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Abstract

Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging
from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior,
we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting
response profiles for both steepness (ultrasensitivity) and extent of memory (bistability). Simulations were used to study
purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the
topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets
exhibiting ultrasensitivity or bistability). Results reveal that the distribution of network robustness is highly skewed, with the
most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating
ultrasensitivity (up to 28%) and bistability (up to 18%); strikingly, a purely transcriptional framework is the most fragile in
generating either ultrasensitive (up to 3%) or bistable (up to 1%) responses. The disparity in robustness among the network
classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a
particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also
highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems,
that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be
useful in discovering new natural motifs and in designing robust synthetic gene networks.
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Introduction

Signaling networks enable cells to process information from

their surroundings by eliciting temporally and spatially precise

responses to environmental cues. The complex and highly inter-

connected biomolecular interaction networks regulating signal

transmission establish connections between specific molecular

effectors and hence delineate pathways through which extrinsic

and intrinsic cues integrate to elicit cellular responses [1,2]. How-

ever, it is not always apparent what minimal signaling motif is both

necessary and sufficient for robustly achieving a specific behavior.

A signaling network that converts a graded input cue into an all-

or-none response is said to exhibit ‘switch-like’ behavior; switching

enables the establishment of discrete states which is vital in pro-

cesses such as cell proliferation and differentiation [3,4,5,6]. The

term switching encompasses the more formal concepts of ultra-

sensitivity and bistability (Fig. 1). Ultrasensitivity is an important

systems-level property in cellular contexts in which a threshold

concentration of stimulus triggers entry into a different cellular

state while avoiding intermediate states [7,8]. Notable examples of

signaling networks exhibiting ultrasensitivity include the MAPK

cascade in Xenopus oocytes [9], the system regulating the mating

decision in yeast [4], and the circuit controlling differentiation in

the Drosophila embryo [10]. In biological systems, ultrasensitivity

can arise from several mechanisms: positive feedback [11];

cooperativity [12], which can result from multimerization [13];

distribuive multi-site activation, in which a substrate is released

from an enzyme after each activation and must re-bind before the

next activation can take place [14]; and zero-order ultrasensitivity,

which occurs, for example, when a kinase and phosphatase pair

act on a substrate under saturating conditions [8,15].

Although ultrasensitive systems can filter the effects of stimulus

variation at concentrations far from the switching threshold, minor

fluctuations in stimulus concentration near the threshold can cause

the system to switch back and forth between the two states. Hence,

mechanisms such as cross-antagonism and positive feedback are

often employed by a cell to achieve bistability. The hysteresis, or

memory effect, that arises as a consequence of bistability enables

the system to tolerate stochastic fluctuations in the stimulus and

the network species, and in some cases confers irreversibility,

allowing the system to lose its dependence on stimulus [3,5,11,

16,17,18]. Bistability has been observed in numerous biological

systems, including the lac operon in bacteria [19,20,21], the circuit

regulating differentiation of erythroid and myelomonocytic line-

ages [6], and the circuit governing exit from quiescence in

mammalian cells [22]. Bistability has also been engineered in
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synthetic systems using mechanisms such as cross-antagonism [13],

as well as more non-intuitive mechanisms such as negative growth

modulation of the host cell [23].

Previous studies have employed a combination of experiments

and dynamical systems modeling to demonstrate the existence of

ultrasensitivity and bistability in various signaling systems and have

contributed to our knowledge of the types of network architectures

that can give rise to switch-like behavior [6,9,10,24,25,26].

However, most studies have been restricted to a few, selected

network topologies and have hence explored only a small fraction

of the overall space of topologies that can exhibit switch-like

behavior. More importantly, the proposed topologies are not

necessarily parametrically robust in exhibiting switch-like behav-

ior, since most studies do not account for the uncertain

environmental context in which networks must function. Networks

that exhibit switch-like behavior only in narrow regimes of the

overall biologically relevant parameter space are of diminished

utility in understanding natural systems due to intrinsic and

extrinsic perturbations that result in changes in species concen-

trations and interactions with other effectors, which are con-

strained at both short and evolutionary timescales by the cost-

benefit tradeoff for the cell.

An unbiased, comprehensive analysis of networks that robustly

generate switch-like responses in living systems would expand our

understanding of the types of circuitry that enable cells to make

binary decisions and assume discrete states, and hence may afford

a mechanistic understanding of diseases arising out of a loss of

control, such as cancer. Furthermore, such an analysis can be

useful to synthetic biologists who seek to implement these beha-

viors as building blocks for engineering robust, complex biological

programs.

Here, we simulated all possible two- and three-component

networks on random parameter sets, and assessed the resulting

response profiles for degree of ultrasensitivity and bistability. Our

strategy is partly inspired by a recent analysis of enzymatic

networks that enable adaptation in bacteria [27]; however, in

addition to studying networks with only enzyme components, we

expanded our focus to include purely transcriptional networks and

hybrid enzymatic/transcriptional networks which enabled us to

quantify robustness with respect to both the function of each pro-

tein component in the network as well as the interactions among

the components.

Our results reveal that network architecture and composition

can have a dramatic impact on robustness in generating switch-

like behavior. Specifically, compared to other compositional

classes studied, hybrid networks are more robust in yielding

ultrasensitive and bistable responses. Detailed analysis of network

topologies suggests that the zero-order effect arising out of a simple

enzymatic activation/inactivation system is a prevalent mecha-

nism for generating robust ultrasensitivity, and hence can act as a

building block for switch-like behavior. A global view of network

topologies suggests strong clustering into a small number of re-

curring motifs. Finally, comparison with data from previous

studies of natural and synthetic systems demonstrates concordance

between these computational results and experimental observa-

tions, and highlights the utility of our analysis both as a discovery

tool for studying how switching can arise in natural systems and as

a design tool for engineering switch-like behavior in synthetic

circuits.

Results/Discussion

Topology search scheme
To enumerate the network architectures that can give rise to

switch-like behavior, we considered all possible topologies of two

or three components, and assessed them for robustness in gene-

rating ultrasensitive and bistable responses. Although switch-like

behavior can arise in networks having more than three com-

ponents, restricting our scope to minimal networks makes the

analysis more tractable and the results simpler to interpret. More-

over, many large networks can be reduced to minimal models

without significant loss in the spectrum of behaviors observed

[1,28,29].

An overview of the search scheme is illustrated in Fig. 2. Each

network topology considered consists of an input component, A, an

output component, C, and if present, an additional component, B.

The input component A is modeled as a receptor that is activated

upon binding of the stimulus, S. The output component C is

modeled as a downstream effector, and the level of active C is con-

sidered the response of the system. Allowing each component to

activate, inhibit, or have no impact on the other two components

Figure 1. Switch-like behavior. A. A typical Michaelian system
(nH = 1) requires an 81-fold increase in stimulus to increase the response
from 10% to 90% of the maximum (i.e., S90%/S10% = 81) while an
ultrasensitive response is more abrupt. B. Once triggered into the high,
or ‘on’, state (S.Son), a bistable system stays in that state even as the
stimulus concentration is decreased, only switching ‘off’ below a lower
threshold stimulus concentration (Soff, which is ,0 for irreversible
systems).
doi:10.1371/journal.pcbi.1002085.g001

Author Summary

Biomolecular signaling networks enable cells to mediate
responses to extracellular and intracellular stimuli and are
hence crucial for the functioning of all organisms. Such
networks do not merely forward information, but perform
signal processing: specific modules have evolved to
produce complex, dynamic behaviors from input cues.
Switching, or the conversion of a graded stimulus into a
binary, all-or-none response, is a ubiquitous behavior that
regulates critical processes ranging from cell division to
stem cell differentiation. While a number of switch-
generating networks have been identified, a comprehen-
sive understanding of network architectures that can yield
switch-like behavior remains elusive. In this work, we
assessed the entire space of minimal networks to identify
architectures that can not only exhibit switching behavior
but can do so robustly in the dynamic and noisy cellular
environment. Our results reveal that these robust networks
fit into a small number of topological motifs. Furthermore,
network composition (i.e., whether a signaling component
functions as an enzyme or a transcription factor) can
dramatically impact robustness in generating switching
behavior. Topologies presented in this work can be used
to identify additional circuits in nature that may exhibit
switching behavior and suggest design strategies for
engineering switching behavior in synthetic circuits.

Networks Enabling Switching
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and itself yields 39 (19,683) distinct topologies. Within this set,

approximately 3,700 topologies lack connections linking the input

and output components, and are hence discarded.

Since activation and inhibition in biological systems can occur

at both enzymatic and transcriptional levels, an important focus of

this study is to compare the robustness in generating switch-like

behavior arising out of enzyme and transcription components.

Towards this goal, we studied four different categories of networks

(Fig. 2D): enzyme-only, in which each component is modeled as

an activating or inactivating enzyme (EEE); transcription-only, in

which each component is modeled as a transcriptional activator or

repressor (TTT); and two categories of hybrid networks, one with

only C modeled as a transcriptional component (EET), and one

with both B and C modeled as transcription components (ETT).

While switch-like behavior can arise in networks belonging to

other compositional classes, our study is focused on networks that

can be directionally described as ‘outside-in’ signaling (i.e. net-

works that allow switch-like modulation of a downstream species,

such as a master regulatory transcription factor that ushers in a

phenotypic change, via an external stimulus).

In our analysis scheme, each component exists in an active

form, which carries out the reactions specified by the network, and

an inactive form, which only serves as substrate. Enzyme com-

ponents act by catalyzing the inter-conversion of their targets. For

instance, in the EET category, B is an enzyme, and an activation

interaction from B to C denotes that B catalyzes the conversion of

inactive C into active C; an inhibitory interaction would catalyze

the opposite inter-conversion. Similarly, a positive interaction from

B to C in the ETT category, in which B is a transcriptional

component, denotes that B up-regulates the production of inactive

C; an inhibitory interaction denotes B-mediated repression of the

synthesis of C. Additionally, since enzymatic auto-regulation in

signaling is not a common cellular behavior (e.g., there is a plethora

of examples in which a kinase or phosphatase activates or inactivates

another type of protein but not many instances in which an enzyme

modifies its own species), only transcriptional components are

allowed auto-regulatory loops, which reduces the number of net-

work topologies considered for the EEE, EET, and ETT compo-

sitional classes. Irrespective of the topology, each component is

modeled as being subject to basal synthesis and degradation and

basal activation and inactivation by background components

assumed to be constant.

A single network topology translates into a system of rate

equations in which interactions among the three components are

modeled using mass-action kinetics. Assignment of 103 random

parameter sets to the kinetic constants of this model yields 103

different circuits having the same network architecture. Each

circuit is simulated on a range of stimulus concentrations, and the

resulting steady-state response information is assessed for switch-

like behavior by two metrics: the Hill coefficient (nH), representing

the degree of ultrasensitivity [8], and the relative drop in stimulus,

or window (W) over which the system remains in the on state

(Fig. 1). Hence, each network topology yields 103 steady-state

response plots. Parametric robustness in generating switch-like

behavior is quantified by robustness scores representing the

percent of plots exhibiting strong ultrasensitivity (nH.2), and

bistability (W.5); for instance, a network that yields more

ultrasensitive response profiles on random parameter sets than

another is considered to be more robust in generating bistability.

In addition to estimating nH, response steepness was also analyzed

by computing the maximum local response coefficient (see

Methods) [30]. Although both measures show good agreement

(Fig. S1), since nH establishes a lower-bound on the steepness, it

was used as the primary metric in assessing ultrasensitivity

Figure 2. Topology search scheme. A. Each component is modeled as an enzyme or transcription factor. The input component A is modeled as a
receptor to which the stimulus binds. B. Enzymatic components can catalyze the activation or inactivation of their targets, denoted as X.
Transcriptional components can upregulate or inhibit the synthesis of the inactive forms of their targets. C. Sample network illustrating all possible
interaction types. D. Four compositional classes were studied: EEE, in which A, B, C, are modeled as enzymes; TTT, in which each component is a
transcription factor; and hybrid networks, in which only C is a transcription factor (EET) or both B and C are transcription factors (ETT). E. Overview of
the topology search algorithm.
doi:10.1371/journal.pcbi.1002085.g002

Networks Enabling Switching
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robustness. Our results also demonstrate that simulating 103

random parameter sets for each network is sufficient for reliably

estimating robustness scores (Fig. S2).

Network composition influences robustness in generating
switch-like behavior

In outside-in signaling systems, binding of a ligand to a receptor

initiates a signaling cascade typically resulting in the activation of

downstream transcription factors which can in turn alter the ex-

pression program of the cell, thereby ushering in phenotypic

change [31,32,33,34]. Hence, in ligand-activated systems, the switch-

like nature of a response is most prominent at the transcriptional

level, as is the case for instance in cell differentiation during

development [10]. However, the actual circuitry enabling switch-like

behavior may itself lie further upstream, and may be composed of

transcription as well as enzyme components, which have fundamen-

tally different properties and hence generate switch-like behavior via

distinct mechanisms.

To assess the extent to which network composition influences

robustness in generating switch-like behavior, we performed a global

analysis of all network topologies across four compositional classes.

Specifically, each network was simulated under the all-enzyme

(EEE) compositional regime, and the resulting response profiles were

used to compute a score quantifying the network’s robustness in

generating ultrasensitivity and bistability (as described above). The

network was then re-simulated to obtain robustness scores under all-

transcription (TTT) and hybrid (EET, ETT) regimes.

First, across all compositional classes, a significantly larger num-

ber of networks demonstrated ultrasensitive behavior than bistable

behavior (Fig. 3A), in line with the observation in biological systems

that bistability is typically accompanied by ultrasensitivity [5,35,36],

but ultrasensitivity can also arise in the absence of bistability [8,

10,37,38]. Second, within a compositional class, a small proportion

of networks exhibit switch-like behavior on a large percentage of

random parameter sets. The highly skewed nature of robustness

score distributions demonstrates that network architecture alone

can impact robustness, and that a particular network’s probability of

generating switch-like behavior can be dramatically improved with

rewiring, and without fine-tuning of kinetic constants such as those

associated with binding or catalysis. Third, and most importantly,

network composition strongly influences robustness in generating

switch-like behavior. Compared to EEE and TTT classes, networks

in the hybrid EET and ETT compositional classes yield ultra-

sensitive responses on a significantly larger proportion of parameter

sets, with the most robust networks achieving ultrasensitivity

robustness scores as high as 28%; in contrast, maximum ultra-

sensitivity robustness scores in the EEE and TTT classes are 6% and

3%, respectively. For bistability, maximum robustness scores for the

EET and ETT compositional classes are approximately 16% and

18%, respectively, while scores for EEE and TTT classes are

significantly lower at 3% and 1%, respectively (Fig. 3A). Our

findings demonstrate that a particular network topology can yield

markedly different robustness scores under different compositional

regimes, and suggest that minimal networks composed of an

enzyme input component, a transcription output component, and

an additional enzyme or transcription regulatory node may be

optimal for generating switch-like behavior.

Transcription-only networks are suboptimal in generating
switching, even with transcriptional cooperativity

Comparison of network topologies across different composi-

tional classes reveals the unexpected result that purely transcrip-

tional networks are markedly less robust in generating switch-like

behavior. Despite the considerably enlarged set of networks

analyzed—only transcription components were allowed self-regu-

latory links, yielding more possible topologies—the most robust

TTT networks achieved dramatically lower robustness scores than

those achieved by the most robust networks in the optimal EET

and ETT categories.

In our analysis scheme, a transcriptional activation interaction

represents the binding of a single transcription factor to a regu-

latory site, and is hence modeled as a linear reaction. However, a

large number of transcription factors bind to DNA as dimers, and

transcription initiation can itself be inherently cooperative [39];

both characteristics can directly introduce nonlinearity into a

system, and therefore boost the probability of generating switch-

like behavior [13,40,41]. To further investigate the impact of

cooperativity arising out of multimerization and transcription

initiation, we re-analyzed the entire set of networks in the TTT

compositional class with all transcriptional interactions modeled as

cooperative processes (nH = 2). As expected, robustness scores for

both ultrasensitivity and bistability were enhanced, with the most

robust networks generating ultrasensitive responses on 4%, and

bistable responses on 2%, of parameter sets (Fig. 3A, slashed bars).

However, despite including transcriptional cooperativity only in

the TTT class (and not EET or ETT), the best networks in all

other classes are still more robust than any network in the nH = 2

TTT class.

Our results suggest that, in terms of generating switch-like be-

havior, networks composed only of transcription components are

inherently suboptimal relative to hybrid or all-enzyme composi-

tional classes.

Transcriptional feedback enhances switch-like behavior
in hybrid networks

We now highlight some of the prevalent mechanisms contrib-

uting to the robustness differences between circuits in different

compositional classes. In particular, we compare two network

topologies in which a change in the identity of the output com-

ponent C (i.e., either an enzyme or transcription component) leads

to markedly different robustness scores for ultrasensitivity and

bistability.

The network topology depicted in the left-hand column of

Fig. 3B exhibits an ultrasensitive response on 2% of parameter sets

in the EEE compositional context; however, when C is modeled as

a transcription component, the robustness score for ultrasensitivity

is dramatically higher, at 17%. Since A and B are modeled as

enzymes under both EEE and EET regimes, the difference in

robustness scores is entirely attributable to the feedback interaction

from C to A, suggesting that transcriptional feedback enhances the

probability of ultrasensitivity considerably more than activation

feedback. To unravel the mechanisms contributing to the dif-

ference in robustness scores, we compared modules within this

network to known models of ultrasensitivity.

We first examine the network that results when the feedback

interaction from C to A is removed from the topology depicted in

the left-hand column of Fig. 3B. Under both EEE and EET

compositional classes, A acts as an enzyme activator for C, and B is

effectively a background inactivator for both A and C (since there

are no incoming links for B). When the total concentration

(inactive and active) of C is much greater than those of active A

and B, and the effective Michaelis constant (K~
(k1zk2)

k0
, see

Methods) values for activation and inactivation interactions are

sufficiently small, enzymes A and B operate in a zero-order regime,

which in turn causes the system to exhibit ultrasensitive activation

of C [8]. Furthermore, transcriptional feedback from C to A can

Networks Enabling Switching

PLoS Computational Biology | www.ploscompbiol.org 4 June 2011 | Volume 7 | Issue 6 | e1002085



enhance existing ultrasensitivity or confer ultrasensitivity via an

independent mechanism described in the next section.

Zero-order ultrasensitivity can also be generated or enhanced

by transcriptional feedback merely via a concentration effect:

feedback can significantly increase the amount of substrate, which

may in turn enable the system to satisfy the conditions for zero-

order ultrasensitivity. Hence, the presence of transcriptional feed-

back broadens the parameter sub-space in which the system yields

an ultrasensitive response and boosts the overall probability of

generating this behavior. Importantly, although the transcriptional

feedback interaction does require minimal tuning to contribute to

the overall robustness in generating ultrasensitivity, it does not

hinder other mechanisms conferring this behavior.

Enzymatic activation feedback under the EEE compositional

regime can give rise to strong ultrasensitivity [3]; however, in

contrast to transcriptional feedback, activation feedback can also

disrupt other interactions and thus narrow the parameter sub-space

yielding ultrasensitive behavior. For instance, activation feedback

can saturate active A (such that there are no more A molecules that

can be converted into active A), thereby diminishing zero-order

Figure 3. Robustness in switch-like behavior across compositional classes. A. All possible network topologies were constructed and
simulated; response profiles were used to compute robustness scores for ultrasensitivity and bistability for each network topology. This process was
repeated for each compositional class. Histograms depict the distribution of robustness scores for ultrasensitivity and bistability greater than 1%
across all compositional classes; white bars with oblique lines in the TTT plots depict the distribution of robustness scores when each transcriptional
interaction is modeled as being cooperative (nH = 2). Histograms represent ultrasensitivity robustness scores for EEE (226 networks), EET (699), ETT
(1511), TTT (84), TTT nH = 2 (1360) and bistability robustness scores for EEE (119 networks), EET (468), ETT (972), TTT (0), TTT nH = 2 (43). Networks
achieving the highest robustness scores belong to the hybrid classes: the most robust networks in the ETT class achieve the highest scores for both
ultrasensitivity and bistabiltiy, and the most robust networks in EET achieve comparably high scores. B. Ultrasensitivity and bistability robustness
scores for two example topologies under different compositional classes; the same network topology can yield dramatically different robustness
scores under different compositional classes.
doi:10.1371/journal.pcbi.1002085.g003

Networks Enabling Switching
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effects on C. Therefore, the network depicted in the left-hand

column of Fig. 3B achieves a low robustness score, which changes

marginally even when the feedback interaction is removed.

To understand mechanisms underlying differing robustness

scores for bistability, we examined the network depicted in the

right-hand column of Fig. 3B. This network generates a bistable

response on 3% of parameter sets under the EEE compositional

regime, and 8% when C is modeled as a transcription component

(EET). This network contains two positive feedback interactions:

between B and A, which is enzymatic under both EEE and EET

regimes, and between C and A, which is transcriptional under EET

and enzymatic under EEE. Removal of the feedback from C to A

yields the same circuit under both EEE and EET, which achieves

a robustness score of approximately 2%. In contrast, removal of

the B to A feedback yields different circuits under EEE and EET,

with robustness scores of 3% and 4%, respectively. Hence, while

either feedback is sufficient for conferring bistability to the overall

system, their combination leads to a significant increase in

robustness under EET, but not under EEE.

A simple two-enzyme dual-activation system can exhibit bistabi-

lity under certain parameter regimes [3]. In the EEE class, the

network depicted in the right-hand column of Fig. 3B can achieve

bistability via two separate enzymatic feedbacks. However, each

feedback produces more active A, and can saturate it such that the

addition of the second feedback (onto the same target A) has a

diminished effect – since there is a limited quantity of inactive A

that can be activated – and hence does not significantly broaden

the parameter space for bistable behavior. In contrast, under EET,

transcriptional feedback to A produces more inactive A, and hence

does not hinder the enzymatic feedback from B to A. Although

linear transcriptional feedback alone cannot generate bistability

[38,40], it can help confer this behavior in a network in which

the activation interaction is independently ultrasensitive. Hence,

under EET, the two feedbacks in the present network confer

bistability via distinct mechanisms.

Ultrasensitivity via linear transcriptional feedback and
degradation

Transcriptional feedback alone can give rise to modest ultra-

sensitivity via a mechanism distinct from zero-order ultrasensi-

tivity. To investigate this phenomenon further, we separately

modeled a simple system in which a transcription factor C, is

activated by an enzyme A, and active C synthesizes more inactive

C (Fig. 4A). C is synthesized and degraded via background

processes, but unlike in our main topology search simulations, C is

not subject to any inactivation process, which precludes the

possibility of zero-order ultrasensitivity in any parameter regime.

Parameter values for binding, dissociation, synthesis and degra-

dation were varied and the resulting systems of ordinary dif-

ferential equations were numerically integrated on a range of

stimulus concentrations (see Methods for full model details). The

resulting curves were then assessed for ultrasensitivity, and the

results are summarized in Fig. 4B.

The results show that a simple transcriptional feedback system

can generate responses with characteristic nH as high as 2, under

certain parameter regimes. Interestingly, the extent of ultrasensi-

tivity is independent of the explicit enzymatic binding, dissocia-

tion, and catalysis parameters, and instead is dependent on two

dimensionless quantities. If the maximal feedback synthesis rate, v,

is sufficiently greater than the basal synthesis rate, b (i.e., when
v

b
..1), then nH reaches a maximum when the effective feedback

synthesis rate constant
v

KF

(where KF is the concentration of active

C driving additional synthesis of inactive C at rate
v

2
) is

approximately equal to the degradation rate constant kdeg (i.e.,

when
v=KF

kdeg

&1). Hence, when feedback is strong, proper balance

of feedback synthesis and degradation is sufficient to generate

ultrasensitivity.

Minimal architectures for generating ultrasensitivity
Having used our unbiased approach to discover pervasive, yet

simple, interactions that augment the robustness of switch-like

responses, we then took a design-centric view of our results to

understand how these interactions could be combined to yield

topologies exhibiting robust ultrasensitivity and bistability. Specif-

ically, we focused on minimal networks (i.e., networks generating

robust switch-like behavior with fewer interactions and compo-

nents) for two main reasons. First, networks in biological systems

arise via an evolutionary process, and since there is a cost

associated with maintaining each interaction, natural selection is

unlikely to maintain those interactions and components that do

not contribute significantly towards enabling a necessary behavior

(i.e., do not affect fitness). Second, minimal networks may suggest

practical design strategies for engineering switch-like behavior in

synthetic systems.

To identify minimal networks generating robust switch-like

behavior, networks within each compositional class were ranked

by the ultrasensitivity and bistability robustness scores, and only

the top 100 networks in each category were retained. Next, a

pruning step was performed. Briefly, within a particular category,

each network was compared to every other network to determine

if a proper subnetwork of this network having a higher robustness

existed, or if this network’s robustness score was within 15% of the

maximum robustness score. If either was true, the network with

more connections was removed from the list. This procedure

filtered networks with excessive interactions, and made it easier to

identify families of networks. The most robust networks after the

filtering step are presented in rank order in Fig. S3.

Figure 4. Ultrasensitivity via linear transcriptional feedback
and degradation. A simple linear transcriptional feedback system can
give rise to ultrasensitivity even in the absence of an inactivating enzyme.
Note that this figure pertains to simulations on a minimal model different
from the setup used for the topology search simulations (see Methods).
A. In this system, the transcription factor C is activated by an enzyme, A. C
is subject to basal synthesis and first-order degradation, but not to
inactivation. B. The model was simulated on 106 random parameter sets,
and a random subset of the results was plotted. Each dot represents a
separate simulation on a random parameter set, and the color of the dot

denotes the value of the dimensionless ratio
v

b
in that parameter set

(where b is the basal synthesis rate and v is the maximal feedback

synthesis rate). If
v

b
is sufficiently high, then the Hill coefficient reaches a

maximum when the effective feedback synthesis rate constant
v

KF
(where KF is the threshold concentration) is approximately equal to the
degradation rate constant kdeg.
doi:10.1371/journal.pcbi.1002085.g004
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A global view of the resulting topologies (Fig. S3) reveals strong

consensus patterns and suggests that the set of robust, minimal

networks readily clusters into a small number of families. Com-

parison of ultrasensitive and bistable networks within and across

compositional classes reveals that networks with more interactions

do not consistently rank higher than sparser networks, indicating

that specific mechanisms conferring switch-like behavior cannot

necessarily be combined to yield more robust networks, due to the

possibility of interference. Despite this, a few simple motifs are

particularly prevalent within a given compositional class (e.g., A

activating B, which in turn activates C under EEE) and even across

compositional classes (e.g., A activating C, which upregulates A

under EET and ETT), indicating that such robust motifs can act

as modular building blocks for conferring switch-like behavior to a

system. In addition, the pruning procedure strikingly reduces each

set of the 100 most robust networks to less than 20 networks in all

but one compositional class, indicating that the set of networks

generating robust switch-like behavior constitutes a very small

fraction of the overall network space; below we discuss how this

subspace reduces even further to a few distinct mechanisms.

The simplest network considered in our analysis, a two com-

ponent topology with a positive interaction from A to C, yields an

ultrasensitivity robustness score of approximately 5% under the

EET compositional regime (Fig. 5). The ultrasensitivity exhibited

by this circuit is entirely attributable to zero-order effects arising

from the enzymatic cycle of induced activation of A and back-

ground inactivation. The addition of a transcriptional interaction

from C to A yields a robustness score of 17%; strikingly, the A-to-C-

to-A motif is present in all of the 100 most robust circuits in the

EET class. An additional auto-regulatory transcriptional interac-

tion onto C instead yields a robustness score of 15%. The

combination of both C-to-A and C-to-C feedbacks yields a parti-

cularly high robustness score of 26%, making the dual-feedback

circuit the most robust in the EET class after filtering. Together, the

two feedbacks introduce independent non-interfering mechanisms

for generating ultrasensitivity and enhance the probability of zero-

order effects in the activation of C via a concentration effect. Thus,

our analysis suggests that a simple network with two transcriptional

feedbacks is among the most optimal configurations for generating

ultrasensitivity.

Although networks in the all-enzyme EEE class yield signifi-

cantly lower robustness scores, it is worth noting that the pruning

procedure drastically trims the list of the 100 most robust networks

in the EEE category to three very simple networks (Fig. S3). The

most robust network, A activating B, which in turn activates C,

represents a basic enzyme activation cascade. In the A-to-B-to-C

network, ultrasensitivity can arise via two distinct mechanisms.

First, the activation of B by A can be ultrasensitive if both A and

the background inactivator for B behave in a zero-order manner.

The ultrasensitivity can be further enhanced if the activation of C

by B is similarly configured. Second, even in the absence of

inactivating enzymes (and hence without zero-order effects), this

cascade architecture itself can generate ultrasensitivity de novo [42].

Minimal architectures for generating bistability
Examination of the most robust bistable networks in the ETT

category (Fig. 6) reveals that although there is no obvious minimal

motif conferring bistability, there is a clear bias towards multiple

positive transcriptional feedback interactions. However, positive

transcriptional feedback alone cannot confer bistability to a sys-

tem, a point that is affirmed by the observation that the most

robust networks in the transcriptional-only TTT category yield

drastically lower scores. Closer inspection of the most robust

networks reveals that in all of the top 100 networks, A activates C,

which upregulates A. This simple hybrid motif of enzymatic

activation and transcriptional feedback can yield bistability only

Figure 5. Minimal architecture for generating robust ultrasensitivity. Starting with a simple network, incremental addition of specific
interactions significantly improves robustness in generating ultrasensitivity. The map to the right lists the eight most robust network topologies
generating ultrasensitivity in the EET class, after pruning; positive, negative, and no interactions are depicted with green, red, and black, respectively.
doi:10.1371/journal.pcbi.1002085.g005
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if the activation step is independently ultrasensitive. In the space

of networks considered in our analysis, bistability can arise via

enzymatic activation and transcriptional feedback if the activation

of C by A is ultrasensitive due to either zero-order effects or

transcriptional autoregulation of C. Under ETT, bistability can

also arise due to analogous interactions between A and B.

Importantly, our results also suggest that adding multiple in-

stances of the enzymatic activation and transcriptional feedback

motif to a single system does not hinder existing interactions, and

can hence boost the probability of exhibiting a bistable response. In

contrast, mechanisms such as cross-antagonism do appear in our

analysis but are not highly ranked because of their stringent

balancing requirements and fragility to interference by other inter-

actions. For instance, in the two-component ETT network in which

A activates C, and C upregulates A and itself, around 15% of the

parameter sets yield ultrasensitivity but not bistability. To further

explore the impact of combining motifs, we duplicated the dual

transcriptional feedback motif in the same network by adding

analogous interactions between A and B, and simulated the

expanded network on the parameter sets that yielded ultrasensitivity

but not bistability for the single motif network (parameter values for

the added A-B, B-B, and B-A interactions were set to be the same as

those for the A-C, C-C, and C-A interactions, respectively). We found

that the expanded network with the duplicated motif converted

more than 80% of previously ultrasensitive-only responses into

strongly bistable responses. Since B and C are not directly con-

nected in the expanded topology, the enhanced robustness can be

attributed to increased nonlinearity in the activation response of A.

Introduction of additional upregulation interactions from B to C,

and C to B, further boosts the overall robustness score from 13% to

18%; this dual upregulation motif can confer bistability to circuits

that exhibit only ultrasensitivity. While it is difficult to ascertain

the exact contribution of each interaction in generating bistability

as the network connectivity increases, our results point to the

overarching principle that layering transcriptional feedback on an

independently ultrasensitive activation interaction can act as a

reusable building block for conferring bistability.

A noteworthy point about our results is that the robustness

scores are bounded due in part to circuits which are otherwise

bistable, but yield responses in which the ratio of maximum re-

sponse to baseline response is low; this can arise in circuits with

multiple positive feedbacks, for which basal activation alone is

sufficient to switch the system into the on state. However, since our

study is primarily focused on networks that can be modulated via

an external stimulus, only responses that exhibit $10-fold increase

in active C were considered.

Comparison with networks in biological systems
Network families suggested by our analysis exhibit strong re-

semblance to circuits that have been previously shown to exhibit

switch-like behavior in natural systems, and here we discuss a few

striking examples of simple, elegant circuits that robustly regulate

critical cellular decision-making.

The Drosophila protein Yan is a transcriptional repressor that

inhibits differentiation; specifically, in the embryo, ultrasensitivity

in Yan phosphorylation enforces a sharp boundary separating

developmental domains [43]. Binding of the ligand Spitz to the

epidermal growth factor receptor (EGFR) leads to the graded

activation of the mitogen-activated protein kinase (MAPK) path-

way, and eventually results in the phosphorylation of Yan; Yan

dephosphorylation can occur via a separate phosphatase (Fig. 7A)

[10,44]. Phosphorylation of Yan makes it a target for degradation

and thus promotes differentiation. Systematic perturbation of the

network demonstrated that its robust ultrasensitivity is attributable

to zero-order effects arising from the high levels of Yan relative to

the concentrations of the kinase and phosphatase acting on this

substrate [10].

MAPK pathways include a core, three-step cascade, and

comprise an evolutionarily conserved family that enables eukary-

otic cells to respond to a diverse array of signals [14,45]. Ultrasen-

sitivity has been observed in MAPK cascades in several organisms,

most notably in Xenopus (Fig. 6). Immature Xenopus oocytes can be

induced into maturation by treatment with the hormone pro-

gesterone, which acts via the MAPK signaling cascade: binding of

progesterone to its receptor leads to the accumulation of active

Mos, which activates MEK, which in turn activates ERK2 (also

known as p42 MAPK). Active ERK2 can then activate cyclin B-

CDK1 complexes which bring about entry into M-phase, leading

to maturation. The three-tier cascade of Mos, MEK, and ERK2

has been demonstrated to exhibit ultrasensitive activation of

ERK2 [35,46]. The architecture of this cascade is essentially the

Figure 6. Coupling of ultrasensitive activation and positive synthesis feedback yields robust bistability. The upper row depicts
molecular mechanisms derived from simulation results and the lower row depicts concordant examples in oocyte maturation. In our simulations,
ultrasensitivity can arise via zero-order effects, enzyme cascading, and linear synthesis feedback. These motifs can yield bistability when coupled with
positive synthesis feedback, and multiple feedbacks contribute to the robustness of this bistability. The map to the right lists the eight most robust
network topologies generating bistability in the ETT class.
doi:10.1371/journal.pcbi.1002085.g006
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same as the topology in the EEE class that ranks first in terms of

robustness in generating ultrasensitivity in our analysis. Although

ultrasensitivity in MAPK network can arise via several mecha-

nisms, including zero-order effects and multi-site activation, the

cascading architecture itself can amplify existing ultrasensitivity

[47] and even generate ultrasensitivity where none exists [42].

The ERK2 response to progesterone treatment is also bistable.

Immature oocytes treated with progesterone proceed to matura-

tion even after progesterone is subsequently removed from the

environment. The bistability observed in this system is attributed

to a positive feedback from ERK2 that leads to increased synthesis

of Mos [5]. Cdc2, another major driver of oocyte maturation, is

involved in a positive feedback loop with Cdc25, and is also con-

nected to the ERK2 system via mutual positive feedback interac-

tions [5]. While important differences exist, the oocyte maturation

system architecturally resembles the family of most robustly

bistable topologies in the ETT class, which can yield ultrasensitive

activation of B and C via zero-order effects or transcriptional

feedback. Robust bistability can be generated by layering positive

feedback onto ultrasensitive activation motifs, with additional

minor gains in robustness achieved with positive crosstalk between

ultrasensitive nodes (i.e., B and C). Similarly, the oocyte matur-

ation system can generate ultrasensitive activation via cascading

and other mechanisms, with robust bistability being achieved by

multiple positive feedback interactions.

Another example is the network linking the erythropoietin

receptor (EpoR) to the transcription factor GATA1 (Fig. 7B); it

exhibits strong ultrasensitivity and helps confer bistability to the

circuit regulating commitment to the erythrocytic lineage [36].

Briefly, the binding of the cytokine erythropoietin (Epo) to EpoR

triggers the activation of GATA1, which in turn leads to the

initiation of a transcriptional program for erythropoiesis. This

circuit contains two feedback loops, with GATA1 transcriptionally

up-regulating both EpoR and itself; the EpoR-GATA1 architecture

is essentially the same as that depicted in Fig. 5 and described in the

previous section; it ranks first in robustness (26%) in generating

ultrasensitivity and also exhibits strong bistability (13% robustness).

Step-wise dissection of a synthetic circuit
Networks achieving high robustness scores for ultrasensitivity

and bistability have increased probabilities of exhibiting switch-like

behavior in multiple biological systems and contexts. Although

properties of components and the encompassing environment can

constrain the effective parameter space and hence alter the

ranking, a global analysis of topologies that can generate a desired

behavior can help eliminate poor design choices and accelerate the

implementation of synthetic circuits. We now highlight a few

relevant findings from a separate study by our group which

focused on the construction of a circuit exhibiting strong switch-

like behavior [48], and we discuss how the topology search method

can serve as an effective design tool for synthetic biology.

The synthetic Saccharomyces cerevisiae circuit depicted in Fig. 7C

consists of the heterologously expressed Arabidopsis thaliana receptor

CRE1 (AtCRE1), the endogenous SKN7 transcription factor, and

GFP as a reporter, and is topologically the same as the ones

presented in Figs. 5 and 7B. Binding of the cytokinin isopente-

nyladenine (IP) to yeast-expressed AtCRE1 has previously been

shown to activate endogenous SKN7 [49,50]. In our circuit, active

SKN7 was synthetically wired to up-regulate the transcription of

itself, AtCRE1, and the reporter GFP. To assess the contributions

of specific topological connections in generating ultrasensitivity

with respect to IP stimulus, the circuit was implemented in yeast

with and without the feedback interactions. In the absence of

feedback, the underlying circuit exhibits weak ultrasensitivity

(nH<2). Addition of receptor feedback does not impact ultra-

sensitivity regardless of promoter strength; since the total con-

centration of SKN7 is low, initial activation saturates active SKN7

levels before the feedback interaction can take effect. Autoregula-

tion of SKN7 alone does non-trivially augment the ultrasensitivity

(nH<4); this enhancement arising from the increased concentration

of SKN7 can be attributed to the non-linearity introduced by

autoregulation (Fig. 4) and possibly to more pronounced zero-order

effects if endogenous enzymes inactivate this transcription factor

(Fig. 7A). The complete circuit with both feedback interactions

exhibits extremely strong ultrasensitivity (nH<20) and reasonable

bistability (W<2–3) in response to IP, which is in agreement with

our predictions.

The primary objective of this study was to obtain a high-level

architectural view of the network topologies yielding robust ultra-

sensitivity and bistability. To keep the simulations and subsequent

analyses tractable, we employed simplifying assumptions which

may affect interpretation of our results. First, for protein syn-

thesis, transcription and translation processes were lumped into a

single expression which may mask additional dynamics in the

case of long-lived mRNA. Second, in our analysis scheme,

transcriptional components upregulate the inactive form of their

target species, and we find that this type of interaction alone in

the TTT class is far less robust in yielding switch-like behavior;

however, in some biological systems, transcription factors can

effectively act as enzymes by interacting with other co-activators

and co-repressors, and this can increase their ability to yield

switch-like behavior. Third, we used simple thresholds for iden-

tifying responses as ultrasensitive (nH.2) and bistable (W.5), and

did not focus on the extent of ultrasensitivity or bistability, which

may be important in certain biological contexts; however, our

general conclusions are not dependent on these specific filtering

thresholds.

In conclusion, our analysis shows that although a large number

of network topologies exhibit switch-like behavior, only a small

fraction of the topologies can be expected to yield ultrasensitive

and bistable responses in the context of a noisy and evolving

environment. Network motifs generating robust ultrasensitive and

bistable responses can help identify circuits with such properties in

natural systems and can also suggest design strategies for synthetic

implementation of switching behavior.

Figure 7. Comparison with natural and synthetic systems. A.
Yan is a critical regulator of differentiation pathways in development,
and generates ultrasensitivity via zero-order effects. B. The EpoR/GATA1
receptor/transcription factor pair can generate ultrasensitivity critical to
the regulation of commitment to the erythrocytic lineage; this network
is architecturally the same as the highest ranking network depicted in
Fig. 5. C. The synthetic AtCRE1/SKN7 hybrid network depicted exhibits
robust switch-like behavior in yeast. This network is architecturally the
same as those in Figs. 5 and 7B.
doi:10.1371/journal.pcbi.1002085.g007
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Methods

Network construction and modeling
The overall topology search scheme is based in part on a

previously described method [27]. All possible two- and three-

component topologies were constructed, with stimulus and active

C considered the input and the response, respectively, for steady-

state characterization (Fig. 1); networks lacking reachability from

A to C were discarded. Depending on the compositional class

analyzed, network components (A, B, C) were modeled as either

enzymes or transcription factors. All components exist in two

forms, inactive and active, which can be either free or bound to

another species as part of a complex. Only active forms, denoted

with an asterisk, carry out reactions. All species are subject to basal

synthesis and degradation, as well as activation and inactivation by

background components. For instance, accounting for background

reactions leads to the following rate equations for C and C*:

dC

dt
~bsyn{kdegC{kPP

C

CzKP

zkQQ
C�

C�zKQ

z . . . ð1Þ

dC�

dt
~{kdegC�zkPP

C

CzKP

{kQQ
C�

C�zKQ

z . . . ð2Þ

where P and Q are the background activating and inactivating

enzymes, respectively. Enzymatic interactions among main species

were modeled using mass-action kinetics; for instance, here active

enzyme B* binds to inactive C, forming a complex, W, which can

either dissociate or catalyze the activation of C into C*:

B�zC {{{{?
k0,B�C

W

W {{{{?
k1,B�C

B�zC

W {{{{?
k2,B�C

B�zC�

This set of interactions, modeled explicitly by law of mass action,

yields the following terms in the relevant rate equations:

dC

dt
~{k0,B�CB�Czk1,B�CWz . . . ð3Þ

dW

dt
~k0,B�CB�C{k1,B�CW{k2,B�CWz . . . ð4Þ

dC�

dt
~k2,B�CWz . . . ð5Þ

dB�

dt
~{k0,B�CB�Czk1,B�CWzk2,B�CWz . . . ð6Þ

Inactivation interactions are handled similarly, except that the

intermediate complex consists of two active species; for instance,

B* can inactivate C* by binding to it and releasing C after catalysis.

(For this set of reactions describing the activation of C into C*, the

effective Michaelis constant is K~
(k1zk2)

k0
.)

The stimulus for the system, S, binds to the receptor, A, in the

form of a ligand:

dA

dt
~{k0,SASAzk1,SAA� . . . ð7Þ

dA�

dt
~k0,SASA{k1,SAA� . . . ð8Þ

The interaction between A and S is in addition to any interactions

between A and other components, and background processes that

act on all components, modeled by terms analogous to the ones

depicted in equations 1–6. Collectively, interactions involving A

represent two distinct biological mechanisms. The ligand-mediat-

ed activation of A represents a phosphorylation or other modi-

fication event immediately downstream; such a modification can

also occur without involvement of the ligand, in which case this

biological mechanism is modeled using enzymatic reactions.

Transcriptional interactions result in the upregulation of the

inactive form of the target component; for instance, here active

transcription factor B* upregulates inactive C:

dC

dt
~vBC

(B�)nH

(B�)nH z(Ksyn,BC)nH
z . . . ð9Þ

A transcriptional Hill coefficient value of nH = 1 was used for all

simulations, except for the re-simulation of circuits in the TTT

class where nH = 2 was used, as described in Results/Discussion.

Transcriptional inhibition is modeled as a competitive inhibition

interaction; for instance, here A* inhibits the upregulation of C by

B*:

dC

dt
~vBC

(B�)nH

(B�)nH z(Ksyn,BC(1zA�))nH
z . . . ð10Þ

A scheme similar to Latin hypercube sampling [51] was used to

generate 103 random parameter sets, with non-dimensionalized

interaction parameter values (details given in Table S1) selected at

uniform intervals on a logarithmic scale: k0,(102,103); k1,(100,

104); k2, kP, kQ,(101,105); Ksyn,(1021,101); KP, KQ,(1023,101);

v,(1023,101). Application of parameter sets yielded 103 circuits for

each network. Except where noted, the following parameters were

held constant: bsyn = 0.01, kdeg = 0.01, P = 0.01, Q = 0.1.

Simulation and assessment of switch-like behavior
Each naı̈ve circuit was simulated to steady-state on a range of

stimulus concentrations; levels of A, B, and C at the highest stimulus

concentration were recorded and used as initial levels in another

round of simulations to assess bistability. For ultrasensitivity, the

stimulus levels at which the output reaches 10% and 90% were used

to estimate nH (Fig. 1A) [8] and the following formula was used to

estimate the maximum local response coefficient [30]:

max
d ln C�

d ln S

� �

The forward and backward response profiles were used to estimate

W (Fig. 1B); to be considered part of the bistable window of a

response, the ratio of active C* in the forward and backward solves

at a particular stimulus concentration had to be at least 5 and the

difference had to be greater than 0.1. Activation responses not

positively correlated with the stimulus or exhibiting less than a ten-

fold increase from basal levels were not assessed for ultrasensitivity

or bistability.
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Transcriptional feedback model
The separate transcriptional feedback system described in the

text and presented in Fig. 4 was modeled as follows. A is an

enzyme that catalyzes the conversion of C into C*, with the

complex Y as an intermediate species. All species, C, Y, and C* are

subject to first-order degradation. However, there is no inactivat-

ing enzyme, and hence zero-order ultrasensitivity cannot arise.

AzC {?
k0

Y

Y {?
k1

AzC

Y {?
k2

AzC�

dC

dt
~b{kdegC{k0CAzk1Yz

vC�

KF zC�
ð11Þ

dC�

dt
~{kdegC�zk2Y ð12Þ

dY

dt
~{kdegYzk0CA{k1Y{k2Y ð13Þ

Supporting Information

Figure S1 Maximum local response coefficient correlates
with estimated Hill coefficient nH. In addition to estimating

nH, the maximum local response coefficient was also computed for

each network. This plot shows how the two metrics compare for all

simulations of the double-feedback network topology under EET

depicted in Fig. 5.

(EPS)

Figure S2 Robustness scores converge in 103 simulated
parameter sets. The double-feedback network depicted in Fig. 5

was simulated on 103 parameter sets, for 100 runs. The histogram

shows the distribution of robustness scores obtained.

(EPS)

Figure S3 Network topologies ranked by robustness in
generating ultrasensitivity and bistability. Networks

within each compositional class were ranked by ultrasensitivity

and bistability robustness scores. Only network topologies ranking

in the top 100 robust networks in their respective compositional

classes were included. Networks with additional, non-contributing

interactions were filtered from the list as described in the main

text.

(EPS)

Table S1 Parameter ranges and non-dimensionaliza-
tion.
(PDF)
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