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Abstract

An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription
factor (TF). Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or
position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present
a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied
to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false
binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via
molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in
Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of
the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation
analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth
outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth
also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of
SiteSleuth is a lower false positive rate.
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Introduction

An important step in characterizing the genetic regulatory

network of a cell is to identify the DNA binding sites recognized by

each transcription factor (TF) protein encoded in the genome. A

TF typically activates and/or represses genes by associating with

specific DNA sequences. Although other factors, such as

metabolite binding partners and protein-protein interactions (for

example, between a TF and RNA polymerase or a second TF),

can affect gene expression [1], it is important to identify the

sequences directly recognized by TFs to the best of our ability to

understand which genes are controlled by which TFs. A better

understanding of gene regulation, which plays a central role in

cellular responses to environmental changes, is a key to

manipulating cellular behavior for a variety of useful purposes,

as in metabolic engineering applications [2].

A number of computational methods have been developed for

predicting TF binding sites given a set of known binding sites [3–

10]. Commonly used methods involve the definition of a consensus

sequence or the construction of a position-specific weight matrix

(PWM), where DNA binding sites are represented as letter

sequences from the alphabet {A, T, C, G}. More sophisticated

approaches further constrain the set of potential binding sites for a

given TF by considering, in addition to PWMs, the contribution of

each nucleotide to the free energy of protein binding [3] and

additional biologically relevant information, such as nucleotide

correlation between different positions of a sequence [8] or

sequence-specific binding energies [6]. Perhaps not as widely used

as sequence analysis, the idea of employing structural data for

predicting TF binding sites has been considered [11–15]. Most

of these methods use protein-DNA structures rather than DNA

by itself.

Acquiring training sets large enough to be useful is problematic

for even well-studied TFs, for which only small sets of known

binding sites (on the order of 10 sites) are typically available [8].

New high-throughput technologies have been used to identify

large numbers of binding sites for particular TFs [16–18], but

there remains a need for methods that predict TF binding sites

given a small number of positive examples. Such methods can be

used, for example, to complement analysis of high-throughput

data. Binding sites detected by high-throughput in vitro methods,

such as protein-binding microarrays [16], can be compared with

predicted binding sites to prioritize studies aimed at confirming the

importance of sites in regulating gene expression in vivo.

The fine three-dimensional (3D) structure of DNA is sequence

dependent and TF-DNA interactions depend on various physico-

chemical parameters, such as contacts between nucleotides and

amino acid residues and base pair geometry [19]. These

parameters are not accounted for by conventional methods for

predicting TF binding sites, which rely on sequence information
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alone. Letter representations of DNA sequences do not capture the

biophysics underlying TF-DNA interactions. Given that a TF does

not read off letters from a DNA sequence, but interacts with a

particular sequence because of its chemical and structural features,

we hypothesized that better predictions of TF binding sites might

be generated by explicitly accounting for these features in an

algorithm for predicting TF binding sites.

The mechanisms by which TFs recognize DNA sequences can

be divided into two classes: indirect readout and direct readout

[19]. For indirect readout, a TF recognizes a DNA sequence via

the conformation of the sequence, which is determined by the local

geometry of base pair steps, the distortion flexibility of the DNA

sequence, and (water-mediated) protein-DNA interactions [20,21].

For direct readout, a TF recognizes a DNA sequence through

direct contacts between specific bases of the sequence and amino

acid residues of the TF [22,23]. These two classes of recognition

mechanisms are not mutually exclusive.

In this study, we introduce a method, SiteSleuth, for predicting

TF binding sites on the basis of sequence-dependent structural and

chemical features of short DNA sequences. By using molecular

dynamics (MD) methods to calculate these features, we can map a

set of known or potential binding sites for a given TF to vectors of

structural and chemical features. We use features of positive and

negative examples of TF binding sites to train a support vector

machine (SVM) to discriminate between true and false binding sites.

Negative examples are derived from randomly selected non-coding

DNA sequences. Positive examples are taken from RegulonDB

[24], which collects information about TFs in Escherichia coli.

Classifiers for E. coli TFs developed through the SiteSleuth approach

are evaluated by cross validation, and the classifier for Fis is tested

against chromatin immunoprecipitation (ChIP)-chip assays of Fis

binding sites [17]. Combining ChIP with microarray technology,

ChIP-chip assays provide information about DNA-protein binding

in vivo on a genome-wide scale [25]. We also evaluate the

performance of SiteSleuth against four other computational

methods: the method of Berg and von Hippel (BvH) [3], MATRIX

SEARCH [5], Match [7], and QPMEME [6]. The BvH, MATRIX

SEARCH, and Match methods rely on the PWM approach to

capture TF preferences for binding sites. The QPMEME method is

similar to SiteSleuth in that it employs a learning algorithm. In the

case of Fis, we show that SiteSleuth generates significantly fewer

estimated false positives and provides higher prediction accuracy

than the other computational approaches.

Methods

Our supervised learning approach, which we call SiteSleuth,

involves training a linear SVM classifier to distinguish TF binding

sites documented in RegulonDB from randomly selected non-

coding DNA sequences, which we take to represent negative

examples of TF binding sites.

Briefly, a linear SVM classifier is an (n21)-dimensional

hyperplane in a n-dimensional feature space that maximally

separates positive and negative training examples, if possible.

When the training data can be separated by a hyperplane

(wTx+d = 0), two parallel hyperplanes, given by wTx+d = 61,

mark the boundaries that maximize the distance between positive

and negative examples (2/IwI). The quantity x is a vector of

features, w is a weight vector of length n, and IwI2 = wTw. A

larger distance 2/IwI results in a lower generalization error of

the classifier. Positive examples lie on the positive side of

wTx+d = 1 and negative examples lie on the negative side of

wTx+d = 21. The parameters w and d of a classifier are

determined by solving an optimization problem [26].

On the other hand, if no hyperplane exists that completely

separates positive and negative examples, which is generally the

case here, w and d can be determined using a soft margin method

[26], which finds a hyperplane that achieves the largest separation

distance possible with the smallest error penalty imposed by non-

zero slack variables, fk (k = 1,…, N), where N is the number of

training examples, both positive and negative. The soft margin

method trades off separation and misclassification. Another way to

deal with training examples that cannot be fully separated is to use

a nonlinear SVM. Because the computational cost of using a

nonlinear SVM for our purposes would be expensive, we opted to

use a linear SVM with slack variables. The method of finding

classifier parameters is briefly described below.

Classifier training
Let us use X = {x1,…, xN} to represent the set of training data,

where xk (k = 1,…, N) is a real-valued n-dimensional feature vector

that characterizes the kth training example and n is the number of

features considered. The features considered are described below.

Given input xk and scalar output yk = {21,1}, which identifies a

training example as a positive or negative example of a binding

site, classifier training produces an (n21)-dimensional hyperplane

in the space of features that satisfies the equation wTx+d = 0 and a

set of linear inequality constraints, each involving a slack variable.

The parameters w and d and the slack variables jk (k = 1,…, N) are

found by solving the minimization problem

min
w,d,jk

1

2
wT wzCz

X
yk~1

jkzC{

X
yk~{1

jk, ð1aÞ

subject to the following constraints

yk(wT xkzd)§1{jk and jk§0,Vk: ð1bÞ

where C+ and C2 are penalty parameters [27]. These parameters

are introduced to balance the contributions of negative and

positive training examples to the objective function (Eq. 1a), as we

typically have available many more negative examples than

positive examples. The penalty parameters are determined for

each TF via a grid search over ranges of C2 and C+ values as part

of a 3-fold cross-validation procedure for each classifier.

In 3-fold cross validation, we randomly divide the training set

into three subsets of roughly equal size. One subset is then used to

Author Summary

An important step in characterizing the genetic regulatory
network of a cell is to identify the DNA binding sites
recognized by each transcription factor (TF) protein
encoded in the genome. Current computational approach-
es to TF binding site prediction rely exclusively on DNA
sequence analysis. In this manuscript, we present a novel
method called SiteSleuth, in which classifiers are trained to
discriminate between true and false binding sites based on
the sequence-specific chemical and structural features of
DNA. According to cross-validation analysis and a com-
parison of computational predictions against ChIP-chip
data available for the TF Fis, SiteSleuth predicts fewer
estimated false positives than any of four other methods
considered. A better understanding of gene regulation,
which plays a central role in cellular responses to
environmental changes, is a key to manipulating cellular
behavior for a variety of useful purposes, as in metabolic
engineering applications.
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test the accuracy of the classifier trained on the remaining two

subsets until each subset has been used in testing. We used the

F-measure to assess accuracy. The F-measure is the harmonic

mean of precision (p) and recall (r):

F~
2pr

pzr
:

Precision is the fraction of predicted binding sites that are actually

binding sites and recall is the fraction of actual binding sites

predicted to be binding sites:

p~
TP

TPzFP
, r~

TP

TPzFN
,

where TP, FP, and FN represent true positives, false positives and

false negatives from 3-fold cross validation. To find values of C2

and C+ that maximize the F-measure, we first performed a coarse

grid search over the following grid points: C2 = [225, 223, …, 215]

and C+ = [225, 223,…, 215]. We then performed fine grid searches

using progressively smaller grid spacing (2, 20.5, 20.125,…) around

the best C2 and C+ values found in the coarse grid search.

SiteSleuth prediction
Once trained, a classifier for a TF, taken to recognize binding

sites of length L, is used for prediction as follows. The classifier is

used to scan an organism’s genome for binding sites of length L.

Given a feature vector xm for a potential binding site m, we

calculate the quantity wTxm+d. The decision function of the

classifier is the sign of wTxm+d. Thus, if the sign of this quantity is

positive, then site m is predicted to be a TF binding site.

Conversely, a negative quantity indicates that m is not a binding

site. This step is repeated for all non-coding sequences in the E. coli

genome of length L. The length L was chosen for each TF based

on information in RegulonDB [24].

Structural and chemical features
Structural and chemical features of short DNA sequences were

defined based on the predicted 3D structures of these DNA

sequences, which were determined via MD simulations. MD

simulations of solvated nucleic acids have been performed for

almost three decades [28,29]. Simulations of DNA oligomers have

been studied systematically and results have been discussed in

multiple publications [30–32]. Our approach is similar to that

used in Refs. [30–32] and is described below. Because the

available experimental data are incomplete (i.e., structures are

unavailable for all 4-mers, at least in the Nucleic Acid Database

[33]) and available structures have been determined under various

experimental conditions (e.g., free or bound to protein), we used

simulated structures rather than experimentally determined

structures for determining structural and chemical features.

Predicted structures were obtained for a common condition in a

uniform manner.

Structural features. For an indirect readout mechanism, a

TF recognizes DNA conformation, the local structure of DNA. To

calculate structural features of base pairs, we considered all

possible 3-mers and 4-mers of DNA. Each of the 3-mers (4-mers)

was embedded within flanking GC nucleotide pairs to generate

7-mers (8-mers). Flanking nucleotide pairs are added to eliminate

edge effects of 3-mers or 4-mers of DNA. We chose to cap both

ends with GC nucleotide pairs, which is a common choice for

reasons of rigidity and symmetry [30–32]. For each 7-mer or

8-mer, its initial 3D structure was generated using the 3DNA

software [34]. The structure produced by 3DNA is based on the

Watson and Crick DNA structure. The 3D DNA fragments were

solvated and ionized to balance the negative charges of the DNA

backbone. Final structures were obtained using the NAMD

software tool [35] for MD simulations with the CHARMM27

force field parameters [36]. Other MD software packages could

also have been used to obtain 3D DNA structures, but NAMD

was a convenient choice for us because of our familiarity with

this package. For each NAMD simulation, we performed

3 picoseconds (ps) of minimization, 7 ps of heating to 300 K,

30 ps of relaxation, and 50 ps of equilibration, followed by 1

nanosecond (ns) of production, or post-equilibrium, simulation.

Each simulation was carried out using the isothermal-isobaric

(NPT) ensemble (P = 1 atm, T = 300 K). During the production

simulation, the DNA structures were recorded every picosecond

for a total of 1000 frames of DNA structures. For each 7-mer and

8-mer, these 1000 frames were aligned to calculate the average

DNA structure. From the average structure, we performed normal

mode analysis [37] using the 3DNA software tool [34] to estimate

six base parameters for the middle base pairs of 3-mers, and six

step parameters for the middle base pairs of 4-mers. The six base

parameters are shear, buckle, stretch, propeller, stagger and

opening, and the six step parameters are shift, tilt, slide, roll, rise

and twist [37].

Chemical features. A TF can recognize specific DNA

sequences based on direct contact between nucleotides and

amino acids through electrostatic and hydrophobic interactions.

These molecular interactions, and therefore the interaction field

features of a nucleotide, depend on nearby bases. Considering

nucleotides beyond the first nearest neighbor bases did not result

in significantly different values for interaction field features (results

not shown), but it was significantly more computation-

ally expensive. Thus, we considered only the influence of imme-

diately adjacent bases in calculations of the molecular interaction

field features of a nucleotide.

Let b be a middle nucleotide of a 3-mer as shown in Figure 1.

To characterize the sequence-dependent molecular interaction

field around b, we used the average structure for the 3-mer

obtained from MD simulations and defined V as the volume

around the base b constrained by four planes (A, B, C, and D) as

shown in Figure 1. Within V, we systematically placed a small

probe at different locations and computed the interaction energy

between the DNA and the probe using the molecular force field

encoded in GRID [38], a software tool designed for this purpose.

We considered 31 probes available in GRID, such as an alkyl

hydroxyl group, a methyl group, and an aliphatic neutral amide

group (Table S1). The distance between planes C and D, which

bound V, is 20 Å. This distance was chosen to capture all

interactions between a probe and the DNA sequence that produce

energy less than 20.001 Kcal/mol, which is the largest negative

energy reported by GRID.

For each probe i M {1,…, 31}, using the GRID software tool [38],

we calculated and recorded the minimum interaction energy, Pi:

Pi~ min
r
I[V

W( r
I

), ð2aÞ

where W( r
I

) is the potential at point r
I

. We also calculated the

interaction score, Qi:

Qi~

ð

DVi

W( r
I

)dV, ð2bÞ
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where the integration is performed over the volume V. We

integrated over all points in V where the interaction energy was less

than 20.001. The interaction field features for all middle bases in all

of the 64 possible 3-mers were calculated and stored for use in

defining chemical features as described below (Figures 1 and 2). For

probe i, the interaction score, Qi, is a measure of the energy stored

in the field of the DNA sequence in the volume V. Note that we

defined the volume for each nucleotide separately rather than for a

base pair to capture more information about DNA structure, such

as major groove and minor groove effects.

A middle base of a 3-mer is associated with 62 molecular

interaction field features: a minimum interaction energy given by Eq.

2a for each of the 31 probes and an interaction score given by Eq. 2b

for each of the 31 probes. We found that some of these features are

correlated. To identify a smaller set of uncorrelated features, we used

principal component analysis (PCA). PCA generates a list of

uncorrelated variables, or principal components, that are described

by the eigenvectors of the correlation matrix of a dataset. The

variability in the dataset is captured by the eigenvalues that

correspond to the eigenvectors. For each probe and each of the 64

possible 3-mers, the values of the 62 molecular interaction field

features for each base in the middle base pair were normalized to

mean 0 and standard deviation 1 and organized in a 64662 matrix.

PCA was performed on this matrix. We arbitrarily chose the first

eight eigenvalues, which capture 93% of the variance, and used the

eigenvectors associated with these first eight eigenvalues as the

chemical features to be used in training. Thus, for each middle base in

a 3-mer, its chemical features are the corresponding elements from

the first eight principal components, or eigenvectors, from PCA of the

molecular interaction field features.

Mapping of DNA sequences to feature vectors. For a

given TF that recognizes binding sites of length L in a genome,

DNA sequences of length L are mapped to feature vectors as

follows. For each of the L bases in a DNA sequence, we determine

six geometrical base parameters and eight chemical features.

These features are those that were calculated as described above

for a 3-mer with the base of interest at the middle position. Recall

that the eight chemical features are derived from the principal

components of 62 molecular interaction field features. We also

determine six geometrical step parameters for the middle two

bases of all possible 4-mers. For efficiency, the features of a

sequence are determined by table look up. In other words, the

features of all possible 3- and 4-mers were calculated before

assigning features to known and potential TF binding sites and

saved in a table. Recall that structural features of 3- and 4-mers

were determined in the context of flanking GC sequences.

Figure 2 illustrates how feature vectors are obtained for a

particular DNA sequence. The features associated with a sequence

depend on the flanking nucleotides. As shown in Step 1 of Figure 2,

for each of the ten nucleotides in the DNA sequence GACCTC-

TAGA, starting with G, we determined the chemical features of

the 3-mer in which this nucleotide is centered. Since DNA is

double stranded, both strands were mapped to chemical features.

For example, G within AGA and its complement taken in reverse,

C within TCT, were mapped to chemical features. Then, shifting

one base to the right, the next triplet GAC and its complement

GTC were mapped to chemical features. This process continues

until the last base in the sequence, A, is reached. The ten possible

3-mers for this example are AGA, GAC, ACC, CCT, CTC, TCT,

CTA, TAG, AGA, and GAT. The corresponding reverse

complements are TCT, GTC, GGT, AGG, GAG, AGA, TAG,

CTA, TCT, and ATC. In Step 2 of Figure 2, we mapped each

middle base pair in the ten possible 3-mers in the sequence to six

geometrical base features. Similarly, in Step 3, we mapped the two

middle base pairs for each of the nine possible 4-mers in the

sequence to six geometrical step features, starting with GA in

AGAC. The nine possible 4-mers for this example are AGAC,

GACC, ACCT, CCTC, CTCT, TCTA, CTAG, TAGA, and

AGAT. For this example sequence, there are ten triplets and nine

quadruplets, which result in (10 triplets*8 features from PCA

analysis per base*2 middle bases per triplet) 160 chemical features,

(10 triplets*6 structural base features per triplet) 60 structural base

features, and (9 quadruplets*6 structural step features per

quadruplet) 54 structural step features, for a total of 274 feature

vector components (n = 274). The structural and chemical features

associated with AGA are given in Table S2 for reference.

Sources of negative and positive examples for

training. The E. coli genome was downloaded from KEGG

[39]. The E. coli open reading frames (ORFs) were identified in

KEGG. For each E. coli TF, its documented binding sites were

downloaded from RegulonDB 5.6. We decided to consider only E.

coli TFs with at least five known binding sites. There are 54 such

TFs in RegulonDB. The DNA sequences for the set of known

binding sites for a given TF were mapped to feature vectors, and

these vectors were used in training. To obtain negative examples

Figure 1. Computation of the molecular interaction potential.
The local coordinate references for base pairs associated with bases b,
b+1, and b21 are defined using the reference framework for the
description of nucleic acid base-pair geometry [37]. The volume V is
defined as the space constrained by four planes A, B, C and D. Plane A
(B) bisects Bases b and b+1 (b and b21), and Plane C is perpendicular to
Planes A and B and bisects Base b and its complementary base. Plane D
marks a boundary 20 Å away from Plane C. Outside this area, the
interaction energy tends to be weak (greater than 20.001 Kcal/mol).
A probe is placed in V and the interaction energy between the DNA
and the probe is calculated using the GRID software tool [38]. A total of
31 probes, listed in Table S1, are used in these calculations. See the
Methods section for more details.
doi:10.1371/journal.pcbi.1001007.g001
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for training, we first removed the ORFs from the genome. The

remaining non-coding portions of the genome were taken to be

negative examples of TF binding sites. We randomly selected

10,000 non-coding sequences to serve as negative examples for

each TF, and mapped these sequences to feature vectors. We also

obtained positive training data from DPInteract [40]. The source

of training data did not affect the main qualitative findings of our

method comparisons reported in the Results section. Namely, we

find that the performance of SiteSleuth is better than the other

methods tested. Results based on DPInteract training data are

given in Table S5 of the Supplemental Material. These results are

not discussed further because DPInteract has not been updated for

some time and more binding sites are documented in RegulonDB.

To build a SiteSleuth model for a TF, we need known binding sites

for the TF (positive examples), 10,000 randomly selected non-coding

sequences (negative examples), and the structural and chemical

features of short DNA sequences. It is time consuming to generate the

structural and chemical features of short DNA sequences because

these features require MD simulations to be performed and

molecular interaction energy calculations. However, the MD

simulations are performed only once and the structural and chemical

features of short DNA sequences are tabulated. SiteSleuth classifiers

are defined by a vector (wT, d), whose determination requires SVM

training by solving the minimization problem defined in Eq. 1a

subject to the constraints defined in Eq. 1b for the positive and

negative examples. We used libsvm [27] for training. A single training

run takes less than 1 minute. For a potential binding site m, we used

the tabulated structural and chemical features to calculate feature

vector xm and the prediction value wTxm+d. Once this is done, using

the SiteSleuth model to scan the E.coli genome requires several

minutes for each TF.

Implementation of other TF binding site prediction
methods

For comparison, we implemented four other computational TF

binding site prediction methods: the method of Berg and von Hippel

(BvH) [3], Match [7], MATRIX SEARCH [5], and QPMEME [6].

These methods were implemented as described in the cited papers

and, for the 54 TFs studied, a list of binding sites predicted by each

method can be found online at http://cellsignaling.lanl.gov/

EcoliTFs/SiteSleuth/. For completeness, each method is briefly

presented below.

To discuss these methods we will need to first introduce a few

quantities. For a set of N DNA binding sites of a particular TF, the

length of each binding site is denoted by L. The value of L is set

equal to the length of binding sites reported in RegulonDB for a

given TF. In the case of Fis, we set L = 21. We define nj(b) to be

the number of times base b appears in the j th position in the

Figure 2. Mapping of DNA sequences to feature vectors. DNA sequences of known or potential TF binding sites are mapped to feature vectors
as illustrated here for the 10-base sequence GACCTCTAGA. Red letters indicate nucleotides that are mapped to structural and chemical features and
boxes indicate base pairs mapped to structural features. Step 1: map each of the ten nucleotides and its complement to eight chemical features. Step
2: map each middle base pair in the ten possible 3-mers to six geometrical base features. Step 3: for each of the nine possible 4-mers, map the two
middle base pairs to six geometrical step features. For this example sequence, there are ten triplets and nine quadruplets, which result in a total of
n = 274 feature vector components. A detailed description of the process of mapping DNA sequences to features is provided in the Methods section.
The features associated with AGA are listed in Table S2.
doi:10.1371/journal.pcbi.1001007.g002
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sequences of the binding sites, and fj(b) to be the corresponding

frequency. We denote ~ff (b) as the overall background frequency of

base b. We use S to denote a potential TF binding site of length L

and we use Sj (j = 1,…, L) to denote the j th base of sequence S.

For the BvH method, we denoted the number of occurrences of

the most common base in position j of the set of binding sites by

nj(0). Using a training set of N binding sites, the BvH method

calculates the score of each binding site as the summation over

every position of the log-odds score of observing a base of S versus

the most frequent base in the corresponding position of the

sequence. Thus, the score is given by

XL

j~1

ln
nj(tj)z0:5

nj(0)z0:5
:

A pseudocount of 0.5 is used in the formula [3]. A cutoff threshold

is defined as the mean score of the N positive training examples.

To evaluate whether a new sequence S is a binding site, the score

of S is calculated based on the above formula and compared with

the cutoff threshold. If the score of sequence S is greater than the

cutoff threshold, it is predicted to be a binding site.

For the Match method, a set of N training examples is used to

define an information vector I(j), which describes the conservation

of the position j in a binding site from the training set:

I(j)~
X

b[fA,T ,C,Gg
fj(b) ln (4fj(b)):

The information vector is used to evaluate whether a new

sequence S is a binding site or not by calculating a score defined as

current{ min

max { min
, where current~

XL

j~1

I(j)fj(Sj),

and min and max are calculated using the lowest and highest

nucleotide frequency in each position, respectively. A cutoff

threshold is defined as the mean score of the N positive training

examples. If the score for a new sequence S is larger than the cutoff

threshold, S is predicted to be a binding site.

Using a set of N binding sites as training examples, the

MATRIX SEARCH method calculates the score of each binding

site S as the summation over every position of the log-odds score of

observing a base in S versus the overall background frequency of

that base in the corresponding position of the sequences. Thus, the

score is given by

XL

j~1

log2

fj(Sj)z0:01

~ff (Sj)z0:01
:

A pseudocount of 0.01 is used in the formula [5]. A cutoff

threshold is determined as the mean of the N scores calculated

from the training data. A new sequence S is predicted to be a

binding site if its score is greater than the cutoff threshold.

The QPMEME (Quadratic Programming Method of Energy

Matrix Estimation) method defines a weight ej(b) for each base b

at position j in S. The score for a sequence S is defined as

XL

j~1

ej(Sj):

The weight ej(b) is estimated via a learning algorithm that only

uses positive examples. The learning algorithm minimizes the

variance e2 subject to the constraint that the score for each known

binding site is less than a predefined cutoff value. Consistent with

the Methods section of Djordjevic et al. [6], we used 21 for the

cutoff value in our implementation of QPMEME, which

constrains all known binding sites to one side of a hyperplane.

Mathematically, the learning algorithm is described by

min
X

b[fA,T ,C,Gg

XL

j~1

e2
j (b) subject to

XL

j~1

ej(Sj)v{1

for every S in the training data set.

Comparison of methods
Cross-validation. SiteSleuth was implemented for 54 TFs,

which each have at least five known binding sites in E. coli

according to RegulonDB (Table S3). A complete list of binding

sites predicted by SiteSleuth for each TF can be found online at

http://cellsignaling.lanl.gov/EcoliTFs/SiteSleuth/. A linear SVM

served as the classification model for each TF. The classification

models were used to scan the entire non-coding portion of the

DNA sequence to predict new binding sites. For BvH, Match, and

MATRIX SEARCH, as described above, the cutoff thresholds for

classifying potential binding sites as true binding sites were defined

to be the mean scores of the positive training examples. The cutoff

threshold used for QPMEME was 21 [6]. The cutoff threshold for

SiteSleuth was wTx+d.0.

Each model relies on a set of parameters, some of which are

fixed and some of which are free parameters that must be

estimated. More complex models have more free parameters, but

these free parameters increase the chance of overfitting the data. It

is possible that complex models will be able to fit the training data

well but that the model’s ability to accurately predict new TF

binding sites may be low. Thus, to address the question of possible

overfitting and to evaluate each model’s prediction capability we

performed 3-fold cross-validation. For each TF, training and

testing were performed ten times to estimate the mean cross-

validation value for the positive examples. The cross-validation

score, V, is the fraction of positive examples predicted to be true

binding sites.

One measure used to compare classifiers is the area under a

receiver operating characteristics (ROC) curve. A ROC curve is a

two-dimensional plot of the false positive rate (1 - specificity) versus

the true positive rate (sensitivity). Each data point on this plot is

generated by changing the cutoff values of classifiers and the area

under the ROC curve (AUC) is calculated. The AUC is always

between 0 and 1. A perfect classifier will have an AUC of 1 and a

random classifier will have an AUC of 0.5. We implemented an

algorithm for generating ROC curves and for calculating the

AUC, which ranks classifier scores according to testing examples

[41]. Positive examples for a given TF are chosen by randomly

dividing the training set data into 2/3 positive training examples

and 1/3 positive testing examples. The non-coding portions of the

E. coli genome were used to generate all possible negative examples

of TF binding sites. We built models using the training examples

for the five methods. The models are used to calculate scores for

positive testing examples and negative examples. An ROC curve

and the corresponding AUC were estimated. For each TF, we

performed the above procedure ten times to estimate ten AUCs for

each method, and we reported the average value and standard

deviation of AUC. For n positive testing examples, we can generate

n points to draw the ROC curve. Fewer positive testing examples

Sequence-Specific Properties to Predict TFBS
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may generate large uncertainty in AUC calculation. Thus, we

performed AUC analysis only for TFs in RegulonDB with at least

20 known binding sites.

Comparison with experimental data. We further

interrogated the performance of these methods against

SiteSleuth by comparing predictions against experimental data

for Fis binding to E. coli DNA [17]. Cho et al. [17] identified 894

Fis-associated binding regions in ChIP-chip experiments. For each

computational method, its list of predicted Fis binding sites, 21

base pairs (bp) in length, was compared to these 894 binding

regions. Comparisons were made by scanning the binding region

in the forward and reverse directions. A match was recorded if the

complete predicted binding site or its complement was found

within the experimentally determined binding region. False

positives were computed by subtracting the number of matches

from the total number of predicted binding sites.

Results

Local structural features of DNA depend on nucleotide
environment

To make a preliminary assessment of our hypothesis that we can

produce better predictions if we consider the chemical and

structural features of sequence-specific DNA, we examined the

features of various sequences and found that the same base in the

same position in a sequence can have different chemical and

structural features depending on its environment. We illustrate this

finding in Figure 3, which shows sequence-specific DNA

structures. From the structures, one can see the context-dependent

variation in the twist angle between the center two base planes.

The center base pair is the same in each structure, but the twist

angle for the left structure of Figure 3A is 220.4u, whereas the

twist angle for the right structure of Figure 3A is 24.3u. Figure 3A

demonstrates that different local structural features may charac-

terize the same nucleotide at the same position in a sequence. The

feature vectors for TGG and AGA are given in Table S2.

Similarly, Figure 3B demonstrates that different nucleotides in the

same position may be characterized by the same local structural

features. The twist angles of the middle base pairs of the two

structures in Figure 3B are the same, even though the base pairs

are different. These observations suggested to us that chemical and

structural features may capture sequence correlations relevant for

TF-DNA interactions that are not apparent from sequence data

alone and encouraged us to build classifiers that separate negative

and positive examples of TF binding sites based on their positions

in chemical and structural feature space. This approach, which we

call the SiteSleuth method, combines DNA structure prediction,

computational chemistry and machine learning.

To demonstrate the reliability of MD simulations for prediction

of structural features of DNA oligomers, we calculated the

propeller feature using 1) available experimental structural data

(obtained from the Nucleic Acid Database [33]) and 2) predicted

structures obtained via MD simulations, and we found significant

correlation (about 0.8). The results are shown in Figure S2.

Classifiers
As described in the Methods section, binary SiteSleuth

classifiers were developed to identify and predict the binding sites

of 54 TFs based on TF binding sites documented in RegulonDB.

The input to a classifier is a vector of structural and chemical

features generated from DNA sequences, each labeled as either a

positive or negative example. Negative examples were taken from

randomly chosen non-coding sequences of the E. coli genome. The

classifiers were then used to scan both strands of non-coding

sequences in the E. coli genome from 59 to 39 to identify potential

TF binding sites. For comparison, we also considered four other

computational TF binding site prediction methods: BvH [3],

MATRIX SEARCH [5], Match [7], and QPMEME [6] These

methods are each briefly described in the Methods section.

Cross-validation of classifiers
The accuracy of predictions of each method was evaluated

through a 3-fold cross-validation procedure, described in the

Methods section. For each method, the mean cross-validation

score, V, for the 54 TFs considered are listed in Table S4 and

classifier accuracy is summarized in Figure 4. Recall that V is the

fraction of positive examples predicted to be true binding sites in

the cross-validation procedure.

Figure 4 is a heat map showing the cross-validation score,

0ƒVƒ1, produced by each of the five computational methods.

Brighter red indicates a higher cross-validation score and black

represents V~0. A cross-validation score of V~1 indicates

perfect prediction, whereas a cross-validation score of zero

indicates that the method fails to predict any TF binding sites

correctly. Of the 54 TFs studied, SiteSleuth outperforms all the

other methods in 28 cases, equals the next best method in 11 cases,

and performs more poorly in 15 cases. Based on the number of

times a method outperformed all the other methods, SiteSleuth

(28) performed better than QPMEME (8), which performed better

than MATRIX SEARCH (2), which equaled the performance of

BvH (2), which performed better than Match (0). In one case,

IcsR, SiteSleuth is the only method for which V=0. The data

used to construct Figure 4 are given in Table S4.

Interestingly, Figure 4 reveals that all methods give cross-

validation scores of zero for several TFs: CysB, GcvA, OxyR,

RcsAB, and Rob. This observation suggests that methods that rely

on DNA sequence information, including SiteSleuth, are insuffi-

ciently equipped to predict the binding sites for these TFs. Some of

these TFs, such as GcvA [42], may perhaps recognize DNA

indirectly via interaction with a second protein that recognizes

DNA directly. Another explanation could be that some of these

TFs, such as Rob [43], may be recognizing very short sequences.

The total number of TF binding sites predicted by each

computational method is given in Table S3. For most TFs,

QPMEME and Match both predict a large number of TF binding

sites in the E. coli genome. The BvH and MATRIX SEARCH

methods predict fewer binding sites, but still more than the

number of predictions generated by SiteSleuth. In Figure 5, we

show the performance of SiteSleuth relative to that of BvH for the

TFs with five or more known binding sites. The relative

performance (RP) score shown in Figure 5 is defined as the

number of TF binding sites predicted by BvH divided by the

number of TF binding sites predicted by SiteSleuth. This score

indicates how many times more TF binding sites are predicted by

BvH than by SiteSleuth. For example, BvH predicts 23 times more

TF binding sites for MetJ than does SiteSleuth. For reference, the

log transformed number of TF binding sites predicted by

SiteSleuth is also indicated in Figure 5 and a solid line is drawn

at RP = 1. As can be seen in Figure 5, 41 TFs have RP.1 and 13

TFs have RP,1. Thus, there is a large class of TFs for which

SiteSleuth predicts fewer binding sites than BvH (RP.1) and, by

extension, the other computational methods. From these results

alone, it is not clear whether fewer predictions are a result of fewer

false positives or more false negatives. To examine this question,

we considered ChIP-chip data for Fis binding to DNA [17], which,

as shown in Figure 5, has RP.1. Our findings are discussed in the

next section.
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Figure 3. Structural features depend on nucleotide environment. These figures show the twist angle between the two base planes of a base
pair in the vertical center of each of four DNA structures corresponding to the DNA sequences indicated below. All structures were obtained through
MD simulations, as described in the Methods section. (A) Sequences with the same central base can have different properties in different local
environments: G in GCTGGGC (left) is twisted 24.3 degrees relative to its cognate base and G in GCAGAGC (right) is twisted 220.4 degrees.
(B) Sequences with different central bases can have similar structural properties: A in GCCAGGC (left) is twisted 29.5 degrees relative to its cognate
base and G in GCCGGGC (right) is twisted 29.5 degrees.
doi:10.1371/journal.pcbi.1001007.g003
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As described in the Methods section, we also generated ROC

curves and calculated AUC to compare classifiers. For each of the

five computational methods and for TFs in RegulonDB with 20 or

more known binding sites, the AUC values are tabulated in Table

S6. We find that SiteSleuth had the largest AUC for 60% of the

TFs tested, BvH had the largest AUC for 25% of the TFs,

MATRIX SEARCH had the largest AUC for 10% of the TFs

tested, QPMEME had the largest AUC for 5% of the TFs tested,

and Match had the largest AUC for 0% of the TFs tested.

Validation against ChIP-chip data
ChIP-chip assays have identified 894 DNA sequences that bind Fis

in E. coli [17], which we used to validate the Fis binding sites predicted

by each method. Looking at SiteSleuth results for Fis, SiteSleuth

predicted 129,150 binding sites for Fis from a positive training set of

133 binding sites published in RegulonDB (Table S3), the second

largest training set available for the 54 TFs we studied. The relative

performance of SiteSleuth for Fis binding site prediction is close to

one for three of the other methods under consideration

(RPBvH = 1.56, RPMatch = 2.03, RPMATRIX SEARCH = 1.55, and

RPQPMEME = 11.67). SiteSleuth’s cross-validation score for Fis

(V = 0.33) is low (Table S4). The availability of empirical data on

Fis binding, including a larger number of known binding sites in

RegulonDB for training, and the indirect recognition mechanisms of

Fis binding to DNA [33] suggested that Fis may provide a good

example to test whether SiteSleuth, which accounts for DNA

structure, performs better than the other methods, despite its low

cross-validation score.

Predictions of Fis binding sites from each computational method

are compared to experimentally identified DNA sequences that

bind Fis in E. coli in ChIP-chip assays [17]. We assume that the

sequences found in this study contain, to a first approximation, the

complete set of Fis binding sites. For each method, the

approximate number of false positives was determined by

subtracting the number of predictions that matched experimen-

tally defined Fis binding sequences from the total number of

predictions made by the method. Figure 6 shows the number of

false positives generated by each computational method (black

bars). As can be seen, the QPMEME method produced more than

1.5 million estimated false positives. Match generated approxi-

mately 261,000 false positives and BvH and MATRIX SEARCH

both generated roughly 200,000 false positives. SiteSleuth

produced the fewest false positives, over 70,000 fewer than the

next best method, a reduction of 35% in the estimated false

positive rate.

In absolute terms, QPMEME predicted a binding site within

889 of the 894 experimentally defined Fis binding sequences

(99.44%). However, the predictions are not practically useful, since

they are hidden within over 1.5 million estimated false positive

results. The gray bars in Figure 6 report the percentage of TF

binding sites correctly predicted by the five computational

methods normalized by the total number of predictions. After

normalization, QPMEME was the lowest performer for Fis. The

BvH, Match, and MATRIX SEARCH methods gave approxi-

Figure 4. Cross-validation heat map. Heat map of cross-validation
score, V, for the five methods indicated along the top for each of the 54
TFs indicated on the right. Bright red indicates a high cross-validation
score, whereas black indicates V = 0 (the lowest score). The highest
score is V = 1. Of the 54 TFs studied, SiteSleuth outperforms all the other
methods in 28 cases, equals the next best method in 11 cases, and
performs more poorly in 15 cases. The ranking of methods in order of
the number of times a method outperforms all the others is as follows:
SiteSleuth (28).QPMEME (8).MATRIX SEARCH (2) = BvH (2).Match (0).
doi:10.1371/journal.pcbi.1001007.g004
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mately equivalent results. SiteSleuth outperformed these methods,

showing a 41% improvement over MATRIX SEARCH, the next

best method.

Discussion

We postulated that a better TF binding site prediction method

could be developed on the basis of chemical and structural

features, instead of letter sequences. To test this hypothesis, we

developed the SiteSleuth method, in which potential TF binding

sites are associated with DNA sequence-specific structural and

chemical features. These features are then used to build

classification models for and to predict TF binding sites.

Compared to the other computational methods we tested,

including the three methods that use a PWM representation of

TF binding sites (BvH, Match, and MATRIX SEARCH), our

method provides a higher cross-validation accuracy. For 72% of

the TFs studied, SiteSleuth cross-validation accuracy is as high as

or higher than any other method (Table S4). SiteSleuth also

generates 35% fewer estimated false positive results (Figure 6), and

gives more accurate predictions (41% improvement over the next

best method) for TF binding sites (Figure 6). In addition, the four

other methods considered here each rely on the additivity

assumption, which states that each nucleotide in a DNA binding

site contributes to binding affinity in an independent fashion. In

the study of Benos et al. [44], the additivity assumption was tested.

In general, the additivity assumption holds rather well as shown by

ddG measurements of mutated DNA sites in several protein-DNA

complexes [44]. However, it was shown that additivity is a poor

assumption for some cases [44]. SiteSleuth does not rely on the

additivity assumption, which may partially explain its better

performance.

It must be noted that none of the methods for predicting TF

binding sites considered here can be deemed reliable when used

alone. In Figure 6, although SiteSleuth indeed produces the

highest fraction of correct predictions, the fraction of correct

predictions is still small at 0.4%. Nonetheless, SiteSleuth

constitutes an advance over existing methods and the approach

warrants further investigation. The chemical and structural

features we have considered are crude and additional determi-

nants of specificity and other biologically relevant features, such as

amino acid side chain interaction energy with DNA, could be

incorporated into the SiteSleuth approach in the future. It may

also be possible to incorporate experimental measurements of

short DNA sequence properties into the SiteSleuth framework. A

mechanistic understanding of TF binding to DNA could guide the

design of novel model features. For example, a recent study of Fis

showed that the shape of the DNA minor groove affects Fis-DNA

binding [45]. This property is hard to capture using only DNA

letter sequences, but could be captured by defining a new feature

in SiteSleuth based on the available structural data. Presently, the

features defined in SiteSleuth are unable to capture the effects of

the minor groove on Fis binding, which may account for

SiteSleuth’s poor performance in absolute terms.

The QPMEME method is similar to the SVM-based approach

of SiteSleuth. Both methods involve a quadratic programming

minimization procedure with linear inequality constraints.

QPMEME maps sequences of L bases into 4|L multidimensional

spaces with energy terms for each dimension and constructs a

hyperplane such that all positive examples are located on one side of

the plane. This quadratic optimization procedure defines a separating

hyperplane by minimizing the variance of energies in an energy

matrix so as to minimize the number of random sequences lying on

the side of the plane that contains the positive examples. In contrast,

Figure 5. Bars show the relative performance (RP) of SiteSleuth
compared to BvH. The quantity RP is defined as the number of
predictions given by BvH divided by the number of predictions given
by SiteSleuth. The value of RP is given on the top axis. A solid line is
drawn at RP = 1. RP.1 indicates that BvH predicts a greater number of
TF binding sites than SiteSleuth. The number of TF binding sites
predicted by SiteSleuth (+) is indicated on the bottom axis. Of the 54
TFs tested, 13 TFs have RP,1 and 41 have RP.1. Taken together with
the Fis ChIP-chip data [17], this figure shows that BvH predicts more
estimated false positives than SiteSleuth. See the main text for further
discussion.
doi:10.1371/journal.pcbi.1001007.g005
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the separating hyperplane of an SVM divides true binding sites from

nonbinding sites with maximum margin. The distinction between

random sequences, considered in QPMEME, and negative examples,

considered in SiteSleuth, is important because sequences do not

appear with equal probability in the E. coli genome, as is shown in

Figure S1. SiteSleuth used negative examples directly sampled from

non-coding regions of the E. coli genome.

In the report of Djordjevic et al. [6], the QPMEME method is

applied to non-ORF regions of the E. coli genome to predict

binding sites for 34 TFs, including Fis. For Fis, Table 1 of Ref. [6]

indicates that QPMEME predicts 255 Fis binding sites, compared

to the 1.5 million found with QPMEME in our hands (Table S3).

To ensure that our implementation was correct, we applied

QPMEME using the same training data set used by Djordjevic

et al. [6] from DPInteract and were able to reproduce their weight

matrix [6]. For Fis, RegulonDB reports 133 binding sites,

compared to only 19 reported Fis binding sites in DPInteract.

This difference in the size of the training data set (19 versus 133

positive examples of Fis binding sites) may be responsible for the

difference in number of predicted binding sites (255 vs. 1.5

million). As can be seen by comparing the common entries in

Table 1 of Ref. [6] and in Table S3, Fis is not an isolated example

of QPMEME predicting a larger number of TF binding sites when

the number of positive training examples is larger. It is also the

case for the TFs ArcA, ArgR, CRP, CytR, DnaA, FadR, FarR,

Fnr, FruR, GalR, GlpR, H-NS, IHF, LexA, LRP, MetJ, NagC,

NarL, OmpR, SoxS, and TyrR. The QPMEME method may

perform poorly for TFs with relatively large numbers of known

binding sites because QPMEME requires that all positive

examples be located on one side of a hyperplane in the space

spanned by an energy matrix [6] (see Methods section). Thus,

known binding sites that are outliers in this space may potentially

expand the range of sequences considered to be binding sites, such

that recall is maximized at the expense of precision. We have not

systematically investigated the reasons underlying our observation

that QPMEME performs poorly for the TFs identified above when

using positive training data from RegulonDB, as such an

investigation was beyond the intended scope of our study.

In summary, how TFs selectively bind to DNA is one of the least

understood aspects of TF-mediated regulation of gene expression.

An ability to better predict TF binding sites from small training

data sets may advance our understanding of TF-DNA binding,

and may reveal important insights into TF binding specificity,

regulation and coordination of gene expression, and ultimately

into gene function. A long-standing problem has been how to

identify new TF binding sites given known binding sites. The

accuracy and usefulness of computational methods for genome-

wide TF binding site prediction has been limited by the inability to

validate, verify, and inform these methods. Only recently has

technology matured to the point that we can assay for TF binding

sites on a genome-wide scale. This capability should allow us to

critically evaluate predictions from computational methods and to

develop methods that are more predictive than those currently

available. Toward this end, the work presented here provides a

starting point for future investigations of how TF binding site

prediction can be improved by considering the physical and

chemical aspects of TF-DNA binding.

Supporting Information

Figure S1 Bars indicate the frequencies of triplet sequences that

appear in non-coding regions of the E. coli genome. As can be

Figure 6. Evaluation of five computational methods using ChIP-chip characterization of Fis binding to E. coli DNA [17]. Black bars
indicate the estimated number of false positives (left axis). Gray bars indicate the number of TF binding sites estimated to be correctly predicted
divided by the total number of predictions (right axis). As described in the Methods section, the estimated number of false positives is calculated as
the difference between a method’s total number of predictions and the estimated number of Fis binding sites correctly predicted. SiteSleuth
produces over 70,000 fewer false positives (difference between black bars for SiteSleuth and MATRIX SEARCH) and shows a 41% improvement in
prediction accuracy over the next best method (compare the gray bars for MATRIX SEARCH and SiteSleuth).
doi:10.1371/journal.pcbi.1001007.g006
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seen, the non-coding genome sequence is not random, i.e., the

assumption that sequences appear with equal probability is invalid.

Found at: doi:10.1371/journal.pcbi.1001007.s001 (3.93 MB TIF)

Figure S2 Correlation of propeller feature from simulation and

experimental DNA structure. We downloaded all asymmetric units of

nucleic acid-containing structures determined by X-ray crystallogra-

phy from the Nucleic Acid Database (http://ndbserver.rutgers.edu/)

[33]. From these structures, we extracted 1,867 3D DNA structures.

For each DNA structure, we used the 3DNA software tool to

calculate the average propeller feature for each of 64 possible middle

bases of the 3-mers. The values of the propeller feature (x-axis) are

plotted vs. the corresponding propeller features of average DNA

structure from molecular dynamics simulation (y-axis). The correla-

tion coefficient is 0.8, which shows good agreement.

Found at: doi:10.1371/journal.pcbi.1001007.s002 (0.01 MB EPS)

Table S1 Probe types from GRID [38] used to estimate the

molecular interaction field features Pi and Qi for probe type i as

described in Fig. 1 and the Methods section. Definitions of the

minimum interaction energy, Pi, and interaction score, Qi, are

given in the Methods section (Eq. 2).

Found at: doi:10.1371/journal.pcbi.1001007.s003 (0.14 MB

DOC)

Table S2 Example showing different feature vectors given

different nucleotide environments: G in TGG and G in AGA.

Cross reference with Figs. 2 and 3.

Found at: doi:10.1371/journal.pcbi.1001007.s004 (0.23 MB

DOC)

Table S3 Computational results for 54 TFs, whose number of

known binding sites documented in RegulonDB is five or more.

For each computational method, the training set size and the

number of predicted binding sites are given. See http://

cellsignaling.lanl.gov/EcoliTFs/SiteSleuth/ for the complete list-

ing of binding sites predicted by each method for each TF. The

relative performance of BvH vs. SiteSleuth is plotted in Fig. 5

along with the log transformed number of predicted binding sites

for SiteSleuth.

Found at: doi:10.1371/journal.pcbi.1001007.s005 (0.25 MB

DOC)

Table S4 For each method, mean cross-validation score (V),

which is defined as the fraction of positive examples predicted to

be true binding sites, for 54 TFs whose number of known binding

sites documented in RegulonDB is five or more.

Found at: doi:10.1371/journal.pcbi.1001007.s006 (0.26 MB

DOC)

Table S5 Computational results for 44 TFs documented in

DPInteract. Here, the cutoff values for the BvH, Match, and

MATRIX SEARCH methods were each set to the lowest scoring

sequence in the training set from which a model for a TF binding

site was built. This approach, which guarantees that positive

examples used in training are correctly classified, is different from

that described in the Methods section. For the QPMEME method,

cutoff values are set to 21, and for the SiteSlueth method, cutoff

values are set to 0. For each method, the training set size and the

number of predicted binding sites are given. In each case, the

number of hits is approximately the same as that reported in [6].

The cross-validation score V is given in parentheses. In cross-

validation, the available positive examples are divided into a

training set and a testing set, as described in the main text. Models

are built based on the training set and tested using the remaining

positive examples. Recall that each model (derived through any of

the five methods that we consider here) is built to ensure that the

binding sites in the training set are classified correctly; however,

the testing examples withheld from training may not be predicted

perfectly by a method. Although the QPMEME method usually

predicts a lower number of binding sites compared to any of the

other methods, its cross-validation score is relatively low in most

cases. These results are not discussed in the main text.

Found at: doi:10.1371/journal.pcbi.1001007.s007 (0.18 MB

DOC)

Table S6 Area under the curve (AUC) analysis for transcription

factors (TFs) in RegulonDB with at least 20 known binding sites. A

receiver operating characteristics (ROC) curve is a two-dimen-

sional plot of the false positive rate (1 - specificity) versus the true

positive rate (sensitivity). The AUC for an ROC curve is between 0

and 1. A perfect classifier will have an AUC of 1 and a random

classifier will have an AUC of 0.5. We implemented an algorithm

for generating ROC curves and for calculating AUCs, which

allows us to rank classifiers. Positive examples in ReglonDB for a

given TF are randomly divided into 2/3 positive training examples

and 1/3 positive testing examples. The non-coding portions of the

E. coli genome were used to generate all possible negative

examples of TF binding sites. We built classifier models using the

training examples for the five methods under consideration. The

models are used to calculate scores for positive testing examples

and negative examples. An ROC curve and the corresponding

AUC were estimated from these scores for each model. For each

TF, we performed the above procedure ten times to estimate ten

AUCs for each method, and we report the average value and

standard deviation of AUC in this table.

Found at: doi:10.1371/journal.pcbi.1001007.s008 (0.07 MB

DOC)

Author Contributions

Conceived and designed the experiments: WSH PJU FM. Performed the

experiments: ALB FM. Analyzed the data: ALB FM. Wrote the paper:

ALB WSH FM.

References

1. Wall ME, Hlavacek WS, Savageau MA (2003) Design Principles for Regulator

Gene Expression in a Repressible Gene Circuit. J Mol Biol 332: 861–876.

2. Lee SK, Keasling JD (2010) Practical pathway engineering - demonstration

in integrating tools. In: Smolke CD, ed. The Metabolic Pathway Engineer-

ing Handbook: Tools and Applications. Baca RatonFL: CRC Press. pp 12-

11–12-14.

3. Berg O, von Hippel P (1987) Selection of DNA binding sites by regulatory

proteins. Statistical-mechanical theory and application to operators and

promoters. J Mol Biol 193: 723–750.

4. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, et al. (2005)

MatInspector and beyond: promoter analysis based on transcription factor

binding sites. Bioinformatics 21: 2933–2942.

5. Chen QK, Hertz GZ, Stormo GD (1995) MATRIX SEARCH 1.0: a computer

program that scans DNA sequences for transcriptional elements using a database

of weight matrices. Comput Appl Biosci 11: 563–566.

6. Djordjevic M, Sengupta AM, Shraiman BI (2003) A Biophysical Approach to

Transcription Factor Binding Site Discovery. Genome Res 13: 2381–2390.
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