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Abstract

The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime,
including the random number of phosphorylations, the catalytic activity and the random sojourn time at each
phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However
the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood.
The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the
biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The
model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers
of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The
sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random
sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the
sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas
the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the
number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the
variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor.
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Introduction

In retinal rod photoreceptors, rhodopsin activated by photons

of light, denoted by R�, initiates a signal transduction cascade to

produce a suppression of electrical current flowing into rod outer

segment (ROS). Following isomerization, a molecule R� under-

goes a random number of phosphorylations by rhodopsin kinase

(RK) and finally is inactivated by arrestin (Arr) binding.

Activated rhodopsin R�, moving along its random path, during

its random lifetime from isomerization to Arr binding, keeps

activating its cognate G-protein (G) transducin, while its catalytic

activity declines with increasing level of phosphorylation. The

active G-protein (G�) associates with the effector protein

phosphodiesterase (E) forming an active G�-E� complex, which

by hydrolyzing cGMP reduces its concentration, thereby

generating a current response on the outer shell of the ROS.

The dynamics of R� during its lifetime, including the random

number of phosphorylations, the catalytic activity and the

random sojourn time at each phosphorylation level, regulates

the production of G� and therefore the current response.

Because of the randomness in the components of the activa-

tion/deactivation cascade, the electrical responses are expected

to be inherently variable. However, the single photon response

(SPR) exhibits a low variability in the sense that the amplitude

and shape of the electrical responses, corresponding to a set of

activation-deactivation events, are similar. It is reported that the

Coefficient of Variation (CV = standard deviation/mean) of the

SPR area for mouse is about 36% [1]. However, the mechanisms

that confer high reproducibility of the SPR are not completely

understood.

Several studies [1–7] attribute the high reproducibility of the

SPR mainly to the mechanisms regulating rhodopsin deactivation.

Although the models proposed in these studies account for the low

variability of the response, they impose, in one way or another,

certain restrictions on the biochemistry of rhodopsin deactivation.

For example, if rhodopsin’s integrated activity occurs in k

independent steps, it is assumed that each step controls an equal

fraction of rhodopsin’s integrated catalytic activity [1,2]. It is then

natural to ask what is the statistical mean N of the number k, as a

way of testing both the models and the supporting biochemical
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assumptions. Mechanistically, one might ask which of the

components of the deactivation cascade contribute more impor-

tantly to the variability.

A major difficulty with these issues is to experimentally separate

the various components that contribute to the variability. To our

knowledge, the activation/deactivation module of the cascade is

not, to date, experimentally separable from the transduction

module. We have shown in [8] that diffusion of the second

messengers in the cytoplasm acts as a variability suppressor. The

separation between the activation cascade on the disks and the

diffusion of the second messengers cGMP and Ca2z in the

cytoplasm is realized by a mathematical model [8–11]. Likewise

several fine properties of the biochemical and biophysical

mechanisms regulating the recovery and reproducibility of SPR

are not, to our knowledge, experimentally separable. Here we

attempted to tease apart the various components of the R� shutoff

mechanism and analyze to what extent each of them contributes to

the variability of the SPR. Unlike the transduction part of the

cascade, where the intricacy is of geometrical nature [9–11], the

main difficulty here is stochastic. Rhodopsin inactivation can

occur by several mechanisms, including Arr binding and thermal

decay to opsin. We only model the former, as the latter occurs on a

much longer time scale [12,13]. Shutoff of R� by Arr binding can

follow, in principle, an infinite number of paths, depending on the

random number of phosphorylated states, and the random sojourn

times in those states.

The biochemistry that regulates rhodopsin deactivation is put

into a stochastic framework, which reproduces the SPR both in

WT and in mutant mice, and is capable of analyzing the

randomness of each phosphorylation state of R�. This is interfaced

with the spatio-temporal model in [8,9,11], capable of tracking the

diffusion of the second messengers in the cytoplasm and of

detecting the effects of geometrical changes of the ROS on the

photoresponse.

We find that the randomness of the sojourn times of R� in each

of its phosphorylation states acts as the dominant factor

contributing to the CV of the response. At the same time the

number of available phosphorylation sites or the random number

of R� phosphorylations before shutoff, is shown to contribute little

to variability suppression.

We also find that, in addition to changed biochemistry, the

geometry of the ROS might be important for the light response in

mutant mice.

Results

The technical aspects of the mathematical model are presented

in Methods. Here we illustrate the main links between statistics,

biochemistry and geometry. Label by the integer i the state at

which activated rhodopsin R� has acquired i{1ð Þ phosphates.

Thus for example if i~4 then R� has acquired 3 phosphates.

Then either R� can acquire a further phosphate at a rate li

(determined by RK phosphorylation rate), or it can be quenched

by Arr at a rate mi (determined by Arr on-rate). While in the i{th
state, R� activates G protein with catalytic activity ni. Finally R�

remains in the i{th state a random sojourn time si, of mean ti.

This is a typical sequence of Bernoulli trials whose statistical

description by a Continuous Time Markov Chain (CTMC) is well

known and standard [2,14–16].

The main point of the model is in introducing a theoretical

scheme that identifies the parameters of each of these steps in

terms of their biochemical role. It turns out that WT responses

alone are not sufficient to identify the parameters li,mi,ti,nif g.
They are identified using recent experimental data obtained in

genetically modified mice ([17–20]).

When these parameters are identified, the CTMC translates the

deactivation cascade into the probabilities Pi tð Þ for rhodopsin to

be in the i{th state at time t. The output of the activation/

deactivation cascade, computed by this CTMC scheme, and

measured in terms of activated effector E�, is then used as input in

the spatio-temporal model introduced in [8–11]. The latter

describes the dynamics of the second messengers cGMP and

Ca2z in the cytoplasm of the ROS, and the generation of

photocurrent jtot tð Þ flowing through the cell membrane of the

ROS, as a function of time t. These two modules, so interfaced,

provide a systems approach to phototransduction by mathemat-

ically separating, and then blending, the random events of the

activation cascade occurring on a disk, the diffusion of second

messengers in the cytoplasm, and current suppression on the outer

shell.

The variability of the effector E� is described by the following

functionals:

E�(t) total number of molecules of E� in

Deff at time t

E�int tð Þ~
Ð t

0
E� sð Þds total activity of E� up to time t

E�area~
Ð?

0
E� tð Þdt total activity of E� over the

entire lifetime of the process

E� t�peak

� �
peak value of E� tð Þ:

ð1Þ

The last two are scalar quantities and their CV is reported in

Table 1. The first two are functions of time. The CV of the second,

as a function of time is reported in Figure 1 (left). The natural

variable functionals of the photocurrent are

Author Summary

Reception and transmission of biological stimuli such as
vision, olfaction, taste, and hormone and neurotransmitter
signal transduction, contain inherently variable compo-
nents. Yet, biological functions are stable and reliable. For
each signaling process, it is of interest to investigate the
causes of variability and the mechanisms by which
variability is mitigated to yield responses that reliably
reflect the strength of the stimulus. We have investigated
the variability of the single photon response in rod
photoreceptors. A photon of light is captured by a
receptor rhodopsin, and it goes through a series of
biochemical states ending with a random shutoff. We
have created a mathematical model of such a process,
based on the recent biochemical findings on activation/
deactivation, capable of reproducing the peculiar experi-
mental features of visual trasduction both in wild type and
genetically modified mice. We have found that the
randomness of the time that rhodopsin sojourns in each
of these biochemical states is the dominant cause of
variability, whereas diffusion of molecules carrying the
signal within the cell acts as variability mitigators.

Rhodopsin Decay and Variability
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Table 1. Coefficients of variation, tR;eff&75 ms.

Sites 0P 1P 2P 3P 4P 5P 6P(WT)

E� t�peak

� �
Case1 0.00 0.12 0.21 0.35 0.40 0.44 0.46

Case2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Case3 0.00 0.12 0.21 0.35 0.40 0.43 0.45

E�area Case1 0.00 0.02 0.03 0.57 0.56 0.57 0.57

Case2 0.00 0.00 0.00 0.00 0.02 0.02 0.03

Case3 0.00 0.02 0.03 0.57 0.56 0.56 0.55

teorð ÞE�area
Case1 - - - 0.56 0.54 0.52 0.51

I tpeak

� �
Case1 0.00 0.04 0.07 0.16 0.23 0.27 0.30

Case2 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Case3 0.00 0.04 0.07 0.17 0.22 0.26 0.29

Iarea Case1 0.00 0.01 0.01 0.37 0.36 0.37 0.38

Case2 0.00 0.00 0.00 0.00 0.01 0.02 0.02

Case3 0.00 0.01 0.01 0.38 0.36 0.37 0.37

CV (s=m) calculated for a 3 s simulation and 5000 trials for each of Case 1: Fixed number of steps to R� shutoff and random sojourn times si ; Case 2: Fixed sojourn
times si and random number of steps to R� ; Case 3: Both sojourn times si and R� shutoff steps are random. The parameters tR� and tR;eff and their equivalence for WT
mouse are discussed in the section } Parameters. The theoretical values of teorð ÞE�area are reported for 3-6P as the theoretical formula of Eq:3-Eq:4 is valid only for these
cases.
doi:10.1371/journal.pcbi.1001031.t001

Figure 1. Comparing the CVs of the total activated effectors E�int tð Þ~
Ð t

0 E� sð Þds at time t with the CVs of the total relative charge
Iint tð Þ~

Ð t

0
I sð Þds up to time t. All simulations assume both the sojourn time and the number of R� shutoff steps as random (Case 3 of Test Cases).

The CVs of both E�int tð Þ and Iint tð Þ stabilize asymptotically for three or more phosphorylation sites (3P–6P). A CV of about 60% for E�int tð Þ at times past
the peak time is reduced to a CV of about 40% for the corresponding photocurrent Iint tð Þ. This points to an intrinsic variability reduction effect of the
diffusion part of the process.
doi:10.1371/journal.pcbi.1001031.g001

Rhodopsin Decay and Variability
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I tð Þ~1{
jtot tð Þ
jdark

total relativeð Þ current sup pression

at time t

Iint tð Þ~
ðt

0

I sð Þds total relativeð Þ charge suppression up

to time t

Iarea~

ð?
0

I tð Þdt total relativeð Þ charge suppression over

the time course of the phenomenon

I(tpeak) peak value of I(t):

ð2Þ

While the last one is the value of the first at peak time, we have

listed it separately since it is frequently reported in the literature

[5,6,21]. I tpeak

� �
is a scalar quantity and its CV is tabulated in

Table 1. The first two are functions of time. The CV of the second

is graphed as a function of t in Figure 1 (right). The quantity Iarea is

the total relative charge produced over the entire time course of

the phenomenon following isomerization by a single photon and is

referred to as the SPR area [1,2,4,22].

Simulating the SPR in Transgenic Mice
Deactivation of rhodopsin with one or several mutant

phosphorylation sites, can be simulated by suitable choices of the

sequences lif g and mif g as indicated in the section of numerical

procedures and methods.

Mutant mouse rhodopsins bearing fewer than 6 phosphorylation

sites generate SPRs of significantly extended durations (Figure 2A).

The rate of recovery increases with increasing numbers of

phosphorylation sites (Figure 2A), in qualitative and quantitative

agreement with the experimental results of [3] (Figure 2B).

Inactivation of all rhodopsin phosphorylation sites is realized by

either mutation of all six serines and threonines to alanines [1,3],

or rhodopsin kinase knockout [23]. The corresponding SPRs are

similar, exhibiting larger amplitude and longer duration than WT

(Figure 2B,D for (0P)).

A prolonged SPR in mutant mouse rods lacking arrestin is

reported in [24] (Figure 2D). This is realized by setting mi~0 for

all i~0,1, . . . ,6 in the model. The activated rhodopsin gets

phosphorylated until all six sites are occupied. Its activity is

reduced with increased phosphorylations, and kept fixed after the

last phosphorylation for the remainder of the process. The

remaining activity yields a response with an asymptotic tail at

almost half of its peak value. The initial fall of the response is

triggered by phosphorylation. The simulations are shown by (–/–)

in Figure 2C, and are qualitatively and quantitatively in agreement

with the experimental studies of [24] (Figure 2D).

In Table 2 we report the simulated characteristics of SPRs from

WT rods and those expressing rhodopsin mutants. By increasing

the number of phosphorylation sites, the peaks of the current

response I tpeak

� �
decrease; the time to peak tpeak decreases; and

the SPR area Iarea decreases significantly. For mutants that exhibit

very slow recovery (0P, 1P, 2P) the corresponding Iarea is large

because the current remains high for an extended period of time.

The value of Iarea has been computed by integrating the

photocurrent over the time of simulation (3s).

When only one phosphorylation site was mutated, the SPR was

almost like that of WT but recovery was slightly slower. Consistent

with this slower recovery, the SPR area Iarea of the response of

rhodopsin with five phosphorylation sites (5P) was about 14%
larger than those for wild type. Taken together, these results are

consistent with the experimental observations of [3] and the notion

that normal kinetics of R� deactivation requires the presence of all

six phosphorylation sites.

We finally comment on the largest rising curves coded in red in

Figure 2B and D. Various experimental studies [3,23] show that

the response amplitude for the case (0P) is roughly twice as large as

the response for the case (1P). In [3] the case (0P), is realized

by CSM, and in [23] by RK knockout. In both cases all

phosphorylation sites are removed or made inoperative, and both

cases exhibit the double amplitude response, suggesting a common

mechanism. This issue is not discussed in the indicated papers and

we are not aware of an explanation or hypothesis for a possible

biochemical mechanism. However, Figure 2 of [3] shows that the

ROS in CSM mice were about 25% shorter than WT.

Geometrical changes due to genetic manipulations are also

discussed in [23] (page 3720), and [24], (Figure 3d, page 506).

We repeated the simulations with a ROS whose height H was

reduced by 30%, while all the remaining parameters were kept

fixed. In particular, the number of channels was kept fixed,

thereby increasing their density. Since the response is localized

close to the activation site [10,11], the augmented channel density

yields a larger response. The resulting simulation is reported in

Figure 2A for (0P*) as the largest amplitude (red curve). While the

agreement with corresponding experimental curve in Figure 2B is

striking, at this point we refrain from suggesting that this as the

only functional mechanism.

Variability
The CTMC model permits one to test independently the effects

of the random components of the variability on the response. For

example one can separate the effects of the randomness of the

sojourn time from the randomness of number of shutoff steps. To

achieve this, we performed the following sets of simulations:

N Case 1. Fix the number of steps to R� shutoff at that integer

closest to its mean N , and let R� have random sojourn time

si at the corresponding state. The random numbers si are

generated according to their exponential distribution with

mean ti.

N Case 2. Fix the sojourn times of R� at their mean ti and let

R� be shut off in k random steps. The random number k of

R� shutoff steps is generated by a series of Bernoulli trails, in

which the probability of phosphorylation is
li

lizmi

and the

probability of Arr binding is
mi

lizmi

. Thus the mean N of the

random number k is computed from Eq:10–Eq:11.

N Case 3. Both sojourn time si and the number of shutoff

steps k are random. This is the biologically realistic case,

although the previous cases extract the effect of the

randomness of each component on the variability of the

response.

Stochastic simulations are effected for WT and each of the

knock-out cases of COOH-terminal truncations [24,25] and RK

knockout [1,3]. After about 5,000 numerical simulations, up to 3 s,

mean, standard deviation and CV are computed for effector and

normalized current suppression. Further technical details are in

Methods.

Variability of E�. The first two lines of Table 1 report the

CV of the scalar quantities E�area, and E� tpeak

� �
defined in Eq:1,

and for R� bearing i~0,1, . . . ,6 phosphorylation sites. The first

Rhodopsin Decay and Variability
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Figure 2. Simulations SPR for mutant phosphorylation sites of R�, or with Arr knockout. Panel A: Simulated SPRs for rhodopsin with a
number n~0,1, . . . ,6 of available phosphorylation sites (thus 6{nð Þ sites are mutant); Panel B: Reproduction of data from [3] showing SPRs from
mutant mice with different phosphorylation sites. CSM: completely substituted mutant (0P); STM: serine triple mutant (3P); S338A: mutant lacking
S338 (5P); S343A: mutant lacking residue S343 (5P); S338/CSM: one site (S338) was restored in the CSM (1P); S334/S338/CSM: two sites (S334 and
S338) were restored in the CSM (2P); Mutant rhodopsins bearing zero, one (S338), or two (S334/S338) phosphorylation sites generated single-photon
responses with greatly prolonged durations. Responses from rods expressing mutant rhodopsins bearing more than two phosphorylation sites
declined along smooth, reproducible time courses; the rate of recovery increased with increasing numbers of phosphorylation sites; Panel C:
Simulated SPRs with no phosphorylation site (0P), lacking arrestin (–/–), and wild type (WT); Panel D: Reproduction of the SPRs from rod with C
terminal truncation, lacking arrestin (–/–), and wild type (+/+) [24] rescaled to exhibit the same proportional amplitude as the wild type SPR. The
simulated curves were rescaled accordingly. With arrestin absent, the flash response displayed a rapid partial recovery followed by a prolonged final
phase. This behavior indicates that an arrestin-independent mechanism initiates the quench of rhodopsin’s catalytic activity and that arrestin
completes the quench. Analogous simulations for the faster dynamics tR;eff&40 ms and nRG&575s{1 are in Figure S2 of the supplementary material.
doi:10.1371/journal.pcbi.1001031.g002

Table 2. Characteristics of SPRs, tR;eff&75 ms and tR;eff&40 ms.

Rhodopsin 0P 1P 2P 3P 4P 5P 6P(WT)

tR;eff&75 ms I tpeak

� �
8.54 8.02 7.50 6.83 6.19 5.62 5.13

tpeak (s) 0.20 0.19 0.19 0.17 0.16 0.15 0.14

Iarea (s) 24.81 22.35 19.60 2.89 2.11 1.74 1.51

tR;eff&40 ms I tpeak

� �
9.66 9.08 8.47 7.32 6.38 5.65 5.08

tpeak (s) 0.19 0.19 0.19 0.16 0.15 0.14 0.14

Iarea (s) 27.86 25.74 23.34 2.73 2.07 1.74 1.52

Characteristics of SPRs from Wild Type and Rhodopsin Mutant Rods from 3 s simulations for the dynamics tR;eff&75ms and nRG&330s{1 and tR;eff&40ms and
nRG&575s{1 . The parameters tR� and tR;eff and their equivalence are discussed in } Parameters.
doi:10.1371/journal.pcbi.1001031.t002

Rhodopsin Decay and Variability
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result is that the CV for Case 2 is negligible (computationally up

to 2 decimal points). This indicates that the randomness of the

number of R� shutoff steps does not significantly contribute to the

CV of E�. The second result is that the CVs produced by Case 1,

to which only the randomness of sojourn time of R� contributes,

are roughly the same as those of Case 3, where all components

are allowed to be random. It appears from the table that the

randomness of the sojourn times of R� in its phosphorylated states

is largely responsible for the CV of E� in this model.

For mutant R� with zero phosphorylation sites (0P), the CV of

any of these quantities is zero in all cases. Since R� could neither

be phosphorylated nor be bound by Arr (N~0), it remains in state

1 indefinitely and the process has no random components, within

the time scale of the simulation. On a longer time scale, eventually

active metarhodopsin II releases bound all-trans-retinal and

decays to opsin, losing most of its ability to activate transducin.

It is not surprising that R� with deactivation deficit leads to a

highly reproducible SPR in the very first few seconds (3 s in our

simulations), as no inactivation occurs.

The observations in [1] (see Figure 3, Panel F of [1]), indicate

that the SPRs generated by unphosphorylated R� are highly

reproducible within the very first few seconds (about 10s). Later

shutoff of unphosphorylated R� is believed to be due to thermal

decay of R� to opsin [12]. Here we are interested in the

deactivation of R� within the time scale of normal SPR (3 s in our

simulations) and the effects that could be involved beyond this time

period are not considered.

For mutant R� with one phosphorylation site (1P, n~2), the CV

of any one of the variability functionals in Eq:1–Eq:2 is very small.

Such a mutant R� could be phosphorylated to one level, but it

could not be shut off by Arr binding since mono-phosphorylated

R� has the same low Arr binding levels as unphosphorylated R�

(see the discussion in Methods and [20]). The randomness of one

extra level of phosphorylation causes a noticeable increase in

uncertainty as measured by the CVs. From Eq:7–Eq:11 one

computes t1~l{1
o and t2~?. Therefore R� remains in the

unphosphorylated state 1, for a random sojourn time s1 of mean

l{1
o ; then it transitions to state 2 by acquiring a phosphate and it

remains indefinitely in that state. The only randomness is due to

the sojourn time s1, which affects the CV of E� t�peak

� �
. Since R� is

never turned off (within the 3 s time frame used here), the

functional E�area, is uniformly large for all trials, and therefore it

exhibits negligible variability.

Compared with the CV of 1P, the mutant R� with two

phosphorylation sites (2P, n~3) exhibits a larger CV for any of the

variability functionals, the increase in uncertainty being due to the

second phosphorylation site. The only randomness of the process

is due to sojourn times sj of means tj , as the number of possible

steps (k~N~3) is not random. In the case of 2P the uncertainty

of s3 is compounded, with respect to the case 1P, by the

uncertainty of the random sojourn times s1 and s2, although their

mean is smaller. Accordingly all functionals exhibit larger

variability. Also for the case 2P shutoff does not occur since

t3~? (from Eq:7–Eq:9). Therefore, for the cases 0P, 1P and 2P,

the CVs of the functionals E�area and Iarea reported in Table 1 is

not due to variations caused by inactivation, as the latter,

theoretically, never occurs. In reality, inactivation does occur,

although by different mechanisms, for example thermal decay to

opsin, on a much larger time scale.

As the number of available phosphorylation sites increases

(n{1~3, . . . ,6), one might expect that the uncertainty of the

sojourn times sj , be compounded by the randomness of the

number of steps k[ 4, . . . ,7f g to R� shutoff. However Table 1

shows no significant difference in the CV of all functionals,

between Case 1, where the number of steps to R� shutoff is kept

fixed to its mean N , and Case 3, where all components are

permitted to be random. This suggests that the behavior of the

various CVs reflects the randomness of the sojourn times.

For k§4 fixed at its mean N (Case 1), the CV of E�area is

computed by the explicit formula [8]

CV E�area

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j~1 njtj

� �2
q
PN

j~1 njtj

: ð3Þ

This formula is valid provided

0vnitiv? for all i~1, . . . ,N, and if E�(?)~E�(0)~0: ð4Þ

The latter condition stipulates that the system returns to its original

dark state after a sufficiently large time. Therefore this formula

holds true only for the cases 3P-6P.

For Case 1, with the number of steps to shutoff fixed at the

closest integer to the mean N, we have computed explicitly the

sequences nj

� �
and tj

� �
from Eq:7–Eq:9 and have computed the

corresponding CV from formula Eq:3. These theoretical CVs are

reported in line 7 of Table 1 and show a reasonably good

agreement with the simulated values of CV(E�area).

In Figure 1 (left), we report the graphs of the CV for E�int tð Þ as

function of time, only for Case 3. Indeed, this is the biologically

realistic case, where all the components of the phenomenon are

permitted to be random. This variability functional is defined in

Eq:1. Similarly as observed in the context of Table 1, the CV for

0P is negligible and the CV of 1P and 2P are relatively small.

The CV of E�int tð Þ, for wild type (6P), stabilizes from 0:90s with

a value of 0:55, and the CV of the same functional for 3P,

stabilizes from 1:41s with a value of 0:57. By increasing the

number of phosphorylation sites from 3P to 6P, the stabilized CVs

of the functional E�area decrease (Table 1), and the time at which

the CVs begins to stabilize decreases.

The functional E�area compounds the variability of the process at

all times, up to recovery, and therefore its CV is expected to be

larger than the CV of E� t�peak

� �
.

Variability of the photocurrent. In the last two rows of

Table 1 we have reported the CV of the scalar quantities I tpeak

� �
and Iarea, defined in Eq:2, for each of the Test Cases 1,2,3, and

for a R� bearing j~0,1,:::,6 phosphorylation sites. The results

exhibit a pattern similar to the CVs of E� and E� t�peak

� �
although

at considerably lower values of CV. A CV of about 55% for E�area

is reduced to a CV of about 37% for the corresponding

photocurrent Iarea. Thus the diffusion part of the process acts as

variability suppressor, in agreement with the results of [8].

The simulations show that CV of Iarea is essentially constant

with respect to the number of available phosphorylation sites 3–6.

Figure 1 (right) reports the CV of the total relative charge Iint tð Þ
produced up to time t, for the physically realistic Case 3, where all

random components are present. The results exhibit a pattern

similar to those in the left panel of the CV for E�int tð Þ although,

again, at considerably lower values of CV. The CV of 0P is zero

and the CV of 1P and 2P is relatively small. For R� with three or

more phosphorylation sites, the CV increases with increasing

phosphorylation sites, at the early times of the activation.

Thereafter, the CVs for different number of phosphorylation sites

tends to stabilize with stabilization time inversely proportional to

the number of available sites, i.e., the more sites R� has, the faster

CV stabilizes.

Rhodopsin Decay and Variability
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Discussion

Variability of the photoresponse hinges on a coordinated system

behavior of several components. The main two modules are the

activation/deactivation part and the transduction part of the

cascade. The latter, given its input, is essentially deterministic as it

involves the diffusion of the second messengers cGMP and Ca2z

in the cytoplasm and a subsequent current drop through the

closure of the cGMP -gated channels. The former is essentially

stochastic as it involves the biochemistry of rhodopsin shutoff,

which occurs in several random steps. An understanding of the

process hinges upon teasing apart all these components, analyzing

them separately and blending them together into a system

behavior. This point of view began in [8], by separating the role

of the transduction from that of the activation/deactivation. This

separation was made possible by a mathematical model capable of

distinguishing the biochemistry of R� shutoff, from the functional

role of the transduction [8,9,11]. A surprising finding was that,

while R� shutoff is responsible for the variability of the

photoresponse, the diffusion of the second messengers acts as a

variability suppressor.

Here we have further separated the various steps of the

deactivation cascade by (a) prescribing a probabilistic mechanism

(CTMC) by which the system selects its random states, and (b) by

interrogating the known biochemistry to trace patterns and

parameters.

It is not sufficient to determine these parameters unambigu-

ously using WT mice. Experimental information from some

mutant and knock-out animals is needed. Specifically, the choice

of the catalytic activities ni by formula Eq:6, while based on

known biochemistry [26], hinges upon the basic parameter kv,

which in turn is determined by the biochemistry of the cascade in

mutant mouse (section on parameters in Methods). The same

holds true for the transition parameters li, given by formula Eq:7

and depending upon the parameter lo. Thus, a first remark is

that our approach, while mathematical and computational,

parallels the biology; that is, information is extracted in a

complementary way from the data on genetically modified as well

as WT animals. Next the model populated by the indicated

parameters is validated against WT and mutant responses as in

Figure 2. The model has a deterministic component, and a

stochastic component. The first regards the transduction part of

the cascade, which is geometry dependent, and deterministic,

being based on the diffusion of the second messengers cGMP and

Ca2z in the cytoplasm.

Importantly, this model permits one to test the response against

geometrical variations of the ROS. The response in mice

expressing CSM or RK knock out is rather unusual, exhibiting a

double amplitude with respect to WT [3,23]. An examination of

the immunofluorescence micrographs in Figure 2 of [3], suggests

that the length of ROS in CSM mice is reduced by about 25%
relative to WT. Geometrical modifications presumably due to

genetic manipulations are also discussed in [23]. Keeping the same

stochastic biochemical scheme and changing the length of the

ROS, the model reproduced the double-amplitude phenomenon

described in [3,23] (Figure 2 A,B), suggesting that the modified

geometry of mutant ROS, might contribute, along with the

changed biochemistry, to this phenomenon. This results, along

with a recent study of rod signaling in mice expressing supra-

physiological levels of rhodopsin ([27]), emphasize the importance

of investigating the ROS geometry in genetically modified mouse

lines. Our analysis shows that the changes in ROS length, which

were analyzed in very few mouse lines, can have dramatic effects

on photoresponse.

The stochastic component permits one to single out those parts

of the activation/deactivation cascade that dominantly contribute

to the variability of the response. The main result is that

variability is largely generated by the randomness of the sojourn

times of R� in its phosphorylation states. The prevailing point of

view is that the activation cascade is responsible for the

variability, although in a non quantified way, and that

deactivation of R� is responsible for variability suppression, and

further, the larger the number of decay steps of R�, the more

stable the photoresponse [1,3–7]. This view was expressed in [1],

where mice expressing rhodopsin with 0,1,2,5, and 6 phosphor-

ylation sites were used. The analysis presented in [1] has some

inconsistencies. Although the experimental points seem to be best

fitted by a straight line (Figure 1 of [1]) the authors describe them

by f Np

� �
~1
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

Npz1
p

, with Np being the number of available

phosphorylation sites. The lines with 3 and 4 phosphorylation

sites, which would have allowed to discriminate between these

functions, were not analyzed in [1]. In addition, by comparing

the CV of mice with 0,1, and 2 sites, which do not demonstrate

rapid recovery ([4]), with those having 5 or 6 (WT) sites that

recover with essentially the same fast rate, the authors

inappropriately lump together two disparate phenomena. In the

latter case, normal two-step rhodopsin inactivation by RK

phosphorylation and arrestin binding is fully operative, whereas

in the former rhodopsin is inactivated by stochastic thermal decay

taking place on a much longer time course. The idea that

multiple inactivation steps are necessary to suppress variability

was recently expressed in [2], where the authors conclusions were

largely based on two assumptions. The first is that R� activity is

nearly equally distributed among the deactivation steps. The

second is that in Ames’ solution, that yields much greater and

longer-lasting SPR than Locke’s ([2,28]), rhodopsin inactivation is

rate-limiting and dominates the recovery kinetics. The biochem-

ical scheme we propose argues against the first assumption, on

experimental grounds (see a discussion below and On the
Parameters tR� and tR;eff ). The second assumption has been

recently questioned in [28], where the authors showed that RGS9

overexpression similarly accelerates the recovery measures in

Locke’s and Ames’ solutions, indicating that transducin inactiva-

tion is rate limiting in both cases. Additional issues with data

analysis of [1] were discussed in [28]. Thus, no compelling

experimental evidence that the number of inactivation steps

reduces variability can be found in the literature.

Our results offer a different perspective; demonstrating that

variability is generated by the randomness of the sojourn times of

R� in its phosphorylated states, and that increasing the number of

these states does not lead to variability suppression.

The number of steps to deactivation does not coincide with

the number of available phosphorylation sites. The experimen-

tal studies of [20] suggest that one phosphorylation is not

sufficient for Arr binding, and the probability of quenching

becomes large after 3 phosphorylations. Specifically 0P
corresponds to n~1 by which Eq:7–Eq:8 give l1~m1~0 and

hence t1~? by Eq:9. Thus, the system remains indefinitely

activated (in reality it is stochastically inactivated by the thermal

decay of rhodopsin, which is too slow to be captured by 3 s

simulations used here). The case jP for j~1,2 corresponds to

n~2,3 respectively and one computes tj~? from Eq:9 and

hence tR�~? from Eq:12; the system goes through n steps and

then remains ‘‘indefinitely’’ active (see above about thermal

decay). Thus the CV of E�area and Iarea in Table 1 and Table S1

in the supplementary material, are not due to variations caused

by R� shutoff by Arr binding. The first case when tR�v? and

deactivation is possible, is the case 3P corresponding to n~4

Rhodopsin Decay and Variability
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reported in Eq:13. Going from 3P to 6P, the CV(E�area) and the

CV Iareað Þ remain essentially the same.

To illustrate the rationale of our main results, consider mutant

rhodopsin with only 3 available phosphorylation sites. Since 3

phosphates are needed for Arr binding [20], no randomness is

present in the deactivation process, if randomness is only measured

in terms of steps to shutoff. This suggest that the source of

variability is in other components of the process. Table 1 indeed

shows that if the sojourn times of R� in each of its phosphorylation

states are taken to be deterministic (Case 2), then the variability of

the photoresponse is negligible. If on the other hand such sojourn

times are permitted to be random, then the variability rises to

experimentally observed levels (Figure 1), both for WT and

genetically modified R� with 3-5P. This should not be interpreted,

however, as though the reproducibility decreases as the number

n{1ð Þ of available phosphorylation sites increases. We stress that

increasing n does not necessarily mean that the mean number N to

R� shutoff increases. The latter depends on the biochemistry of the

process via Eq:10–Eq:11. Likewise the expected average tR� of the

random lifetime of R� is generated by the biochemistry in Eq:7–

Eq:12 and n; in particular it is different for different genetically

modified mice (0P,1P,etc.). The lifetime of R� is randomly chosen

by the biochemistry in each of its random trials.

For WT mouse, and only in this case, the expected lifetime tR�

of R�, as defined by formula Eq:9–Eq:12, coincides with the

experimentally measured, effective average lifetime tR;eff . In [29]

it is reported tR;eff&75ms as an upper limit, whereas several

recent studies [28,30,31] suggest that tR;eff might be as low as

40 ms (see } Parameters).

Therefore, we performed all simulations for both values, which

yielded very similar CVs, both functionally and numerically

(Figure 1 and Tables 2–3, and Figure S1 and Tables S1,S3, in the

supplementary material). These similarities suggest that reproduc-

ibility is independent of the actual value of tR;eff and depends only

on the functional, sequence of the deactivation cascade, as

predicted by our biochemical scheme (Eq:9– Eq:12). Further

remarks on these two parameters and corresponding CVs are in }
On the Parameters tR�� and nRG.

We stress that the model includes only the deactivation

mechanism due to Arr binding and does not include R�

inactivation due to other causes such as thermal decay to opsin

occurring over a time course of &50s ([13]).

In [1] the CV Iareað Þ is computed over a time course of over

15 s, which is beyond the time course 0:1s of R� inactivation.

According to our scheme, based on direct biochemical

measurements of arrestin binding to separated rhodopsin species

Table 3. The sequences niti for the dynamics of tR;eff&75ms and nRG&330s{1.

6P (WT) N 4.45

ti 15.87 19.05 23.81 10.93 12.35 14.18 16.67

ni 330.00 200.16 121.40 73.63 44.66 27.09 16.43

tini 5.24 3.81 2.89 0.80 0.55 0.38 0.27

5P N 4.30

ti 19.05 23.81 31.75 12.35 14.18 16.67

ni 330.00 200.16 121.40 73.63 44.66 27.09

tini 6.29 4.77 3.85 0.91 0.63 0.45

4P N 4.15

ti 23.81 31.75 47.62 14.18 16.67

ni 330.00 200.16 121.40 73.63 44.66

tini 7.86 6.35 5.78 1.04 0.74

3P N 4

ti 31.75 47.62 95.24 16.67

ni 330.00 200.16 121.40 73.63

tini 10.48 9.53 11.56 1.23

2P N 3

ti 47.62 95.24 ?

ni 330.00 200.16 121.40

tini 15.71 19.06 ?

1P N 2

ti 95.24 ?

ni 330.00 200.16

tini 31.43 ?

0P N 1

ti ?

ni 330.00

tini ?

The sequences ni (s{1), ti msð Þ and the average number N of steps to shutoff of R� , for WT and mutant mice, computed from Eq:9–Eq:11. Computation for the dynamics
of tR;eff&75ms and nRG&330s{1 . The parameters tR� and tR;eff and their equivalence are discussed in } Parameters.
doi:10.1371/journal.pcbi.1001031.t003
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with different numbers of attached phosphates ([20]), cases 0P,

1P and 2P do not permit shutoff by Arr binding and R� remains

active much longer than the 3 s of our simulations. Thus the CV

due to R� deactivation reflects its thermal decay to opsin ([12]).

In this case, shutoff is an abrupt 1-step process, implying, by

Poisson statistic, CV = 1. This is essentially what is reported in

[1]. For the cases 5P and 6P, although the experiments of [1]

are carried over a time course of 15 s the CV Iareað Þ is essentially

due to shutoff by arrestin binding, which occurs within a time

course of 0.1 s, whereas decay to opsin is much slower.

Considering the slow rate of thermal inactivation of rhodopsin,

the probability of thermal decay within the first 0.1 s is

negligible relative to the probability of decay due to Arr

binding. Accordingly, the CV Iareað Þ reported in [1] for 5P and

6P is similar, as we find. The crucial cases 3P and 4P were not

measured in [1].

The CTMC scheme we propose here differs from the Poisson

statistics used in [1,2], where the CV of Iarea is claimed to be

proportional to 1=
ffiffiffi
n
p

. It should be noted that the number of

available sites does not coincide with the average number of steps

to shutoff and that each step weighs differently in the deactivation

process, due to its biochemical history.

We return briefly to the explicit, theoretical formula Eq:3, valid

under the assumptions of Eq:4, and hence for the cases 3-6P. We

have already remarked that its theoretical values (for Case 1) are

in agreement with our simulations (lines 2 and 3 of Table 1). If one

would artificially concoct a biochemistry by which all the products

njtj

� �
are the same for all j~1, . . . ,N, then formula Eq:3 would

give CV E�area

� �
~1
	 ffiffiffiffiffi

N
p

. This occurrence might suggest that the

CV of the photoresponse decreases as the reciprocal of the square

root of the number N of steps to shutoff. A calculation from Eq:7–

Eq:11, in agreement with known biochemistry ([20]), shows that

the products njtj

� �
are not constant (Table 3). In addition, even if

this were the case, the variability of the photocurrent is very

different from that of E�area, as the relation between these

functionals is highly non-linear [8,11].

A further examination of Table 3 for 3-6P, shows that in all

cases (WT or mutant), only the first few steps contribute

significantly to the total activity
PN

i~1 niti; the remaining ones

being negligible. In view of the theoretical formula Eq:3, this is

further evidence that increasing the number of steps does not

significantly decrease the CV(E�area).

In all cases (WT or mutant) we found that the diffusion of the

second messengers cGMP and Ca2z in the cytoplasm acts as the

dominant variability suppressor, thereby confirming the results

of [8] and extending the analysis to a variety of transgenic

models.

These results are made possible by separating the activation/

deactivation module from the transduction module. In addition, in

the activation/deactivation module, one further separates the

biochemical effects of each phosphorylation contributing to the

responses, thereby allowing an examination of the role of the

underlying biochemistry during R� deactivation. Incorporating

the sequence of biochemical steps, described in Methods, allowed

us to recapitulate experimental results qualitatively and quantita-

tively (Figure 2). It is worth noting that with realistic biochemistry,

where Arr acquires a high binding affinity after 3 phosphorylation

steps [20], the number of inactivation steps actually involved in

shutting down individual SPRs varies very little. Therefore the fact

that this number contributes virtually nothing to SPR variability,

is one of the mechanisms maintaining the reproducibility of

SPR.

Methods

The Mathematical CTMC Model
The state diagram of the CTMC describing R� deactivation by

Rhodopsin Kinase (RK) phosphorylating the C-terminal serines

and threonines in rhodopsin, is shown in Figure 3 with circles and

arrows denoting states and transitions respectively.

The states are labeled by the indices i~1, . . . ,nz1, and the

transitions between connected states are labeled by transition rates

li and mi. The R� catalytic activity in its i{th state is ni. The

number n of phosphorylation levels is determined by the number

n{1 of phosphorylation sites of rhodopsin, which varies in

different species. In mouse, rhodopsin has six phosphorylation sites

[3]. State 1 is the non-phosphorylated level, representing newly

activated rhodopsin with catalytic activity n1; the state nz1ð Þ
represents fully deactivated rhodopsin with catalytic activity

nnz1~0; states 2 to n represent different phosphorylation levels,

in which rhodopsin holds n{i sites available for phosphorylation,

with i{1ð Þ sites already phosphorylated, and has catalytic activity

ni. The states 1 to n are active states and the state nz1ð Þ is the

inactive state. Specifically for WT mouse, there are seven (n~7)

active states, including state 1 where R� is active and not

phosphorylated. Transitions between active states are governed by

the phosphorylation rates li. For notation consistency, we let

ln~0. Transitions between active states and the inactive state are

governed by the arrestin binding rates mi. Arrestin binds with high

affinity only to phosphorylated rhodopsin [20,26,32,33], therefore,

m1~0.

A newly isomerized rhodopsin is in state 1. It undergoes a

random number of phosphorylations before it transitions to the

fully deactivated state nz1ð Þ. A rhodopsin with n{1ð Þ available

phosphorylation sites could be phosphorylated at most n{1ð Þ
times to state n. Generally, in state i~1,:::,n{1, rhodopsin either

interacts with rhodopsin kinase adding one more phosphate and

transitions to the next phosphorylation level with a rate of li, or it

binds arrestin which quenches its catalytic activity, and transitions

to the inactive state with a rate of mi. This process is a Bernoulli

trial with the probability of a further phosphorylation given by
li

lizmi

and the probability of arrestin binding given by
mi

lizmi

.

This statistical scheme permits one to model rhodopsin deactiva-

tion also in transgenic animals with different number of rhodopsin

phosphorylation sites. For example, if 1ƒmƒn{1 of the n{1ð Þ
phosphorylation sites are mutated, we could set

li{1~0, and mi~0, for i~n{mz1,:::,n

to reflect the effect of the mutation. It should be pointed out that,

given m mutated sites, the model removes any m of the available

Figure 3. State diagram of CTMC model for rhodopsin
deactivation. States 1 to n are active states and state n+1 is the
inactive state. The phosphorylation rates and arrestin binding rates are
denoted respectively by li and mi .
doi:10.1371/journal.pcbi.1001031.g003
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sites with no discriminating criterion such as their ordering on the

C-terminus. Although the phosphorylation of different sites in WT

rhodopsin apparently proceeds in some order [34], the overall

number of rhodopsin-attached phosphates, rather than their

positions on the C-terminus, determines arrestin binding

[3,20,35]. Accordingly, the model treats them as equal by

attributing them the same biochemical function of holding a

phosphate.

Let Pi denote the probability that a single R� is in the state i.
Then the mathematical description of the CTMC model shown in

Figure 3 is [14,15]

_PP1~{(l1zm1)P1, P1(0)~1

_PPi~li{1Pi{1{(lizmi)Pi, Pi(0)~0 for i~2, . . . ,n

_PPnz1~
Pn
i~1

miPi, Pnz1(0)~0:

ð5Þ

Note that the integer i used to label the state of R� is one plus the

corresponding level of phosphorylation, which is i{1ð Þ. For

example, the phosphorylation level 0 corresponds to state 1, and

n{1ð Þ sites are phosphorylated in state n. The sojourn time si of

R� in state i, is taken as an exponentially distributed random

variable with mean ti~
1

lizmi

. The sequences of the phosphor-

ylation rates by RK lif g, the activities of Arr mif g, and the

catalytic activities nif g, depend on the underlying biochemistry,

and vary with phosphorylation levels [26,36].

The Sequence nif g of Catalytic Activities of R�

The catalytic activity ni of R� in the i{th state is the production

rate of activated G protein G� by R�. While R� is active in each

state i~1, . . . ,n, including the first unphosphorylated state (i~1),

its activity decreases with increasing phosphorylation levels. The

catalytic activity of rhodopsin with different numbers of attached

phosphates was experimentally measured by Wilden [26]. In this

study differentially phosphorylated rhodopsin species were actually

separated, so the conclusions were based on direct measurements

and did not involve untested assumptions. Although similar

conclusions were later reached by Gibson et al. [32], these

authors did not separate differentially phosphorylated rhodopsin

species, using preparation with different average phosphorylation

levels instead. Their calculations are based on the assumption of

Poisson distribution of rhodopsin species with different number of

phosphates ([32]). This does not appear realistic, considering the

distribution determined by rhodopsin fractionation ([26,33]).

Therefore, our model assumes that the binding affinity of

phosphorylated R� for G� decreases exponentially with each

added phosphate. Thus, based on data published by Wilden [26],

we assume

ni~nRGe{kn i{1ð Þ, i~1,:::,n, ð6Þ

where nRG~n1 is the catalytic activity of R� in its initial,

unphosphorylated state, and kn is positive. The value of nRG in

Eq:6 has been extracted from the published data after an extensive

consistency and sensitivity analysis ([37]). The parameters nRG and

kn are linked and subject to mutual limitations. It has been shown

that in arrestin knockout mice, the initial kinetics of single photon

response deactivation closely resembles that of WT, whereas the

later phase of deactivation is abrogated (Xu et al., 1997). Initial

deactivation is attributable to rhodopsin phosphorylation, which is

preserved in these animals. Then deactivation stops at about 50%

of the peak current suppression, and remains essentially steady

thereafter. This level of current drop reflects the ability of fully

phosphorylated mouse rhodopsin to activate transducin, corre-

sponding to the catalytic activity n7 when all 6 sites are

phosphorylated. Thus from Eq:6 one has n7~nRGe{6kn . Mutual

calibration of nRG and kn is discussed in the section on parameters.

Here we stress that they are determined from experimental data

for both WT and mutant mice, and not chosen by fitting.

Phosphorylation Rates {li} and Affinity of R-RK
While the explicit dependence of R�-RK binding affinity and

the R� phosphorylation rates on the various biochemical states is

not known, there is qualitative biochemical support for the notion

that R�-RK affinity decreases systematically with the phosphor-

ylation level of R� [38]. It is shown in Buczylko et al. [39], that

phosphorylated RK has significantly lower ability to phosphorylate

already phosphorylated R� than unphosphorylated R�. Moreover,

Mendez et al. [3] showed that the rate of R� deactivation depends

not on the identity of the available sites, but on their total number.

We used the biochemically realistic assumption that the rate of

phosphorylation is proportional to the number of serines and

threonines still available for RK on the rhodopsin molecule.

Mechanistically this means that the probability that upon binding

to light-activated rhodopsin RK dissociates without adding

another phosphate increases with the number of phosphates

present, reaching 1 when all six sites are already phosphorylated.

This assumption is consistent with in vivo observations by Mendez

et al [3] that the removal of even one or two rhodopsin

phosphorylation sites slows down photoresponse inactivation.

Note that li is the rate at which RK phosphorylates R� in its

i{th state. It depends on the on-rate of RK binding to R� in this

state, and the rate of phosphate transfer, which were never

separated experimentally and were not separated in our model.

We set the sequence lif g as linearly decreasing by increasing

phosphorylation levels, that is the phosphorylation rate is

proportional to the total number of the available sites and is

independent of their biochemical identity. Thus

li~ n{ið Þlo for i~1, . . . ,n ð7Þ

where lo is a rate constant, discussed and calibrated in the section

on parameters. Formula Eq:7 can be arrived at by postulating that

RK has a fixed affinity for binding to R� and that each of the

phosphorylation sites could be occupied with an equal rate lo.

Therefore R� phosphorylation rate depends on the number of

phosphorylation sites available for RK. Since R� in state i has n{i
available phosphorylation sites it has a phosphorylation rate

n{ið Þlo. Note that this model, similar to previously proposed

ones, is based on the assumption that a single site is phosphor-

ylated as a result of each rhodopsin encounter with RK. This

assumption has not been experimentally tested.

Arr Binding Rate mif g and Affinity of R-Arr
Arrestin binding ensures the timely termination of R� signaling,

and it depends on the R�-Arr affinity. Several studies [26,32,36],

suggest that arrestin affinity increases with increasing phosphor-

ylation levels. Note that only the ‘‘irreversible’’ binding that

terminates rhodopsin activity is taken into account here; that is the

binding which occurs with high enough affinity to make the

complex half-life much greater than the time course of the SPR. In

a recent study, Vishnivetskiy et al. [20] found that unpho-

sphorylated and mono-phosphorylated R� show the same low Arr

binding levels. In particular, a single receptor-attached phosphate
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does not facilitate Arr binding; two are necessary to induce higher

affinity interaction, and R� with three phosphates is fully capable

of binding Arr with the affinity that makes the interaction

essentially irreversible on the time scale of the SPR. Moreover,

higher phosphorylation levels do not increase the stability of Arr

complex with light-activated rhodopsin [20]. Based on the data in

[20], we set the sequence mif g for Arr binding rate by the

phosphorylation level as

m1~m2~m3~0, mi~mo, i~4,:::,n, ð8Þ

where mo is the Arr binding rate when Arr affinity reaches its

maximum after several phosphorylations. Note that n in the model

describes arrestin binding that terminates transducin activation.

Thus, it reflects the rate of formation of arrestin-rhodopsin

complexes that are stable enough to survive significantly longer

than the time course of a single photon response analyzed here.

Since the stability of arrestin complex with unphosphorylated and

mono-phosphorylated rhodopsin is much lower [20,40–42],

allowing for arrestin dissociation and consequent rhodopsin

reactivation within this time, we set m1~m2~0. Since

m1~m2~0, R� in states i~1,2 surely transitions to the states

i~2,3 respectively. The data in vivo [3] and in vitro [20] also

suggest that two rhodopsin-attached phosphates are not sufficient

to induce Arr binding with high enough affinity for rapid

deactivation. Therefore, we set m3~0.

The effect of the level of rhodopsin phosphorylation on arrestin

binding was explored in two studies. Gibson et al [32] concluded

that arrestin affinity linearly increases with the level of phosphor-

ylation in the range of 1–4 phosphates per rhodopsin. The authors

used preparations of phosphorylated rhodopsin in native disc

membranes that are well known to be highly heterogeneous,

containing rhodopsin species carrying from zero to seven

phosphates (bovine rhodopsin has seven RK phosphorylation

sites) [26,43]. The authors attempted to solve this problem by

using several assumptions (that were not experimentally tested) to

compute the fraction of rhodopsin molecules with different

phosphorylation levels as a function of average phosphorylation,

which was the only parameter actually measured [32]. The

authors calculations were based on an additional assumption that

unphosphorylated rhodopsin does not bind arrestin, even though

specific low affinity binding of wild type arrestin to light-activated

unphosphorylated rhodopsin in vitro [40,41], and its role in

inactivation of unphosphorylated rhodopsin in vivo [12,23,42] was

shown. Arrestin binding in this study was measured using ‘‘extra

Meta II’’ assay developed by Schleicher et al in 1989 [44]. This

assay is based on the stabilization of active Metarhodopsin II state

by bound arrestin. The most significant drawback of this assay is

that it does not work above 150C. At physiological temperatures

extra Meta II is not detectable, even though it is obvious that

arrestin effectively quenches rhodopsin signaling in mammals at

370–390C. In another study Vishnivetskiy et al [20] separated

rhodopsin species with different levels of phosphorylation by

chromatofocusing. Importantly, the authors quantitatively deter-

mined the presence of particular phospho-rhodopsin species in

each fraction by mass-spectrometry of proteolytically removed

rhodopsin C-terminus [34], obviating the need for calculations

based on untested assumptions. Moreover, the binding assay in

this study was performed at physiological temperature, 370C.

Based on their data, Vishnivetskiy et al concluded that arrestin

demonstrates the same low affinity for rhodopsin carrying zero

and one phosphate. The presence of two phosphates somewhat

increases arrestin affinity, whereas arrestin binds rhodopsin with

three, four, five, and six phosphates with the same high affinity,

forming physiologically relevant long-lived complexes with

stability sufficient for reliable quenching without possibility of

reactivation on the time scale of the photoresponse [20]. These

conclusions are in remarkable agreement with the work of Mendez

et al in genetically modified mice expressing rhodopsin with

different number of phosphorylation sites [3]. The authors of this

study found that in vivo light activation of rhodopsin carrying

zero, one, or two phosphorylation sites yields responses that last for

many seconds, whereas rhodopsin carrying three or more

phosphorylation sites is inactivated by wild type arrestin with

sub-second kinetics [3]. Therefore, we based the modeling on

the conclusions of these two studies [3,20]. The parameters mo

and lo appearing in Eq:7–Eq:8 are calibrated by WT and

mutant experimental data, and not by fitting (see section on

parameters).

Random Sojourn Times sif g and Random Steps to R�

Shutoff
In the state i, R� maintains its catalytic activity ni for a random

time si, until further phosphorylation or Arr binding. The sojourn

times si, for i~1, . . . ,kƒn are exponentially distributed random

variables with mean ti. The average lifetime tR� kð Þ of R� being

deactivated after k random biochemical states visited by R� before

quenching, and is the sum of the ti up to k. Thus

ti~
1

lizmi

and tR� kð Þ~
Xk

i~1

ti: ð9Þ

Hence ti and tR� are determined by the biochemistry of the

process through the sequences lif g and mif g.
The number 1ƒkƒn of steps after which R� binds to Arr is

itself a random variable X . The probability of R� shutoff in k

steps, or equivalently the probability of R� undergoing k{1 steps

of phosphorylation and a final step for Arr binding, is

P X~kð Þ~
0 if n~1 no phosphorylation sitesð Þ

mk

lkzmk

P
k{1

i~1

li

lizmi

for n§2 and

for k~2, . . . ,n:



8<
: ð10Þ

The mean steps of R� shutoff, or equivalently the expected value

of the first moment of X , is denoted by N and is given by

N~
Xn

k~1

kP X~kð Þ: ð11Þ

Thus N is the mean of the discrete valued random variable

k[ 1, . . . ,nf g.
The lifetime tR� kð Þ of R� is itself a random variable with

expected value

tR�~
Xn

k~1

tR� kð ÞP X~kð Þ: ð12Þ

These remarks permit one to detect the pattern of the means tj of

the random sojourn times sj . First, the expected lifetime tR� (‘P) of

R�, as a function of the number ‘ of available phosphorylation

sites, decreases with increasing ‘; second, the sojourn times sj ,

while increasing in number, each have a smaller mean tj . For

example for 3P (n~4), from Eq:7–Eq:9, and Eq:10–Eq:11, one

computes

ð10Þ
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t1~
1

3lo

, t2~
1

2lo

, t3~
1

lo

, t4~
1

mo

,

N~4; tR� 3Pð Þ&0:19s:

ð13Þ

We stress that the number n{1 of available phosphorylation sites

does not coincide with the mean number N of steps to R�

quenching. The number n is fixed by the structure of rhodopsin,

whereas N depends on the biochemistry, through the probabilities

P X~kð Þ.

Numerical Procedures and Methods
The dynamics of R� during deactivation is analyzed by the

CTMC model in Eq:5, which is numerically integrated in the

Matlab platform. Its output is integrated into the spatio-temporal

model and its Matlab code introduced in [8,11]. This produces

pointwise values of the effector E�½ �, cGMP½ � and Ca2z
� �

on the

ROS and permit one to compute the current response jtot tð Þ as a

function of time and thus the functionals of effector and current in

Eq:1–Eq:2.

Simulations were performed for each of the 3 Test Cases.

Random numbers are generated according to the exponential

distribution of the random sojourn times si, for each of wild type,

transgenic and Arr knock-out cases indicated above. The

corresponding R� dynamics is computed and the functionals in

Eq:1–Eq:2 are evaluated. For each case, after about 5,000

numerical simulations, we compute the mean, the standard

deviation and the coefficient of variation (CV) of these functionals.

For WT mice the sequences lif g and nif g are chosen as in

Eq:6–Eq:7. For mice lacking phosphorylation whether by COOH-

terminal truncations ([24,25]) or RK knockout ([1,3]), in the

CTMC one sets n~1 in Eq:5 and m1~0, so that R� would remain

in state 1 with catalytic activity n1 for the whole process. If

1ƒmƒ6 of the six phosphorylation sites are mutated out, we

would have a CTMC model with n~7{m. For mice lacking Arr

([24]), we let mi~0, for i~1,:::,7 in the CTMC model in Eq:5.

Parameters
In [37], we have generated a complete, self-consistent set of

parameters for the mouse rod phototransduction, calibrated by

least square fitting of the model in [8,9,11]. to a set of

experimental data kindly provided Dr. C. Makino, leading to

Table S2 (Text S1). Note that these parameters describe SPR

recorded in Locke’s solution used in [3,7,24,25,28,29,42,45–49],

rather than in Ames’ solution used in [1,2]. For reasons that

remain to be elucidated, the latter has greater amplitude and

duration, although the recovery in both conditions is rate-limited

by transducin inactivation ([28]).

Figure 4 compares the simulated SPR by our model with the

parameters of Table S2, and the experimental SPR kindly

provided by C. Makino. The new parameters involved in the

present investigation are the biochemical sequences nif g, lif g and

mif g. Below we indicate in detail how they have been determined.

Their estimated values are reported in Table 4. Given the catalytic

rate nRG the sequence nif g is determined from Eq:6 whence the

rate kn is known.

Estimate of kn. In the experiments of [26] a large pool of G

proteins, PDE and cGMP was mixed with a large quantity of

rhodopsin Ri with a known number i{1ð Þ[ 1, . . . ,6f g of

phosphates. Then the Ri were activated by a brief flash of light

to produce a number of isomerizations Wi per mm3, and the rate of

depletion cGMP was recorded. Since only three purified proteins

are present in this assay, rhodopsin, transducin, and PDE, rapid

inactivation mechanisms present in vivo do not operate.

Therefore, the number of activated transducin molecules is

proportional to the number of light-activated rhodopsins and

their activity, and the number of active PDE molecules is

proportional to the number of active transducins and does not

change in time.

The number of molecules involved, all in the same environ-

ment, is so large as to justify a lumped description of the

phenomenon by means of standard balance equations

d

dt
cGMP½ �~{khyd E�½ � cGMP½ � ð14Þ

where E�½ � is the number of molecules of fully activated PDE per

mm3, and khyd, in mm3s{1 is the rate of hydrolysis of cGMP by E�.

If Wi is sufficiently large, the system saturates in the sense that all

available molecules of PDE are fully activated. Denoting by E�½ �sat

the limiting saturation, one computes

E�½ �sat~niWi=kE

where ni is the activity of R� in its i{th state, and kE is the decay

rate of E�. It is assumed that for large Wi the time to saturation is

very small so that, in Eq:14, one approximates E�½ �& E�½ �sat. from

the second of Eq:14. These remarks in Eq:14 imply

d

dt
½cGMP�i&{

khyd

kE
niWi cGMP½ �i ð15Þ

Table 4. CTMC model parameters.

Symbol Units Definition Value References

lo s{1 Rhodopsin phosphorylation rate 10.5 19 computed as in Determining the
Sequences lif g and mif g

mo s{1 Arresting binding rate 60 120 computed as in Determining the
Sequences lif g and mif g

kn - Decay constant of catalytic activity of R* 0.5 0.5 [26]

tR;eff ms Average lifetime of active R* 75 41 [29], [28,30,31]

N - Average number of steps of active R* before shut off 4.45 4.41 computed from Eq:9–Eq:11

Italic: tR;eff&75 ms. Bold: tR;eff&41 ms. The parameters tR� and tR;eff and their equivalence are discussed in } Parameters.
doi:10.1371/journal.pcbi.1001031.t004

Rhodopsin Decay and Variability

PLoS Computational Biology | www.ploscompbiol.org 12 December 2010 | Volume 6 | Issue 12 | e1001031



where the indexed cGMP½ �i signifies that in principle the solution

of such equation depends on the activity of the i{th phosphor-

ylation state of R�. At saturating light levels the rates cGMP½ �
0
i

reach a limiting value independent of i. Moreover at such limiting

rates the cGMP½ �i are essentially the same for all i, since they are

hydrolyzed by E�½ �sat. It is reported in [26] that the same rate of

depletion cGMP½ �
0
1 for an experiment with rhodopsin R1 (no

phosphates) with activity n1~nRG, and number of isomerizations

W1, can be obtained from an experiment with rhodopsin R7 (6

phosphates), and catalytic activity n7, provided the number of

isomerizations W7 is 10 times larger than W1. Equation Eq:15 with

these data and indicated assumptions yields

1~
cGMP½ �

0
7

cGMP½ �01
&

khydn7W7 cGMP½ �
khydn1W1 cGMP½ �~

10n7

nRG
:

From this and Eq:6 one computes 10~ekn6 or kn&0:38.

Determining the sequences lif g and {mi}. The modeling

assumptions contained in Eq:7–Eq:8 reduce these sequences to the

determination of lo and mo. These are constrained by Eq:12.

Therefore, if the expected lifetime tR� of activated rhodopsin,

given by Eq:12, is experimentally estimated, then only one of these

parameters, lo or mo, is independent. When tR� is fixed at a

particular value, the remaining free parameter is estimated against

the experimental results of [24] for SPR in transgenic mice lacking

arrestin, as follows. In the absence of arrestin, the activated

rhodopsin gets phosphorylated from one level to another until all

its six sites are occupied. Its activity is reduced with

phosphorylation, and kept fixed after the last phosphorylation,

for the remainder of the process. Such activity causes the response

tail to maintain almost a half of its peak value (Figure 2C,D). Thus

lo and mo are constrained by Eq:8 and by the requirement that

putting n~7 in the CTMC Eq:5 and mi~0 for all i~1, . . . ,7 the

time asymptotic current suppression is about
1

2
of the peak current

suppression.

It is worth stressing that the parameter calibration has been

effected by enforcing at the same time, the WT response, the

response of transgenic mice lacking arrestin, and by linking the

rates li and mi to the experimental value of tR� by Eq:12. It is also

worth noting that here we simulated the first 3 s of the

photoresponse. Light-activated rhodopsin can also be inactivated

in an RK- and Arr-independent manner via thermal decay to

opsin with very low activity towards transducin. Since this process

is very slow, with half-life of *49 s in mouse photoreceptors [13],

we did not take it into account in our modeling.

On the parameters tR�� and nRG. In Table S2, kR&13:3s is

the reciprocal of the experimental value of the average lifetime of

R� for WT mouse, denoted by tR;eff , and determined as the time

constant of an exponential decay function used to approximate R�

lifetime ([28,30,31]). As such tR;eff is an ‘‘effective lifetime’’. In

[29] tR;eff&75ms is an upper limit of R� lifetime.

The expected value tR� of R� lifetime given by Eq:12 is the

average of the times it takes R� to be quenched after k steps,

weighted by the probabilities of quenching after k steps. This

number depends only on the biochemistry defined by the

sequences nif g and lif g.
If one knew these sequences a-priori, no knowledge of tR;eff

would be needed. The numerical value of the latter is used to

generate an extra link between the parameters lo and mo, for WT

mouse (n~7) to reduce the number of free parameters. Thus the

underlying assumption is that for WT mouse, the expected value

tR� of the random variable tR� kð Þ is numerically comparable with

the experimentally measured numerical value of tR;eff , and thus

one sets numerically tR�~tR;eff . For this reason, when referring to

WT mouse, and only in this case, we use tR� and tR;eff

interchangeably. However for genetically modified mice (nv7)

the expected values of tR� given by formula Eq:13 differ from

tR;eff .

It should be pointed out however that tR� is a derived

parameter through formula Eq:12. It is the biochemistry that

determines tR� through the RK on-rates li and the Arr on-rates

mi. Thus tR� changes in genetically modified mice according to the

number of mutated sites, and the resulting biochemistry.

Figure 4. Mouse SPRs by simulation (black) and experiment (red). The simulation is conducted with the parameters shown in Table S2 for
the dynamics tR;eff&75ms and nRG&330s{1 (left), and the dynamics suggested in [28,30,31](right). Left: Dynamics of tR�&75ms and nRG&330s{1 .
The WT SPR exhibits a maximum of 5:13%, decrease of current at 0:14s after activation. Experimental data is an average of sets of SPRs kindly
provided by C. Makino. Right: Same experimental (red) and simulated (black) WT response with tR�&41ms and nRG&575s{1 . Experimental data
kindly provided by C. Makino.
doi:10.1371/journal.pcbi.1001031.g004
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Several recent studies give a lower estimate tR;eff&40ms for WT

[30]. Because of the importance of this parameter we have

reproduced our simulations also for tR;eff&41ms, and found no

appreciable difference in the numerical values or the general pattern

of the resulting variability functionals (see Figure S1 and Tables S1,

S3 of the supplementary material). Thus, the functional conclusions

of this study do not depend on the numerical value of tR;eff .

By taking a shorter tR;eff , the SPR for WT mouse can be

reproduced by imposing a larger catalytic rate nRG&575s{1 (i.e.,

activation of transducin by rhodopsin every 2 ms). A few other

parameters have been slightly modified the most noticeable of

which are the RK on-rate lo and the Arr on-rate mo. Using the

pair tR;eff&75ms and nRG&330s{1 and computing lo and mo as

indicated in the previous section, one estimates lo&10:5s{1 and

mo&60s{1. Using the pair tR;eff&41ms and nRG&575s{1, one

estimates lo&19s{1 and mo&120s{1. All the indicated simula-

tions have been run for both sets of parameters with no

appreciable difference in the results (Figure 1 and Tables 2–3,

and Figure S1 and Table S1,S3 in the supplementary material).

The value of nRG reported in Table S2 corresponds to the value

nRG1 as calculated from Eq:6 for i~1. The (random) production

of G� by R� in its i{th state is nisi. If shutoff occurs in k steps, the

average activity over these steps is

nRG kð Þ~ 1

tR� kð Þ
Xk

i~1

niti: ð16Þ

This is a random variable whose expectation is the expected

(average) activity nRG;av of the process

nRG;av~
Xn

k~1

nRG kð ÞP X~kð Þ: ð17Þ

A calculation for 6P and tR;eff&75ms gives nRG;av&174s{1. This

value is within the published range of average R� activity as

discussed in [37]. A similar calculation for 6P and the faster

dynamics tR;eff&41ms gives nRG;av&307s{1.

Remaining in the context of WT mouse, the shortening of tR;eff

from 75ms to 40ms forces a faster dynamics so that the total

activity remains unchanged. One verifies that the activity

tR;eff nRG;av remains the same for both values of tR;eff . The two

dynamics generate two different biochemical sequences, say for

example

l1,i,n1,i,t1,if g, and l2,i,n2,i,t2,if g:

An examination of Table 3 and Table S3 in the supplementary

material reveals that, for each fixed i the products n1,it1,i and

n2,it2,i, are essentially the same for the two dynamics. Thus the

total R� activity is redistributed in ‘‘equal bits’’, although in

different time intervals t1,i and t2,i, and different catalytic activities

n1,i and n2,i. The theoretical formula Eq:3 then gives

CV E�area,for tR;eff&75ms
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j~1 n1,jt1,j

� �2
q
PN

j~1 n1,jt1,j

&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j~1 n2,jt2,j

� �2
q
PN

j~1 n2,jt2,j

~CV E�area,for tR;eff&40ms
� �

This explains why the CVs of E�area, and hence those of Iarea are

so similar, for each of these dynamics. A further examination of

Table 3 and Table S3 of the supplementary material shows that to

the total activity
PN

i~1 niti contribute essentially only the first few

steps, the remaining ones being negligible. In view of the

theoretical formula Eq:3, this is further evidence that increasing

the number of steps, does not significantly decrease the CV(E�area).

The main difference between the CVs in Table 1 and Table S1

in the supplementary material occurs for the pointwise functionals

E� t�peak

� �
and I tpeak

� �
, which depend on a point evaluation at

t�peak and tpeak respectively, and do not depend on the total,

integral activity up to time t.
The average number of steps to shutoff. This number is

computed from Eq:10–Eq:11, and therefore it is not expected to

be an integer.

For tR;eff&75ms and nRG&330s{1 and the corresponding lo

and mo, one estimates N&4:45. For the faster dynamics

tR;eff&41ms, and nRG&575s{1, one estimates N&4:41.

The parameters of Table S2 and Table 4 have been slightly

calibrated to satisfy simultaneously all the indicated constraints.

Figure 4 compares the simulated and experimental single photon

response in WT mouse. The simulations for transgenic mouse in

Figure 2 are compared with the experimental data of [1,3,23–25].

The dynamics of the WT mouse SPR reported in [1], is, in absolute

time, slower than that reported in [3,23–25]. The difference might

be the result of using different solutions for single cell recording

[2,28]. The underlying mechanism of this phenomenon remains

unknown. To achieve a functional comparison with all these

contributions we have reported our simulations in units of tpeak and

likewise we have rescaled the graphs reported in [3,23] in units of

their own tpeak. The output (given in pA in the original papers) has

been rescaled in relative current suppression 1{jtot=jdark.

Supporting Information

Figure S1 Comparing the CVs of the total activated effectors at

time t with the CVs of the total relative charge up to time t.

Found at: doi:10.1371/journal.pcbi.1001031.s001 (0.05 MB PDF)

Figure S2 Simulations SPR for mutant phosphorylation sites of

R* or with Arr knockout.

Found at: doi:10.1371/journal.pcbi.1001031.s002 (0.08 MB PDF)

Table S1 CVs of effector and current for WT and mutant

mouse SPR.

Found at: doi:10.1371/journal.pcbi.1001031.s003 (0.04 MB PDF)

Table S2 Parameter table for WT SPR.

Found at: doi:10.1371/journal.pcbi.1001031.s004 (0.06 MB PDF)

Table S3 Table of distribution of activities for WT and mutant

mouse SPR.

Found at: doi:10.1371/journal.pcbi.1001031.s005 (0.03 MB PDF)

Text S1 References.

Found at: doi:10.1371/journal.pcbi.1001031.s006 (0.04 MB PDF)

Acknowledgments

This work has been conducted in part using the resources of the Advanced

Computing Center for Research and Education at Vanderbilt University,

Nashville, TN. We thank Dr. Clint Makino, for mouse electrophysiological data.

Author Contributions

Conceived and designed the experiments: ED. Performed the experiments:

GC LL. Analyzed the data: GC PB DA VVG HEH ED. Contributed

reagents/materials/analysis tools: GC PB. Wrote the paper: ED. Directed

the investigation: ED.

Rhodopsin Decay and Variability

PLoS Computational Biology | www.ploscompbiol.org 14 December 2010 | Volume 6 | Issue 12 | e1001031



References

1. Doan T, Mendez A, Detwiler P, Chen J, Rieke F (2006) Multiple

phosphorylation sites confer reproducibility of the rod’s single-photon responses.
Science 313: 530–533.

2. Doan T, Azevedo W, Hurley J, Rieke F (2009) Arrestin competition influences
the kinetics and variability of the single-photon responses of mammalian rod

photoreceptors. J of Neurosci 29: 11879–11867.
3. Mendez A, Burns ME, Roca A, Lem J, Wu LW, et al. (2000) Rapid and

reproducible deactivation of rhodopsin requires multiple phosphorylation sites.

Neuron 28: 153–164.
4. Field GD, Rieke F (2002) Mechanisms regulating variability of the single photon

responses of mammalian rod photoreceptors. Neuron 35: 733–747.
5. Whitlock GG, Lamb TD (1999) Variability in the time course of single photon

responses from toad rods: termination of rhodopsin’s activity. Neuron 23:

337–351.
6. Rieke F, Baylor DA (1998) Origin of reproducibility in the responses of retinal

rods to single photons. Biophys J 75: 1836–1857.
7. Burns ME, Mendez A, Chen J, Baylor DA (2002) Dynamics of cyclic GMP

synthesis in retinal rods. Neuron 36: 81–91.

8. Bisegna P, Caruso G, Andreucci D, Shen L, Gurevich VV, et al. (2008) Diffusion
of the second messengers in the cytoplasm acts as a variability suppressor of the

single photon response in vertebrate phototransduction. Biophys J 94:
3363–3383.

9. Andreucci D, Bisegna P, Caruso G, Hamm HE, DiBenedetto E (2003)
Mathematical model of the spatio-temporal dynamics of second messengers in

visual transduction. Biophys J 85: 1358–1376.

10. Caruso G, Khanal H, Alexiades V, Rieke F, Hamm HE, et al. (2005)
Mathematical and computational modeling of spatio-temporal signaling in rod

phototransduction. IEE Proc Syst Biol 152: 119–137.
11. Caruso G, Bisegna P, Shen L, Andreucci D, Hamm HE, et al. (2006) Modeling

the role of incisures in vertebrate phototransduction. Biophys J 91: 1192–1212.

12. Burns ME, Mendez A, Chen CK, Almuete A, Quillinan N, et al. (2006)
Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin

splice variants. J Neurosci 26: 1036–1044.
13. Shi G, Yau KW, Chen J, Kefalov VJ (2007) Signaling properties of a short-wave

cone visual pigment and its role in phototransduction. J Neurosci 27: 10084–93.
14. Varadhan S (2001) Probability Theory. Providence, R.I.: AMS.

15. Gikhman I, Skorokhod A (1969) Introduction to the Theory of Random

Processes. New York: Dover.
16. Reingruber J, Holcman D (2008) The dynamics of phosphodiesterase activation

in rods and cones. Biophys J 94: 1954–1970.
17. Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006)

Visual arrestin binding to microtubules involves a distinct conformational

change. J Biol Chem 281: 9765–9772.
18. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, X S, et al. (2007)

Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:
3125–3128.

19. Raman D, Kennedy MJ, Hurley JB, Gurevich VV (2005) Threshold mechanism
of arrestin activation: two rhodopsin-attached phosphates are necessary and

sufficient for high-affinity arrestin binding. In: Association for Research in Vision

and Ophthalmology Annual Meeting; 1-4 May 2005; Fort Lauderdale, Florida,
United States of America.

20. Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, et al. (2007)
Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem

282: 32075–32083.

21. Rieke F, Baylor DA (1998) Single photon detection by rod cells of the retina. Rev
Mod Phys 70: 1027–1036.

22. Hamer RD, Nicholas SC, Tranchina D, Liebman PA, Lamb TD (2003)
Multiple steps of phosphorylation of activated rhodopsin can account for the

reproducibility of vertebrate rod single-photon responses. J Gen Physiol 122:

419–444.
23. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, et al. (1999) Abnormal

photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase.
Proc Natl Acad Sci USA 96: 3718–3722.

24. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, et al. (1997) Prolonged
photoresponses in transgenic mouse rods lacking arrestin. Nature 389: 505–509.

25. Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995) Mechanisms of

rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation
mutant. Science 267: 374–377.

26. Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis

in vertebrate photoreceptors are regulated by multiple phosphorylation of
rhodopsin and by arrestin binding. Biochemistry 34: 1446–1454.

27. Wen XH, Shen L, Brush RS, Michaud N, Al-Ubaidi MR, et al. (2009) Over-
expression of rhodopsin alters the structure and photoresponse of rod

photoreceptors. Biophys J 9: 939–950.
28. Gross P, Burns M (2010) Control of rhodopsin’s active lifetime by arrestin-1

expression in mammalian rods. J Neurosci 30: 3450–3457.

29. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, et al. (2006)
RGS expression rate-limits recovery of rod photoresponses. Neuron 51:

409–416.
30. Burns M, Pugh EN (2009) Rgs9 concentration matters in rod phototransduction.

Biophys J 97: 1538–1547.

31. Chen CK, Woodruff ML, Chen FS, Chen D, Fain G (2010) Background light
produces a recoverin-dependent modulation of activated-rhodopsin lifetime in

mouse rods. J Neurosci 30: 1213–1220.
32. Gibson SK, Parkes JH, Liebman PA (2000) Phosphorylation modulates the

affinity of light-activated rhodopsin for G protein and arrestin. Biochemistry 39:

5738–5749.
33. Wilden U, Hall SW, Kuhn H (1986) Phosphodiesterase activation by

photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and
binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci

USA 83: 1174–1178.
34. Kennedy MJ, Lee KA, Niemi GA, Craven KB, Garwin GG, et al. (2001)

Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod

photoreceptor dark adaptation. Neuron 31: 87–101.
35. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, et al. (1999) How

does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem
274: 11451–11454.

36. Pullen N, Brown NG, Sharma RP, Akhtar M (1993) Cooperativity during

multiple phosphorylations catalyzed by rhodopsin kinase: supporting evidence
using synthetic phosphopeptides. Biochemistry 32: 3958–3964.

37. Shen L, Caruso G, Bisegna P, Andreucci D, Gurevich VV, et al. (2010)
Dynamics of mouse rod phototransduction and its sensitivity to variation of key

parameters. IET Syst Biol 4: 12–32.
38. Palczewski K, Buczylko J, Ohguro H, Annan RS, Carr SA, et al. (1994)

Characterization of a truncated form of arrestin isolated from bovine rod outer

segments. Protein Sci 3: 314–324.
39. Buczylko J, Gutmann C, Palczewski K (1991) Regulation of rhodopsin kinase by

autophosphorylation. Proc Natl Acad Sci USA 88: 2568–2572.
40. Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin.

truncation mutagenesis identifies multiple domains involved in rhodopsin

interaction. J Biol Chem 267: 21919–21923.
41. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin:

Sequential multisite binding ensures strict selectivity towards light-activated
phosphorylated rhodopsin. J Biol Chem 268: 11628–11638.

42. Song X, Vishnivetskiy SA, Gross OP, Emilianoff K, Mendez A, et al. (2009)
Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin

phosphorylation. Curr Biol 19: 700–705.

43. Wilden U, Kuhn H (1982) Light-dependent phosphorylation of rhodopsin:
number of phosphorylation sites. Biochemistry 21: 3014–3022.

44. Schleicher A, Kuhn H, Hoffman KP (1989) Kinetics, binding constant, and
activation energy of the 48-kda protein-rhodopsin complex by extrametarho-

dopsin ii. Biochem 28: 1770–1775.

45. Chen CK, Burns ME, He W, Wensel TG, Baylor DA, et al. (2000) Slowed
recovery of rod photoresponse in mice lacking the GTPase accelerating protein

RGS9-1. Nature 403: 557–560.
46. Makino CL, Dodd RL, Chen J, Burns ME, Roca A, et al. (2004) Recoverin

regulates light-dependent phosphodiesterase activity in retinal rods. J Gen

Physiol 123: 729–741.
47. Krispel CM, Chen CK, Simon MI, Burns ME (2003) Novel form of adaptation

in mouse retinal rods speeds recovery of phototransduction. J Gen Physiol 122:
703–712.

48. Krispel CM, Chen CK, Simon MI, Burns ME (2003) Prolonged photoresponses
and defective adaptation in rods of Gbeta5-/- mice. J Neurosci 23: 6965–6971.

49. Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, et al. (2001) Role of

guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of
rod photoreceptors. Proc Natl Acad Sci USA 98: 9948–9953.

Rhodopsin Decay and Variability

PLoS Computational Biology | www.ploscompbiol.org 15 December 2010 | Volume 6 | Issue 12 | e1001031


