2006) Are animals capable of Bayesian updating? An empirical
review. Oikos 112: 252–259.

23. Valone TJ, Templeton JJ (2002) Public information for the assessment of quality:

a widespread social phenomenon. Philos Trans R Soc Lond B Biol Sci 357:
1549–57.

24. Blanchet S, Clobert J, Danchin E (2010) The role of public information in

ecology and conservation: an emphasis on inadvertent social information. Ann
NY Acad Sci 1195: 149–68.

25. Dall SRX, Giraldeau LA, Olsson O, McNamara JM, Stephens DW (2005)

Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:
187–93.

26. Giraldeau LA, Valone TJ, Templeton JJ (2002) Potential disadvantages of using

socially acquired information. Philos Trans R Soc Lond B Biol Sci 357:
1559–66.

27. Wagner RH, Danchin E (2010) A taxonomy of biological information. Oikos

119: 203–209.

28. King AJ, Cowlishaw G (2007) When to use social information: the advantage of

large group size in individual decision making. Biol Lett 3: 137–9.

29. Valone TJ (1989) Group Foraging, Public Information, and Patch Estimation.
Oikos 56: 357–363.

30. Templeton JJ, Giraldeau LA (1995) Patch assessment in foraging flocks of

European starlings: Evidence for the use of public information. Behav Ecol 6:

65–72.

31. Templeton JJ, Giraldeau LA (1996) Vicarious sampling: The use of personal and

public information by starlings foraging in a simple patchy environment. Behav

Ecol Sociobiol 38: 105–14.

32. Smith JW, Benkman CW, Coffey K (1999) The use and misuse of public

information by foraging red crossbills. Behav Ecol 10: 54–62.

33. Clark C, Mangel M (1986) The evolutionary advantages of group foraging.

Theor Popul Biol 30: 45–75.

34. Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat

selection in a wild bird population. Science 297: 1168–70.

35. Boulinier T, Danchin E (1997) The use of conspecific reproductive success for

breeding patch selection in terrestrial migratory species. Evol Ecol 11: 505–517.

36. Coolen I, van Bergen Y, Day RL, Laland KN (2003) Species difference in

adaptive use of public information in sticklebacks. Proc Biol Sci 270: 2413–9.

37. van Bergen Y, Coolen I, Laland KN (2004) Nine-spined sticklebacks exploit the

most reliable source when public and private information conflict. Proc Biol Sci

271: 957–62.

38. Rieucau G, Giraldeau La (2009) Persuasive companions can be wrong: the use

of misleading social information in nutmeg mannikins. Behav Ecol 20:

1217–1222.

39. Lima SL (1995) Collective detection of predatory attack by social foragers:

fraught with ambiguity? Anim Behav 50: 1097–1108.

40. Proctor CJ, Broom M, Ruxton GD (2001) Modelling antipredator vigilance and

flight response in group foragers when warning signals are ambiguous. J Theor

Biol 211: 409–17.

41. Nordell, Valone TJ (1998) Mate choice copying as public information. Ecol Lett

1: 74–76.

42. Ward AJW, Sumpter DJT, Couzin ID, Hart PJB, Krause J (2008) Quorum

decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci

USA 105: 6948–53.

43. Sumpter DJT, Krause J, James R, Couzin ID, Ward AJW (2008) Consensus

decision making by fish. Curr Biol 18: 1773–1777.

44. Couzin ID, Krause J (2003) Self-organization and collective behavior in

vertebrates. Adv Stud Behav 32: 1–75.

45. Sumpter DJ (2006) The principles of collective animal behaviour. Philos

Trans R Soc Lond B Biol Sci 361: 5–22.

46. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and

decision-making in animal groups on the move. Nature 433: 513–516.

47. Katz Y, Tunstrom K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the

structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci

USA, E-pub ahead of print.

48. Neyman J, Pearson E (1933) On the problem of the most efficient tests of

statistical hypotheses. Philos Transact A Math Phys Eng Sci 231: 289.

49. Herrnstein R (1961) Relative and absolute strength of response as a function of

frequency of reinforcement. J Exp Anal Behav 4: 267.

50. Behrend ER, Bitterman ME (1961) Probability-Matching in the Fish.

Am J Psychol 74: 542–551.

51. Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of

honeybees. Behav Ecol Sociobiol 32: 17–29.

52. Kirk KL, Bitterman ME (1965) Probability-Learning by the Turtle. Science 148:

1484–1485.

53. Vulkan N (2000) An Economist’s Perspective on Probability Matching. J Econ

Surv 14: 101–118.

54. Wozny DR, Beierholm UR, Shams L (2010) Probability matching as a

computational strategy used in perception. PLoS Comput Biol 6: 7.

55. Staddon J (1983) Adaptive Behavior and Learning. Cambridge: Cambridge

University Press, Available: http://dukespace.lib.duke.edu/dspace/handle/

10161/2878.

56. Fretwell S, Lucas H (1969) On territorial behavior and other factors influencing

habitat distribution in birds. Acta Biotheor 19: 16–36.

Bayesian Collective Behavior

PLoS Computational Biology | www.ploscompbiol.org 13 November 2011 | Volume 7 | Issue 11 | e1002282



57. Houston A, McNamara J (1987) Switching between resources and the ideal free

distribution. Anim Behav 35: 301–302.
58. Gaissmaier W, Schooler LJ (2008) The smart potential behind probability

matching. Cognition 109: 416–22.

59. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461–464.
60. Link WA, Barker RJ (2006) Model weights and the foundations of multimodel

inference. Ecology 87: 2626–2635.
61. Jeanson R, Ratnieks FLW, Deneubourg JL (2003) Pheromone trail decay rates

on different substrates in the Pharaoh’s ant, Monomorium pharaonis. Physiol

Entomol 28: 192–198.
62. Ward AJW, Herbert-Read JE, Sumpter DJT, Krause J (2011) Fast and accurate

decisions through collective vigilance in fish shoals. Proc Natl Acad Sci USA
108: 6–9.

63. Bousquet CAH, Sumpter DJT, Manser MB (2011) Moving calls: a vocal

mechanism underlying quorum decisions in cohesive groups. Proc Biol Sci 278:

1482–1488.

64. Marshall JA, Bogacz R, Dornhaus A, Planqué R, Kovacs T, et al. (2009) On
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