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Abstract

Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving
populations like those of RNA viruses – increasingly relies upon coalescent approaches to infer past population dynamics
from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be
used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that
current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into
the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic
and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As
such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting
inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current
limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic,
nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian
framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the
transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past
disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.
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Introduction

Epidemiologists increasingly rely on the ability to fit mechanistic

models of disease transmission to data in order to estimate key

parameters and elucidate the underlying processes driving disease

dynamics. However, the nature of epidemiological data makes

model fitting statistically challenging. Case report data such as

time series of disease incidence are often incomplete or subject to

severe biases like underreporting. Moreover, disease dynamics are

generally only partially observed in that the exact times at which

infection and recovery events occur are rarely, if ever, directly

observed [1,2,3]. Researchers have therefore turned to the large

amounts of molecular sequence data becoming available when

case report data are insufficient. Gene genealogies can be

reconstructed from sequence data and the times of coalescence

events (i.e. branching events) can be used as a proxy for the timing

of a subset of transmission events in the population. Using

coalescent-based ‘‘phylodynamic’’ methods, it is then possible to

infer the past dynamics of a disease from the lineages present in the

genealogy, opening up the possibility of fitting models directly to

genealogies.

Several coalescent-based methods for inferring past population

dynamics from genealogies have already been developed [4,5,6,7].

These methods employ the basic result of coalescent theory that

the rate of coalescence is inversely proportional to the effective

population size, Ne [8]. Given the distribution of coalescence times

over a genealogy, it is then possible to infer Ne, which for an

infectious disease is generally interpreted as an estimate of the

number of infected hosts [9]. Past population dynamics can also be

inferred by specifying a demographic model and fitting it to a

genealogy [10,11]. Most often, these demographic models are

phenomenological and use simple parametric functions (e.g.

constant size, exponential growth or logistic growth) or nonpara-

metric functions that constrain population sizes to change

smoothly or only at certain points in time [4,6,7]. Fitting simple

parametric models like exponential growth to genealogies can

provide insight into the epidemic dynamics of pathogens and

provide estimates of epidemic growth rates and times of

emergence [12,13,14]. Phylodynamic methods have also been

applied to systems with far more complex endemic disease

dynamics where the prevalence of the disease can fluctuate rapidly

or undergo complex periodic oscillations. Remarkably, phylody-

namic analyses of RNA viruses can sometimes recover features of

their complex population dynamics due to a fast rate of sequence

evolution and sampling of sequences over time [15,16,17].

While the vast majority of phylodynamic studies have inferred

past dynamics by fitting phenomenological models to genealogies,

a smaller body of work has investigated fitting mechanistic
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population dynamic models such as the well-known Susceptible-

Infected-Recovered (SIR) class of models for the transmission

dynamics of an infectious disease [9,18]. Using mechanistic

population dynamic models in place of phenomenological models

may have major benefits. First, biologically important parameter

values can be estimated along with past population dynamics,

which can provide insights into the underlying processes driving

historical population dynamics. For example, Pybus et al. [9] were

able to estimate the basic reproductive number R0 from viral

genealogies for subtypes of Hepatitis C virus. Second, using these

types of models should also improve our ability to correctly infer

complex population dynamics, as they are constrained by

population size trajectories that are dynamically feasible, rather

than only biologically sensible (e.g., by being temporally

continuous).

While the field of phylodynamics has made tremendous

progress in recent years, methodological constraints limit the use

of phylodynamic methods in epidemiological modeling more

generally. First, only relatively simple epidemiological models

where the number of infected hosts is a deterministic function of

time can currently be fit using standard coalescent-based methods

[4,18,19]. However, epidemiological dynamics are inherently

stochastic and both demographic and environmental stochasticity

can play important roles in disease dynamics [20,21,22].

Stochastic models are also essential for statistical inference since

the variability, or over-dispersion, observed in real data can only

be described statistically if stochasticity is included in the model

[23]. This is especially true when fitting models to long-term data

where the effects of stochasticity can accrue over time and cause

the observed disease dynamics to deviate widely from the

expectations of a deterministic model.

Current phylodynamic methods are also limited in that

inference can only be conducted using genealogies. While

phylodynamic methods will generally be used in the absence of

historical data, other sources of data such as time series may be

available alongside of sequence samples. This is especially the case

for well-studied RNA viruses, where time series of case report data

are collected as part of epidemiological surveillance programs. A

number of statistical methods already exist for fitting mechanistic

population dynamic models to time series data [1,24,25].

Generalizing such methods to fit mechanistic population models

to genealogies as well would allow for inferences to be drawn from

both time series and genealogies. Such an approach would allow

for direct comparison between estimates derived from genealogies

with estimates derived from time series data. Moreover, inference

could then be conducted using both genealogical and population

incidence data, potentially leading to more robust results.

The field of phylodynamics could therefore greatly benefit from

having more flexible methods for genealogical-based inference. To

this end, we have developed a general framework for phylody-

namic inference that accommodates stochastic, mechanistic

population dynamic models and can be integrated with other

sources of data such as time series. In our framework, state-space

models (SSMs) are used to model underlying biological processes

mechanistically. While SSMs are already commonly fit to time

series, we show how SSMs can also be fit to genealogies using

coalescent methods. This allows for the model parameters and past

population dynamics to be inferred from genealogies with or

without accompanying time series data. Full Bayesian inference of

all model parameters and past dynamics is performed using a

method known as particle Markov Chain Monte Carlo (particle

MCMC) [26], which uses particle filtering methods to fit SSMs to

data without requiring an analytical likelihood function [23,25].

This makes it possible to use a wide-class of SSMs for

phylodynamic inference, including the stochastic, continuous-time

dynamic models commonly used in epidemiology and population

biology.

We present our approach by first briefly reviewing the

fundamentals of SSMs and the particle MCMC method. We then

present a stochastic SIR model for the dynamics of an infectious

disease that we use throughout the paper as our SSM. For

conceptual clarity, we first show how particle MCMC can be used

to fit a SSM to time series data without a genealogy since this is a

familiar problem in statistical inference. We then go on to show

how the SSM framework can be expanded to include genealogies

and how particle MCMC can be used to infer model parameters

and past population dynamics from genealogies with or without

accompanying time series data. Finally, we test our particle

MCMC approach on simulated time series and genealogies. We

find that reliable estimates of model parameters and past

population dynamics can be obtained from time series data, a

genealogy, or both. Moreover, we find that estimates obtained

from genealogies approach the accuracy of estimates obtained

from time series data when a large number of samples are

collected serially over time.

Methods

The general statistical framework we use to fit population

dynamic models to either genealogies or time series data is based

on state-space modeling. Structurally, state-space models (SSMs)

consist of a process model and an observation model. The process

model describes the underlying dynamics of the state variables xt

as a Markov process with model parameters h for all time points t

in {1, …, T}:

xt*p xtjxt{1,hð Þ ð1Þ

Below, we use a SIR compartmental model [27] as the process

model for the transmission dynamics of an infectious disease, with

state variables being the number of susceptible (S), infected (I), and

recovered (R) individuals. The exact state of the population at any

given time (e.g., St, It, Rt) is generally not observable. The state

variables therefore remain unknown latent variables that must be

inferred from available data. We therefore need an observation

Author Summary

Reliable information about the demographic history of
populations is important to both population biologists and
epidemiologists, but is often absent or unreliable. There
has therefore been great interest in developing statistical
methods for inferring past population dynamics from gene
genealogies reconstructed from molecular sequences.
These ‘‘phylodynamic’’ methods take advantage of the
fact that changes in population size can dramatically affect
the shape of genealogies, making it possible to infer past
changes in population size from a genealogy. However, in
order for past population dynamics to be inferred, a
demographic model must be specified. Current methods
use demographic models that are often too simple for
populations undergoing complex dynamics and generally
do not allow for the parameters influencing the population
dynamics to be estimated. We show how current
phylodynamic methods can be extended to allow a much
wider class of models to be fit to genealogies and illustrate
our approach using an epidemiological model for the
transmission of an infectious disease.

Phylodynamic Inference
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model to relate the observed data zt to the underlying process

model:

zt*p ztjxt,hð Þ ð2Þ

For example, we will use an observation model that accounts for

normally distributed observation noise in time series observations.

While SSMs are typically used with time series data, here we use a

more general approach where a coalescent model can be used in

place of an observation model to relate a genealogy to the state

variables in the process model.

To fit state space models to genealogical and/or time series data

z1:T , we use a Bayesian approach. Our primary goal is to find the

posterior density of parameters h and latent state variables x1:T :

p h,x1:T jz1:Tð Þ~ p z1:T ,x1:T jhð Þp(h)

p(z1:T )
: ð3Þ

From the posterior density, point estimates of model parameters as

well as measures of uncertainty can be easily derived. However, for

the models we consider here, the posterior density is analytically

intractable. We therefore use an MCMC algorithm to sample

from p(h,x1:T jz1:T ) (for background on MCMC methods, see

[28]). For illustrative purposes, we first present the following

simple MCMC algorithm. Given current values of h and x1:T , we:

Step 1: Propose new values for h and x1:T by sampling

from the proposal density q(h � ,x1:T � jh,x1:T ):

Step 2: Evaluate the posterior probability of h� and

x1:T� given z1:T , p(h � ,x1:T � jz1:T ), by computing

p(z1:T ,x1:T � jh)p(h).

Step 3: With probability

min
p(h � ,x1:T � jz1:T )

p(h,x1:T jz1:T )

q(h,x1:T jh � ,x1:T � )

q(h � ,x1:T � jh,x1:T )
,1

� �

set h~h�, x1:T~x1:T� and p(h,x1:T jz1:T )~p(h � ,x1:T�
jz1:T ); otherwise set h~h, x1:T~x1:T and p(h,x1:T jz1:T )
~p(h,x1:T jz1:T ):

In practice, there are two major problems with using this naive

MCMC approach. First, choosing an efficient proposal density for

nonlinear and high-dimensional models is challenging [29].

Second, it is often difficult or impossible to evaluate the likelihood

needed in step 2 when the disease dynamics are only partially

observed through temporally aggregated data and the exact

infection times are unknown [3,30]. In our case, there is no

analytical expression to impute over all unobserved infection times

for continuous time, stochastic population models. We therefore

use an approach known as particle MCMC [26], which employs a

particle filtering algorithm to numerically construct an efficient

proposal density without requiring that the likelihood be computed

analytically.

The particle MCMC algorithm is essentially a particular version

of the MCMC sampler presented above. While new values of h
and x1:T can be proposed together in Step 1, in particle MCMC

new values for h are first sampled from the proposal density

q(h � jh) and then x1:T� is independently proposed by sampling

sequentially from p(x1:T jh � ,z1:T ), so that the proposal density has

the form

q(h � ,x1:T � jh,x1:T )~q(h � jh)p̂p(x1:T � jh � ,z1:T ),

where p̂p(x1:T � jh � ,z1:T ) is a Monte Carlo estimate of

p(x1:T jh � ,z1:T ) that must be obtained with a particle filtering

algorithm (see below). The proposed x1:T� is therefore ‘‘adapted’’

to the data, which in our case, greatly improves MCMC efficiency

[26]. As shown by Andrieu et al. [26], the acceptance probability in

Step 3 is exactly given by

min
p̂p(z1:T jh � )p(h � )

p̂p(z1:T jh)p(h)

q(hjh � )

q(h � jh)
,1

� �
, ð4Þ

where the Monte Carlo estimate p̂p(z1:T jh � ) to the marginal

likelihood is a byproduct of the particle filtering algorithm (see

below). The full justification for using this acceptance probability is

non-trivial, and we refer to [26]. We can therefore approximate

the joint posterior density of h and x1:T using particle MCMC,

which would otherwise be very difficult or impossible using

standard MCMC methods. Pseudo code for the complete particle

MCMC algorithm is given in Text S1.

The particle filtering algorithm used in particle MCMC allows

us to numerically approximate p(x1:T jh,z1:T ) by simulating the

unknown trajectories of the state variables from the process model

(for reviews, see [31,32]). The key idea behind particle filtering is

to update particles sequentially through time so that at any time t,

the weighted particles provide an approximation to the density

p(x1:tjh,z1:t). This is done by propagating particles forward from

time t-1 to t at each observation point in a two-step process. First,

the state of each particle is updated by sampling new values from

an importance density q(x
j
tjxj

t{1,zt,h), where x
j
t refers to the state

of the jth particle at time t. Second, after the state of the particles

has been updated, each particle is filtered according to the

observation model and assigned a weight w
j
t. In general, the

unnormalized particle weights are calculated as

w
j
t~

p(x
j
tjxj

t{1,h)p(ztjxj
t,h)

q(x
j
tjxj

t{1,zt,h)
: ð5Þ

In our case, there is no ideal importance density to sample from

and particles are propagated by simulating directly from the

process model [25,31,33], so that equation 5 simplifies to:

w
j
t~p(ztjxj

t,h): ð6Þ

In other words, the unnormalized weight assigned to a particle is

simply the probability of observing the data zt given the state of the

particle as specified by the observation model. The unnormalized

weights can then be summed to approximate the conditional

marginal likelihood p(ztjz1:t{1,h),

p̂p(ztjz1:t{1,h)~�wwt~
1

N

XN

j~1

w
j
t: ð7Þ

By the law of total probability, an approximation to the marginal

likelihood of the entire series of observations given h is simply

p̂p(z1:T jh)~ P
T

t~1
�wwt: ð8Þ

This numerical approximation to the marginal likelihood is exactly

the term that is required to evaluate the acceptance probability in

equation 4 needed to perform MCMC sampling.

Phylodynamic Inference
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A common problem with particle filtering algorithms is that

particle weights degenerate over time, meaning that most particles

will carry little weight while a few will carry most of the weight

[31,32]. If this occurs, the particle system will not provide a good

approximation to the density p(x1:tjh,z1:t). For long time series,

this becomes a serious problem. The standard way of dealing with

this issue is to resample particles from the population so that

unpromising particles with low weights are not propagated

forwards through time while promising particles are used to

replenish the particle population [34]. We therefore calculate the

normalized weights of each of the particles:

W
j
t ~

w
j
tPN

j~1

w
j
t

, ð9Þ

and then resample particles according to their weights by

multinomial sampling with replacement so that the total number

of particles remains constant. Resampling is performed after every

time step, after which particle weights are reset to 1/N. This

particular particle filtering algorithm is known as bootstrap

filtering and has the nice property that particle weights are

independent of the particle’s past trajectory [32,33]. Note that

without resampling, a proposal for x1:T in each step of the particle

MCMC algorithm can be obtained simply by sampling a single

particle trajectory x
j
1:T from the particle filter approximation to

p(x1:T jz1:T ,h). However, because particles are resampled at each

time step in the particle filter, we have to track the ancestry of

particles so that a single trajectory representing the path of a single

particle through state space can be sampled. Pseudo code for the

full particle filtering algorithm with resampling is given in Text S1.

Inference with time series data
We first consider fitting a SSM to time series data y1:T using

particle MCMC. As our process model, we use a Susceptible-

Infected-Recovered (SIR) epidemiological model with noise

arising from variability in the transmission rate due to environ-

mental factors. Using the Euler-Maruyama method, we can

simulate this model forward in time with equations:

Stzdt~StzmNdt{mStdt{(1zFj)b(t)
St

N
Itdt ð10aÞ

Itzdt~Itz(1zFj)b(t)
St

N
Itdt{cItdt{mItdt ð10bÞ

Rtzdt~RtzcItdt{mRtdt ð10cÞ

where m is the host birth/death rate, c is the rate of recovery, b(t)
is the seasonally varying transmission rate, and N is the constant

population size of the host, which we assume is known. We let the

transmission rate vary sinusoidally with strength of seasonality a:

b(t)~�bb(1za sin(2pt)) where the mean transmission rate is given

by: �bb~R0(nzm) and R0 is the basic reproduction number. The

noise term j is given by
Wffiffiffiffi

dt
p , where W is a normal random variate

with mean equal to zero and variance equal to one [35]. The

constant F scales the magnitude of environmental noise. Along

with equations 10a–c, we simulate a compartment, C, that tracks

the cumulative number of infected individuals over time (i.e. the

cumulative incidence):

Ctzdt~Ctz(1zFj)b(t)
St

N
Itdt ð10dÞ

From C, we can compute the number of new infections occurring

between any two time points t-1 and t: ct~Ct{Ct{1. Assuming

that only a fraction r of these new cases are observed, and that

observation error is normally distributed, the likelihood of

observing y cases at time t is given by the observation model:

p(ytjct)~Norm(ytjrct,trct), ð11Þ

where the mean is given by m~rct and the observation variance is

given by s2~trct, which depends on a scaling parameter t, as in

Ionides et al. [25].

Adapting the particle MCMC algorithm described above to fit

the SIR model to time series data is straightforward. In the particle

filtering algorithm, particle trajectories are simulated from

equations 10a–d with process noise, so that each particle has a

simulated incidence value c
j
t. Particle weights are assigned using

the observation model given in equation 11, so that unnormalized

particle weights are calculated as

w
j
t~Norm(ytjrc

j
t,trc

j
t): ð12Þ

Particle MCMC can then be used to sample from the posterior

density p(h,x1:T jz1:T ). Here, h contains all the parameters in the

SIR model as well as the observation model parameters r and t.

We can infer the trajectory of any of the state variables but we

limit ourselves to inferring I so that x1:T stands in for the number

of infected hosts from t = 1 to T. Likewise, the initial conditions for

all the state variables could also be inferred but we do not estimate

them here since they are known values in the mock data we use to

test the algorithm. Technical details on the implementation of the

particle MCMC algorithm used to fit the SIR model are given in

Text S2.

Inference with a genealogy
We now turn to using particle MCMC to infer model

parameters and latent variables from a genealogy. For illustrative

purposes, we will use the same epidemiological model as detailed

above. To see how a genealogy can be used to reconstruct the past

population dynamics of a disease, first imagine that every infected

individual is included in an infection tree with branching times

that correspond to transmission events and tip times that

correspond to recovery events. In this hypothetical case, the past

prevalence of the disease at any time would simply be the number

of lineages present in the genealogy at that time and the likelihood

of the genealogy under a given population dynamic model could

easily be computed since the times at which infection and recovery

events occur would be known. In reality, we cannot observe the

complete genealogy but we can reconstruct a partial genealogy

from sequences sampled randomly from infected individuals over

time. Coalescent theory provides us with the necessary probabi-

listic relationship between an incomplete genealogy and the

underlying population dynamics x1:T needed to fit a SSM to a

genealogy of randomly sampled individuals. Specifically, the

coalescent model will allow us to calculate the likelihood of

observing a certain genealogy given the population dynamics x1:T ,

just as the observation model allowed us to calculate the likelihood

of time series observations given x1:T .

Under the standard neutral coalescent model, the times between

coalescent events in a genealogy are exponentially distributed so

Phylodynamic Inference
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the probability of observing a coalescent event after time t is

f (t)~le{lt ð13Þ

where l is the rate of coalescence. For many population models,

the rate of coalescence depends on the number of lineages present

in the genealogy i, the effective population size Ne, and a factor t
that rescales generation time into calendar time, so that

l~

i

2

� �

Net
:

For an infectious disease, Ne depends on the number of infected

hosts I and the variance in the number of secondary infections an

infected individual causes. Genealogical time has generally been

rescaled into calendar time by defining the generation time scaling

factor t as the duration of infection [4,19]. However, for an

epidemiological model like the SIR model, the generation time of

the disease is more appropriately defined as the average length of

time it takes an infected individual to infect a susceptible host.

Under our SIR model, the generation time is not constant over

time since it depends on the rate at which infections occur, which

is equal to b(t)
St

N
It. There is therefore no linear relationship that

can be used to rescale genealogical time into calendar time. We

therefore follow Volz et al. [18], and write the rate of coalescence

under our SIR model as:

lt~

i

2

� �

It

2

� �b(t)
St

N
It: ð14Þ

Equation 14 has the intuitive interpretation that the rate of

coalescence is equal to the overall rate of transmission in the

population multiplied by the probability of observing a transmis-

sion event in the sample fraction, which is given by the ratio of the

two binomial coefficients in the leading term. In practice, we

round It to its nearest integer value when computing the rate of

coalescence so that
It

2

� �
is always computable.

The exponential probability density function given in equation

13 can be combined with the expression for the rate of coalescence

for an SIR model given in equation 14 to calculate the likelihood

of the waiting time between any two coalescence events as a

function of the state variables in the SIR model. The total

likelihood of a genealogy can therefore be obtained by dividing the

genealogy into coalescent intervals and taking the product of the

likelihoods over all coalescent intervals. However, to enable

comparison with inference using time series, the genealogy must

also be partitioned at intervals that correspond to the observation

times {1:T} in the time series. Each of these time intervals is

further divided into subintervals of size dt, where dt is the time step

used in the simulation of the process model, given by equations

10a–c above. We assume that these dt subintervals are sufficiently

small so that the number of infected and susceptible individuals

does not significantly change within a subinterval. This assumption

makes the rate of coalescence constant within subintervals,

allowing us to use the exponential density given in equation 13

to compute the likelihood of the genealogy over these short

subintervals. In addition to these intervals and subintervals, we

allow for the general case that sequence data are sampled serially

over time (i.e., the genealogy is heterochronic), such that,

altogether, there are four types of time points which divide the

genealogy into temporal sections: ‘observation’ time points 1:T,

time points every dt between these time points, sequence sampling

times, and times at which lineages coalesce. The main difference

between using a genealogy instead of time series data is that the

observed data zt are now the vector of time subintervals vt

between two observation time points t-1 and t, created by the dt

time points, the sequence sampling times, and the coalescent

times, rather than time series counts yt.

To compute the likelihood of the genealogy over a given time

interval p(vtjxt), we can first write it as a joint probability of

observing each subinterval time:

p(vtjxt)~Pk
j~1 p(vtj

jxtj
), ð15Þ

Here j indexes the subinterval, and k is the number of subintervals

in the observation time interval ending at time t. The likelihood of

observing a subinterval time vtj
is simply given by equation 13

above if the subinterval ends in a coalescent event:

p(vtj
jxtj

)~ltj
e
{ltj

vtj , ð16Þ

where ltj
is the instantaneous rate of coalescence at time tj , which

can be computed from the values of the state variables in xtj
using

equation 14. If the subinterval does not start at a dt partition time,

but instead at a coalescent event or a sampling event, xtj
are the

state variables at the closest dt partition time in the future.

The probability of observing subinterval time vtj
if subinterval j

does not end in a coalescent event is given by the probability that a

coalescent event has not occurred within this time period is:

p(vtj
jxtj

)~1{

ðvtj

t~0

ltj
e
{ltj

t
dt~e

{ltj
vtj , ð17Þ

as first described by Rodrigo and Felsenstein [36]. In the context

of particle MCMC, the likelihood of the genealogy over the

observation interval given by equation 15 is used to weight each

particle at observation time t as described above.

Inference with both time series and a genealogy
Finally, we show how model parameters and past population

dynamics can be inferred from both time series data and a

genealogy together with particle MCMC. As before, we use the

epidemiological model provided by equations 10. The joint

likelihood of observing both the time series and the genealogy in

the time interval between t-1 and t is given by:

p(yt,vtjh,xt): ð18Þ

Assuming that the genealogy is independent of the time series data,

this joint likelihood can be re-written as:

p(yt,vtjh,xt)~p(ytjh,xt)p(vtjh,xt): ð19Þ

Independence can be assumed if the samples in the genealogy are

drawn from the infected population independently of which

infected hosts are counted in the time series data. This is generally

not the case, as the samples present in the genealogy are usually

taken from a subset of infected hosts who are counted in the time

series data. However, in our case, the fraction of infections
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counted in the time series data and the fraction present in the

genealogy are both chosen at random. Therefore, the joint

likelihood of observing both sets of data at time t, given the model

and parameters h, is given by the product of equation 11 and

equation 15. In the context of particle MCMC, the unnormalized

weight assigned to each particle is then the joint likelihood given in

equation 19.

Results

To illustrate the ability of the particle MCMC algorithm to

estimate model parameters h and the latent state variables x1:T

from time series data, we simulated a mock dataset using the SIR

process model. Figure 1A shows the simulated dynamics of the

latent variable I over time. Figure 1B shows the mock incidence

data y1:T that are drawn using simulated c values (i.e. the

cumulative incidence) and the distribution given in equation 11 to

add normally distributed observation noise. The posterior densities

of the process and observation model parameters inferred from the

mock time series are shown in Figure 2A–D. As shown, the

algorithm provided accurate estimates of the SIR process model

parameters, with the true parameter values generally falling well

within the 95% Bayesian credible intervals (CI). For the

parameters of the observation model, we were able to accurately

estimate the reporting rate r but found the observation variance t
more difficult to estimate (Figure 2E–F). The series of posterior

densities for the latent variable I (i.e. the prevalence of the disease

over time) show that the algorithm accurately estimated the

dynamics of latent variables (Figure 3A). The wider CI for the

prevalence during seasonal peaks in prevalence relative to the

offseason reflects the fact that environmental noise scales with the

rate of transmission in our model, which is larger when prevalence

is high.

We also tested the ability of the particle MCMC algorithm to

infer parameters and past dynamics directly from genealogies. We

obtained mock genealogies from our population dynamic

simulations by tracking the ancestry of infections in the population

and recording times at which infection and recovery events

occurred. A subset of infection lineages were then randomly

sampled at random times and their ancestry traced backwards

through time so that transmission events correspond to coales-

cence events among the sampled lineages. We first checked if the

coalescent model could be used to provide accurate and unbiased

estimates of epidemiological parameters from genealogies. To

check for possible biases, we tested the algorithm using epidemic

dynamics with parameter values that lead to an epidemic

unfolding and ending within a 12-month period. The shorter

length of these simulations allowed us to check the performance of

Figure 1. Simulated infection dynamics and time series used to test the particle MCMC algorithm. (A) Disease dynamics (I) obtained by
simulating from the SIR process model (equations 10) over a 4-year period. (B) Corresponding time series of monthly incidence reports simulated
from the observation model (equation 11). Parameters used in the simulation of the process model were: c = 3/month, R0 = 10, a = 0.16, and F = 0.012.
Other process model parameters that were assumed to be known were: m = 0.0017/month, and N = 5 million. Parameters used in the simulation of the
time series data were: r = 0.43, and t = 15.
doi:10.1371/journal.pcbi.1002136.g001
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the algorithm using genealogies obtained from simulating the

epidemic dynamics 100 times. As can be seen from Figure 4A–B,

the epidemiological parameters R0 and c could be accurately

estimated from the genealogies. However, we found it difficult to

estimate the environmental noise term F from genealogies over

such a short time period, so we fixed F at its true value. Figure 4C

shows the distribution of the estimated median values of the

posterior densities of R0 and c in parameter space for all 100

simulations. In spite of the strong negative correlation between

these two parameters, the estimates cluster around the true

parameter values, with the true values of R0 and c falling within

the estimated 95% credible intervals 90 and 92 times out of the

100 simulations, respectively.

Since we were able to obtain accurate parameter estimates from

genealogies under simple epidemic conditions, we next tested the

ability of the particle MCMC algorithm to estimate parameters

and latent state variables from genealogies under more complex

population dynamics. To do this, we generated a mock genealogy

containing 200 terminal nodes from the same population dynamic

simulation shown in Figure 1. The mock genealogy is shown in

Figure 5. The posterior densities of the process model parameters

inferred from the mock genealogy show that our method could

accurately recover the values of the epidemiological parameters

(Figure 2G–J). The series of posterior densities for the latent

variable I over time likewise show that our method can accurately

estimate past disease dynamics from a genealogy (Figure 3B). This

is highly encouraging, as it suggests that both model parameters

and past population dynamics can be accurately estimated from a

genealogy even in the absence of any time series data as long as the

number of sequences sampled over time is sufficiently large.

Although the credible intervals for the process model param-

eters and past disease dynamics are wider when using the

genealogy than when using the time series data, the width of the

credible intervals likely depends heavily on the sampling effort. We

therefore investigated a range of sample sizes to explore how

different sample sizes affect the accuracy of and uncertainty

associated with our estimates. Summary statistics for the posterior

densities of the parameters and past prevalence of the disease are

given in Table 1. Even with small sample sizes, reasonable

estimates were obtained and the loss of accuracy in estimating

parameters was most likely due to the difficulty of estimating the

environmental noise term F, which is strongly correlated with

other parameters, when the sample size was small. If the sample

size is initially small, including more samples dramatically

improves the accuracy and reduces the level of uncertainty in

parameter estimates. However, going from an intermediate

number of samples (,100–200) to a large number of samples

(,400) does not dramatically improve estimates, suggesting only a

moderate amount of sequence data is required for accurate

inferences to be drawn from genealogies. Similar results were

obtained for estimates of the past prevalence of the disease. We

quantified the effect of including more sequence data by

computing the root mean squared deviation (RMSD) of the

inferred median of the posterior densities of disease prevalence

from the true prevalence values. Increasing the number of samples

initially reduces the RMSD but including more samples provides

no further advantage once a sufficient number of samples are

included.

Finally, we combined the simulated time series and genealogy to

illustrate the ability of particle MCMC to be used with both

sources of data. In Figure 2K–P, we show the posterior densities of

the parameters when inferred from both the time series and a

genealogy. In Figure 3C, we show the series of posterior densities

for the latent variable I over time inferred from both the time

Figure 2. Posterior densities of estimated model parameters. Frequency histograms representing the marginal posterior densities of the SIR
model parameters obtained using the particle MCMC algorithm. Vertical blue lines are placed at the true values of the parameters, solid red lines are
the median value of the posterior densities and dashed red lines mark the 95% Bayesian credible intervals. From left to right, the parameters are the
recovery rate c, the basic reproduction number R0 , the strength of seasonality a, the parameter scaling the strength of environmental noise F, the
reporting rate r, and the observation variance t. (A–F) Parameters inferred using time series data. (G–J) Parameters inferred using a genealogy.
Parameters r and t cannot be inferred using only a genealogy because they are parameters associated with the time series observation model. (K–P)
Parameters inferred using both a genealogy and time series.
doi:10.1371/journal.pcbi.1002136.g002
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Figure 3. Posterior densities for disease prevalence over time. Series of posterior densities for disease prevalence I over time obtained using
particle MCMC. Blue lines represent the exact simulated prevalence, black lines are the median of the posterior density and dashed red lines represent
the 95% credible intervals. (A) Prevalence inferred from time series data. (B) Prevalence inferred from a genealogy. (C) Prevalence inferred from both
a genealogy and time series.
doi:10.1371/journal.pcbi.1002136.g003

Figure 4. Posterior densities of parameters under epidemic conditions. Posterior densities of the parameters c and R0 estimated from 100
independent genealogies obtained from simulated epidemic dynamics. (A–B) Frequency histograms representing the marginal posterior densities of
c and R0 obtained from a single representative simulation. (C) The distribution of the median values of the posterior densities of c and R0 in
parameter space for all 100 simulations (open red circles). The solid blue circle marks the true values of the parameters. Note that in our model
formulation, c and R0 are independent parameters, with the transmission rate computed as b~R0(mzc).
doi:10.1371/journal.pcbi.1002136.g004
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series data and the genealogy. As shown, including the genealogy

along with the time series data considerably reduces the

uncertainty in both the estimates of the process model parameters

and the past prevalence of the disease.

Discussion

The framework we have developed extends phylodynamic

inference in two major ways. First, stochastic state-space models

that consider the biological processes driving population dynamics

can be used instead of simple parametric or nonparametric

demographic models when inferring past population dynamics.

This also allows for key epidemiological parameters to be

estimated directly from genealogies. Second, our approach allows

for other sources of data such as time series to be considered along

with a genealogy when inferring parameters and past population

dynamics. Using a particle MCMC algorithm to fit a stochastic

SIR model to simulated genealogies and time series data, we found

that key epidemiological parameters as well as the past prevalence

of the disease could be accurately estimated from genealogies with

or without accompanying time series data.

While particle MCMC is computationally expensive because

of the need to simulate particle trajectories each MCMC step,

we believe it represents a good choice for the purposes of

phylodynamic inference. First, particle MCMC allows for efficient

MCMC sampling of model parameters and latent variables from

their posterior densities even with high-dimensional, nonlinear

SSMs. Secondly, particle MCMC is flexible in terms of the form of

the SSMs that can be used. Because the particle filtering algorithm

used in particle MCMC can be used to approximate the likelihood

of the model through simulations, there is no need for an analytical

likelihood function. Taken together, this allows for almost any

Figure 5. Simulated genealogy used to test the particle MCMC algorithm. Genealogy obtained from the simulated disease dynamics shown
in Figure 1A. The genealogy contains 200 terminal nodes corresponding to sequence samples being collected sequentially over time with yearly
sample sizes of approximately 50 sequences. Sampling events were chosen to occur at random times over the entire interval of the times series.
doi:10.1371/journal.pcbi.1002136.g005

Table 1. Median posterior values and 95% credible intervals for the parameters and past disease dynamics inferred from
genealogies with different numbers of samples.

Sample Size c R0 a F Prevalence RMSD*

40 2.36 [1.06, 4.18] 3.66 [1.21, 10.12] 0.25 [0.09, 0.51] 0.56 [0.03, 1.78] 244.77

100 2.94 [2.28, 3.95] 8.74 [3.97, 10.71] 0.19 [0.10, 0.32] 0.14 [0.02, 0.51] 93.23

200 3.05 [2.68, 3.39] 10.02 [9.37, 10.41] 0.15 [0.11, 0.21] 0.016 [0.001, 0.092] 39.55

400 3.00 [2.71, 3.29] 10.03 [8.42, 10.43] 0.16 [0.12, 0.20] 0.026 [0.001, 0.141] 73.89

True Value 3.00 10.00 0.16 0.012

*Root Mean Squared Deviation (RMSD) for the prevalence was calculated using the deviation of the median of the posterior density from the true value summed over
all time points.
doi:10.1371/journal.pcbi.1002136.t001

Phylodynamic Inference

PLoS Computational Biology | www.ploscompbiol.org 9 August 2011 | Volume 7 | Issue 8 | e1002136



infectious disease model to be used as long as particle trajectories

can be simulated from the process model and an observation or

coalescent model can be specified [23,31,32]. For example,

several researchers including us here have used particle filtering

methods to fit stochastic, continuous-time dynamic models to

time series, even though observations occur only at discrete time

points [25,37,38]. Finally, particle MCMC allows for flexibility in

terms of the types and structure of the data. As we have shown,

fitting dynamic models to different sources of data is straightfor-

ward since only the particle weighting scheme needs to be

modified. We therefore believe that the computational cost of

particle MCMC is outweighed by its flexibility and ease of

implementation for most practical purposes in phylodynamics.

Still, the efficiency of other statistical methodologies such as

approximate Bayesian computation (ABC, see [39]) should be

compared against particle MCMC in the future to see if the

computational overhead of conducting phylodyamic inference

with complex models can be reduced.

The particle MCMC approach described here is also able to

incorporate different forms of stochasticity, which is essential for

fitting the variation, or over-dispersion, present in real disease

data. For simplicity, we only included environmental noise in the

transmission process – random variation in the rate at which

transmission events occur due to external factors like climatic

fluctuations. However, other forms of stochasticity could also be

included such as demographic stochasticity – random variation in

the timing of demographic events such as the birth and death of

individuals. We did not consider demographic stochasticity

because it involves event-driven simulation approaches that are

much more computationally expensive than the Euler-Maruyama

algorithm we used. However, for small populations where

demographic stochasticity can play an important dynamical role,

other simulation methods could be employed within the particle

filtering algorithm. For example, Breto et al. [23] recently

introduced a simulation method that can include both environ-

mental and demographic stochasticity. While what form of

stochasticity is appropriate will be system-dependent, the need

for statistical methods that include stochasticity when fitting

models to disease data has been demonstrated repeatedly

[22,23,37]. The particle MCMC approach therefore offers an

advantage over other methods for phylodynamic inference that

can only be used to fit deterministic models.

The ability to accurately infer past population dynamics or

model parameters from genealogies ultimately depends on how

sequences are sampled. Since we were primarily concerned with

statistical methodology, we did not extensively explore different

sampling strategies and simply considered the case where

sequences are sampled randomly over time. However, we did

find that only a moderate number of sequences are necessary to

obtain reliable parameter estimates. Even when the sampling rate

was as low as 10 samples per year, reliable estimates were

obtained. Likewise, extremely large sample sizes did not

significantly improve estimates, suggesting phylodynamic inference

can be conducted without extensive sampling over time.

Furthermore, even fewer samples may be necessary if sequences

are sampled strategically. For example, in a simulation study,

Stack et al. [40] found that accurate estimates of past population

dynamics could be obtained using a variety of sampling protocols

and that especially reliable estimates could be obtained if

sequences are sampled towards the end of an epidemic rather

than at the beginning of an epidemic. Our phylodynamic

inference framework should therefore be able to give reliable

estimates even if the sampling effort is not uniformly high over

time.

We were also interested in when including the information

contained within a genealogy alongside of time series date could

improve estimation. At the most basic level, considering a

genealogy where the coalescence times are known without error

provides additional information in that the timing of coalescence

events provides information about when transmission events

occurred that is not present in temporally aggregated case report

data. One could even imagine that knowing the complete

genealogy of infections in the population would be preferable to

having perfect case report data, since the exact times of infection

will still not be known. In practice, we found that considering the

genealogy alongside of time series data only significantly improved

our estimates if there was observation error in the time series data.

For example, the parameters estimated from the time series data

with and without the genealogy in Figure 2 were done with a

moderate level of observation error in the mock time series data.

However, from our own experience, including the genealogy when

there were low levels of observation error in the mock time series

data did not significantly improve our estimates (results not

shown). We therefore suspect that it will be helpful to include

genealogical data only when the observed time series data are

relatively uninformative about the true disease dynamics, such as

when there is large degree of error in the case report data or when

case report data are missing. Genealogies may also aid inference if

aspects of the population dynamics such as periodicity or other

long-term trends in disease dynamics are obscured by changes in

reporting practices.

While we have shown that it is possible to fit complex

population dynamic models to simulated genealogies, several

challenges remain before this approach can be routinely applied to

real data sets. First, while we conditioned our inference on

knowing the true genealogy without error, the genealogy will have

to be inferred from sequence data in any application of our

method. Our uncertainty as to the true topology of the genealogy

and the inferred coalescence times will then have to be considered.

Fortunately, existing phylogenetic software packages like BEAST

allow us to sample from the posterior distribution of trees so as to

effectively integrate out phylogenetic uncertainty [41]. Further-

more, programs like BEAST also use an MCMC framework

making it possible to estimate population dynamic parameters, the

genealogy and the associated molecular evolutionary parameters

together in a single MCMC framework by alternately sampling

from the appropriate posterior densities.

Another challenge lies in formulating appropriate models for

relating population dynamics to the reconstructed genealogy. The

coalescent model we used may not be appropriate for all infectious

diseases, just as the simple SIR model we used will not be adequate

to describe the population dynamics of all diseases. For one, our

coalescent model assumes neutrality with no phenotypic variation

in the pathogen population, but real populations will be structured

into multiple competing strains with varying antigenicity, patho-

genicity and replication rates. Beyond selection, the natural history

of a disease and heterogeneities due to population subdivision or

contact structure can also have profound effects on genealogies

[42,43]. Likewise, sequence samples will often not be sampled

randomly as assumed under standard coalescent models, leading

to potential ascertainment biases if nonrandom sampling is not

incorporated into coalescent models. However, the framework for

phylodynamic inference presented here is extremely flexible and

can be modified to accommodate more realistic population

dynamic and coalescent models to account for these complica-

tions. For example, it should be possible to derive coalescent

expressions for models with individual heterogeneity in infectivity

and for SEIR models where infected individuals enter an exposed
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class before becoming infectious. Finally, when there are

discrepancies between the disease dynamics inferred from

genealogies and those observed in case report data, the ability to

test different population dynamic and coalescent models in a

coherent statistical framework will allow us to consider alternative

hypotheses for what caused these discrepancies. This in turn

should help improve our understanding of the complex ecological

and evolutionary processes driving population dynamics — the

central goal of phylodynamics [44,45].
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