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Abstract

The idea of ‘‘date’’ and ‘‘party’’ hubs has been influential in the study of protein–protein interaction networks. Date hubs
display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs
are local coordinators whereas date hubs are global connectors. Here, we show that the reported importance of date hubs
to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do
not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function.
The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we
show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not
in general correlate with co-expression. However, we find significant correlations between interaction centrality and the
functional similarity of the interacting proteins. We suggest that thinking in terms of a date/party dichotomy for hubs in
protein interaction networks is not meaningful, and it might be more useful to conceive of roles for protein-protein
interactions rather than for individual proteins.
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Introduction

Protein interaction networks, constructed from data obtained

via techniques such as yeast two-hybrid (Y2H) screening, do not

capture the fact that the actual interactions that occur in vivo

depend on prevailing physiological conditions. For instance,

actively expressed proteins vary amongst the tissues in an organism

and also change over time. Thus, the specific parts of the

interactome that are active, as well as their organisational form,

might depend a great deal on where and when one examines the

network [1,2]. One way to incorporate such information is to use

mRNA expression data from microarray experiments. Han et al.

[1] examined the extent to which hubs in the yeast interactome are

co-expressed with their interaction partners. They defined hubs as

proteins with degree at least 5, where ‘‘degree’’ refers to the

number of links emanating from a node. Based on the averaged

Pearson correlation coefficient (avPCC) of expression over all

partners, they concluded that hubs fall into two distinct classes:

those with a low avPCC (which they called date hubs) and those

with a high avPCC (so-called party hubs). They inferred that these

two types of hubs play different roles in the modular organisation

of the network: Party hubs are thought to coordinate single

functions performed by a group of proteins that are all expressed

at the same time, whereas date hubs are described as higher-level

connectors between groups that perform varying functions and are

active at different times or under different conditions.

The validity of the date/party hub distinction has since been

debated in a sequence of papers [3–6], and there appears to be no

consensus on the issue. Two established points of contention are:

(1) Is the distribution of hubs truly bimodal (as opposed to

exhibiting a continual variation without clear-cut groupings) and

(2) is the date/party distinction that was originally observed a

general property of the interactome or an artefact of the employed

data set? Different statistical tests have suggested seemingly

different answers. However, despite (or in some cases due to) this

ongoing debate, the hypothesis has been highly prominent in the

literature [2,7–15]. Here, following up on the work of Batada et al.

[3,5], we revisit the initial data and suggest additional problems

with the statistical methodology that was employed. In accordance

with their results, we find that the differing behaviour observed on

the deletion of date and party hubs [1], which seemed to suggest

that date hubs were more essential to global connectivity, was

largely due to a very small number of key hubs rather than being a

generic property of the entire set of date hubs. More generally, we

use a complementary perspective to Batada et al. to define

structural roles for hubs in the context of the modular organisation

of protein interaction networks. Our results indicate that there is

little correlation between expression avPCC and structural roles.

In light of this, the more refined categorisation of date, party, and

‘family’ hubs, which was based on taking into account differences

in expression variance in addition to avPCC [8], also appears

inappropriate. A recent study by Taylor et al. [2] argued for the the
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existence of ‘intermodular’ and ‘intramodular’ hubs—a categor-

isation along the same lines as date and party hubs—in the human

interactome. We show that their observation of a binary hub

classification is susceptible to changes in the algorithm used to

normalise microarray expression data or in the kernel function

used to smooth the histogram of the avPCC distribution. The data

does not in fact display any statistically significant deviation from

unimodality as per the DIP test [16,17], as has already been

observed by Batada et al. [3,5] for yeast data. We revisited the

bimodality question because it was a key part of the original paper

[1], and in particular because it made a reappearance in Taylor

et al. [2] for human data. However, it is possible that a date-party

like continuum may exist even in the absence of a bimodal

distribution, and this is why we also attempt to examine the more

general question of whether the network roles of hub proteins

really are related to their co-expression properties with interaction

partners.

Many real-world networks display some sort of modular

organisation, as they can be partitioned into cohesive groups of

nodes that have a relatively high ratio of internal to external

connection densities. Such sub-networks, known as communities,

often correspond to distinct functional units [18–20]. Several

studies in recent years have considered the existence of community

structure in protein-protein interaction networks [21–29]. A

myriad of algorithms have been developed for detecting

communities in networks [19,20]. For example, the concept of

graph ‘modularity’ can be used to quantify the extent to which the

number of links falling within groups exceeds the number that

would be expected in an appropriate random network (e.g., one in

which each node has the same number of links as in the network of

interest, but which are randomly placed) [30]. One of the standard

techniques to detect communities is to partition a network into

sub-networks such that graph modularity is maximised [19,20].

We use the idea of community structure to take a new approach

to the problem of hub classification by attempting to assign roles to

hubs purely on the basis of network topology rather than on the

basis of expression data. Our rationale is that the biological roles of

date and party hubs are essentially topological in nature and

should thus be identifiable from the network alone (rather than

having to be inferred from additional information). Once we have

partitioned the network into a set of meaningful communities, it is

possible to compute statistics to measure the connectivity of each

hub both within its own community and to other communities.

One method for assigning relevant roles to nodes in a metabolic

network was formulated by Guimerà and Amaral [31], and we

follow an analogous procedure for the hubs in our protein

interaction networks. We then examine the extent to which these

roles match up with the date/party hypothesis, finding little

evidence to support it.

One might also wonder about the extent to which observed

interactome properties are dependent on the particular instanti-

ation of the network being analysed. Several papers have discussed

at length concerns about the completeness and reliability (or lack

thereof) of existing protein interaction data sets, e.g. [32–38]. Such

data have been gathered using multiple methods, the most

prominent of which are Y2H and affinity purification followed by

mass spectrometry (AP/MS). (See the discussion in Materials and

Methods.) In a recent paper, Yu et al. examined the properties of

interaction networks that were derived from different sources,

suggesting that experimental bias might play a key role in

determining which properties are observed in a given data set [11].

In particular, their findings suggest that Y2H tends to detect key

interactions between protein complexes—so that Y2H data sets

may contain a high proportion of date hubs (i.e., hubs with low

partner co-expression)—whereas AP/MS tends to detect interac-

tions within complexes, so that hubs in AP/MS-derived networks

are predominantly highly co-expressed with their partners (i.e.,

these networks will contain party hubs). This indicates that a

possible reason for observing the bimodal hub avPCC distribution

[1] is that the interaction data sets used information that was

combined from both of these sources. Here we compare several

yeast interaction data sets and find both widely differing structural

properties and a surprisingly low level of overlap.

Finally, as an alternative to the node-based date/party categorisa-

tion, we suggest thinking about topological roles in networks by

defining measures on links rather than on nodes. In other words, one

can attempt to categorise interactions between proteins rather than

the proteins themselves. We use a well-known measure of link

significance known as betweenness centrality [18,39] and examine its

relation to phenomena such as protein co-expression and functional

overlap. Here as well we find little evidence of a significant correlation

with expression PCC of the interactors. However, there seems to be a

reasonably strong relation between link betweenness and functional

similarity of the interacting proteins, so that link-centric role

definitions might have some utility.

In summary, we have examined the proposed division of hubs in

the protein interaction network into the date and party categories

from several different angles, demonstrating that prior arguments

in favour of a date/party dichotomy appear to be susceptible to

various kinds of changes in the data and methods used. Observed

differences in network vulnerability to attacks on the two hub types

seem to arise from only a small number of particularly important

hubs. These results strengthen the existing evidence against the

existence of date and party hubs. Furthermore, a detailed analysis

of network topology, employing the novel perspective of

community structure and the roles of hubs within this context,

suggests that the picture is more complicated than a simple

dichotomy. Proteins in the interactome show a variety of

topological characteristics that appear to lie along a continu-

um—and there does not exist a clear correlation between their

location on this continuum and the avPCC of expression of their

interaction partners. On the other hand, investigating link

Author Summary

Proteins are key components of cellular machinery, and
most cellular functions are executed by groups of proteins
acting in concert. The study of networks formed by protein
interactions can help reveal how the complex functionality
of cells emerges from simple biochemistry. Certain
proteins have a particularly large number of interaction
partners; some have argued that these ‘‘hubs’’ are essential
to biological function. Previous work has suggested that
such hubs can be classified into just two varieties: party
hubs, which coordinate a specific cellular process or
protein complex; and date hubs, which link together and
convey information between different function-specific
modules or complexes. In this study, we re-examine the
ideas of date and party hubs from multiple perspectives.
By computationally partitioning protein interaction net-
works into functionally coherent subnetworks, we show
that the roles of hubs are more diverse than a binary
classification allows. We also show that the position of an
interaction in the network is related to the functional
similarity of the two interacting proteins: the most
important interactions holding the network together
appear to be between the most dissimilar proteins. Thus,
examining interaction roles may be relevant to under-
standing the organisation of protein interaction networks.

Roles in Protein Interaction Networks
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(interaction) betweenness centralities reveals an interesting relation

to the functional linkage of proteins, suggesting that a framework

incorporating a more nuanced notion of roles for both nodes and

links might provide a better framework for understanding the

organisation of the interactome.

Results

Revisiting Date and Party Hubs
The definitions of date and party hubs are based on the

expression correlations of hubs with their interactors in the protein

interaction network . Specifically, the avPCC has been computed

for each hub and its distribution was observed by Han et al. [1] to

be bimodal in some cases. A date/party threshold value of avPCC

(for a given expression data set) was defined in order to optimally

separate the two types of hubs [1].

We have re-examined the data sets and analyses that were used

to propose the existence and dichotomy of date versus party hubs.

In the original studies on yeast data [1,4], any hub that exhibited a

sufficiently high avPCC (i.e., any hub lying above the date/party

threshold) on any one expression data set was identified as a party

hub. Batada et al. [5] noted that this definition causes the date/

party assignment to be overly conservative, in that a hub’s status is

unlikely to change as a result of additional expression data. In fact,

some of the original expression data sets were quite small,

containing fewer than 10 data points per gene. This suggests that

classification of proteins as ‘party’ hubs was based on high co-

expression with partners for just a small number of conditions in a

single microarray experiment, even though such co-expression

need not have been observed in other conditions and experiments.

For instance, Han et al. found 108 party hubs in their initial study

[1]. However, calculating avPCC across their entire expression

compendium (rather than separately for the five constituent

microarray data sets) and using the date/party threshold specified

by the authors for this compendium avPCC distribution yields just

59 party hubs. Using only the ‘‘stress response’’ data set [40],

which comprises over half of the data points in their compendium

and is substantially larger than the other 4 sets, yields 74 party

hubs. Thus, the results of applying this method to categorise hubs

depend heavily on the expression data sets that one employs and is

vulnerable to variability in smaller microarray experiments.

Recent support for the idea of date and party hubs appeared in

a paper that considered data relating to the human interactome;

the authors found multimodal distributions of avPCC values,

seemingly supporting a binary hub classification [2]. We used an

interaction data set provided by Taylor et al. [2] (an updated

version of the one used in their paper, sourced from the Online

Predicted Human Interaction Database (OPHID) [41]; see

Materials and Methods), and found that the form of the

distribution of hub avPCC that they observed is not robust to

methodological changes. For instance, raw intensity data from

microarray probes has to be processed and normalised in order to

obtain comparable expression values for each gene [42]. The

expression data used by Taylor et al. [2] (taken from the human

GeneAtlas [43]) was normalised using the Affymetrix MAS5

algorithm [44]; when we repeated the analysis using the same data

normalised by the GCRMA algorithm [45] (which is the preferred

method to control for probe affinity) instead of by MAS5, we

obtained significantly different results. Figure 1 depicts the avPCC

distributions for hubs (defined as the top 15% of nodes by degree

[2], corresponding in this case to degree 15 or greater) in the two

cases. We obtained density plots for varying smoothing kernel

widths. The GCRMA-processed data does not appear to lead to a

substantially bimodal distribution at any kernel width, whereas the

MAS5-processed data appears to give bimodality for only a

relatively narrow range of widths and could just as easily be

regarded as trimodal. We also used Hartigan’s DIP test [16,17,46]

to check whether either of the two versions of the expression data

gives a distribution of avPCC values showing significant evidence

of bimodality. The DIP value is a measure of how far an observed

distribution deviates from the best-fit unimodal distribution, with a

value of 0 corresponding to no deviation. We used a bootstrap

sample of 10,000 to obtain p-values for the DIP statistic. We found

no significant deviation from unimodality: for MAS5, the DIP

value is 0:0087 (p-value &0:821) and for GCRMA the DIP value

is 0:0062 (p-value &0:998). This suggests that the apparent

bimodal or trimodal nature of some of the curves in Figure 1 is

illusory and not statistically robust.

Figure 1. Variation in hub avPCC distribution. Probability density plots of the distribution of hub avPCC values for human interaction data from
OPHID (provided by Taylor et al. [2]). Gene expression data from GeneAtlas [43], normalised using (a) MAS5 and (b) GCRMA [42]. Curves obtained
using a normal smoothing kernel function at varying window widths. Hartigan’s DIP test for unimodality [16,17] returns values of 0.0087
(p-value &0:821) for (a) and 0.0062 (p-value &0:998) for (b), indicating no significant deviation from unimodality in either case.
doi:10.1371/journal.pcbi.1000817.g001
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We also find variability across different interaction data sets: For

instance, we analysed the recent protein-fragment complementa-

tion assay (PCA) data set [47] and found no clear evidence of a

bimodal distribution of hubs along date/party lines (data not

shown). Even in cases where multimodality is observed, it might be

arising as a consequence or artefact of combining different types of

interaction data; there are believed to be significant and systematic

biases in which types of interactions each data-gathering method is

able to obtain [11,29,47]. For instance, analysing avPCC values on

the stress response expression data set [40] for hubs in networks

obtained from Y2H or AP/MS alone [11], we find that 100%

(259/259) are date hubs in the former but that only about 30%

(56/186) are date hubs in the latter. At the moment it is reasonable

to entertain the possibility that new kinds of interaction tests might

smear out the observed bimodality; this appears to be the case with

the PCA data set.

One of the key pieces of evidence used to argue that date and

party hubs have distinct topological properties was the apparent

observation of different effects upon their deletion from the

network. Removing date hubs seemed to lead to very rapid

disintegration into multiple components, whereas removal of party

hubs had much less effect on global connectivity [1,4]. However, it

has been observed that removing just the top 2% of hubs by

degree from the comparison of deletion effects obviates this

difference, suggesting that the observation is actually due to just a

few extreme date hubs [5]. In order to study this in greater detail,

and to isolate the extreme hubs, we used node betweenness

centrality [39] (see Materials and Methods), a standard metric of a

node’s importance to network connectivity (this need not be

strongly correlated with degree). We found that in the original

‘filtered yeast interactome’ (FYI) data set [1], date hubs have on

average somewhat higher betweenness centralities (1:79|104 for

91 date hubs versus 1:07|104 for 108 party hubs, two-sample

t-test p-value &0:08). However, there happens to be one date hub

(SPC24/UniProtKB:Q04477, a highly connected protein involved

in chromosome segregation [48]) that has an exceptionally high

betweenness (2:45|105) in this network. When the set of date

hubs minus this one hub is targeted for deletion, we find that the

observed difference between date and party hubs is greatly

reduced (Figure 2(a)).

It was subsequently shown that the FYI network was

particularly sparse; as more data became available, the updated

filtered high-confidence (FHC) data set was used to perform the

same analysis [4] (we also looked at the Y2H-only and AP/MS-

only networks [11]; see Figure S1). In the case of FHC, the

network did not break down on removing date hubs but

nevertheless displayed a substantially greater increase in charac-

teristic path length (CPL) than seen for party hub deletion. For

FHC too, date hubs have, on average, higher betweenness values

than party hubs (3:7|104 for 306 date hubs versus 2:15|104 for

240 party hubs, p-value &0:06). However, the larger average is

due almost entirely to a small number of hubs with unusually high

betweennesses, as removing the top 10 date hubs by betweenness

(which all had values higher than any party hub) greatly reduced

the difference between the distributions (p-value &0:29). Further-

more, the removal of just these 10 hubs from the set of targeted

date hubs is sufficient to virtually obviate the difference with party

hubs, as shown in Figure 2(b). Notably, the set of 10 high-

betweenness hubs includes prominent proteins such as Actin

(ACT1/UniProtKB:P60010), Calmodulin (CMD1/UniProtKB:

P06787), and the TATA binding protein (SPT15/Uni-

ProtKB:P13393), which are known to be key to important cellular

processes (Table 1). Thus, we can account for the critical nodes for

network connectivity using just a few major hubs, and most of the

proteins that are classified as date hubs appear to be no more

central than the party hubs. High betweenness nodes have

previously been referred to as bottlenecks [7] and it has been

suggested that these are in general highly central and tend to

correspond to date hubs. However, the same sort of analysis on the

Yu et al. data set [7] once again revealed that only the top 0.5% or

so of nodes by betweenness are truly critical for connectivity (data

not shown). Additionally, the 10 key hubs in the FHC network

Figure 2. Effects of hub deletion on network connectivity. (a) FYI network [1]. ‘Date ({ SPC24)’ refers to the set of date hubs minus the
protein SPC24. In each case, we used the complete network consisting of 1379 nodes as the starting point and then deleted all hubs in the given set
from the network in order of decreasing degree. The characteristic path length is the mean of the lengths of all finite paths between two nodes in the
network. (b) FHC network [4]. ‘Date ({ high BC)’ refers to the set of date hubs minus the 10 hubs with the highest betweenness centrality (BC) values
(listed in Table 1). We used the upper bound on the BC for party hubs as a threshold to define these 10 ‘high BC’ date hubs. (Note: Results similar to
those presented here are obtained if the hubs are divided into bottleneck/non-bottleneck categories [7] instead of date/party categories.)
doi:10.1371/journal.pcbi.1000817.g002
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show a wide range of avPCC values (Table 1): high betweenness

does not necessitate low avPCC. Similarly, we found no strong

correspondence between bottleneck/non-bottleneck and date/

party distinctions across multiple data sets. These observations

further weaken the claim that there is an inverse relation between

a hub’s avPCC and its central role in the network.

Topological Properties and Node Roles
In principle, one should be able to view a categorisation of hubs

according to the date/party dichotomy directly in the network

structure, as the two kinds of hubs are posited to have different

neighbourhood topologies. We thus leave gene expression data to

one side for the moment and focus on what can be inferred about

node roles purely from network topology. Guimerà and Amaral

[31] have proposed a scheme for classifying nodes into topological

roles in a modular network according to their pattern of

intramodule and intermodule connections. Their classification

uses two statistics for each node—within-community degree and

participation coefficient (a measure of how well spread out a

node’s links are amongst all communities, including its own)—and

divides the plane that they define into regions encompassing seven

possible roles (see Materials and Methods for details). We depict

these regions in Figure 3, which shows the node roles for yeast

(FHC [4]) and human (Center for Cancer Systems Biology

Human Interactome version 1 (CCSB-HI1) [49]) data sets, which

we computed based on communities detected by optimising

modularity via the Potts method [50] (see Text S1 for details, and

Figure S4 and Table S1 for indications of the structural and

functional coherence of the communities, respectively). Also, when

partitioning the network using this method, one can adjust the

resolution to get more or fewer communities. In Figure S2, we

show the results of this computation repeated for two other values

of the resolution parameter. In each case, we obtain a similar

pattern to the results shown here, and the conclusions below are

valid across the multiple resolutions examined.

Some of the topological roles defined by this method correspond

at least to some extent to those ascribed to date/party hubs. For

instance, one might argue that party hubs ought to be ‘provincial

hubs’, which have many links within their community but few or

none outside. Date hubs might be construed as ‘non-hub

connectors’ or ‘connector hubs’, both of which have links to

several different modules; they could also fall into the ‘kinless’ roles

(though very few nodes are actually classified as such). We thus

sought to examine the relationship between the date/party

classification and this topological role classification. In Figure 3,

we colour proteins according to their avPCC. In Figure 4, we

present the same data in a more compact form, as we only show

the hubs (defined as the top 20% of nodes ranked by degree [4]) in

the two interaction networks, plotting them according to node role

and avPCC. The horizontal lines correspond to an avPCC of 0.5,

which was the threshold used to distinguish date and party hubs in

the yeast interactome [4].

One immediate observation from these results is that the avPCC

threshold clearly does not carry over to the human data. In fact, all of

the hubs in the latter have an avPCC of well below 0.5. Even if we

utilise a different threshold in the human network, we find that there

is little difference in the avPCC distribution across the topological

roles, suggesting that no meaningful date/party categorisation can be

made (at least for this data set). This might be the case because the

human data set represents only a small fraction of the actual

interactome. Additionally, it is derived from only one technique

(Y2H) and is thus not multiply-verified like the yeast data set.

For yeast, we see that hubs below the threshold line (i.e., the

supposed date hubs) include not only virtually all of those that fall

Table 1. High-betweenness hubs in the FHC network.

Protein UniProtKB Degree AvPCC BC(===============================105) Functions

CDC28 P00546 202 0.06 19.99 Essential for the completion of the
start, the controlling event, in the
cell cycle

RPO21 P04050 58 0.05 3.56 Catalyses the transcription of DNA
into RNA

SMT3 Q12306 42 0.08 3.07 Not known; suppressor of MIF2
(UniProtKB:P35201) mutations

ACT1 P60010 35 0.13 2.83 Cell motility

HSP82 P02829 37 0.19 2.51 Maturation, maintenance, and regulation
of proteins involved in cell-cycle control
and signal transduction

SPT15 P13393 50 0.12 2.45 Regulation of gene expression by RNA
polymerase II

CMD1 P06787 46 0.05 2.11 Mediates the control of a large number
of enzymes and other proteins

PAB1 P04147 25 0.28 1.92 Important mediator of the roles of
the poly(A) tail in mRNA biogenesis,
stability, and translation

PSE1 P32337 24 0.28 1.73 Nuclear import of ribosomal proteins
and protein secretion

GLC7 P32598 35 20.01 1.55 Glycogen metabolism, meiosis,
translation, chromosome segregation,
cell polarity, and cell cycle progression

List of the 10 high-betweenness hubs in the FHC network [4], with UniProtKB accessions [48], degrees, avPCC values (as computed using the ‘Compendium’ expression
data set [1,68]), betweenness centrality (BC) values, and selected functional annotations from UniProtKB.
doi:10.1371/journal.pcbi.1000817.t001
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into the ‘connector’ roles but also many of the ‘provincial hubs’.

On the other hand, those that lie above the line (i.e., the supposed

party hubs) include mainly the provincial hub and peripheral

categories. Although one can discern a difference in role

distributions above and below the threshold, it is not very clear-

cut and the so-called date hubs fall into all 7 roles. It would thus

appear that even for yeast, the distribution of hubs does not clearly

fall into two types (the original statistical analysis has already been

disputed by Batada et al. [3,5]), and the properties attributed to

date and party hubs [1] do not seem to correspond very well with

the actual topological roles that we estimate here. Indeed, these

roles are more diverse than what can be explained using a simple

dichotomy.

Data Incompleteness and Experimental Limitations
It has been proposed that date and party hubs play different

roles with respect to the modular structure of protein interaction

data. As there are diverse examples of such data, one might ask to

what extent entities like date and party hubs can be consistently

defined across these. In order to investigate the extent of network

overlap and the preservation of the interactome’s structural

properties (such as community structure and node roles) for

Figure 3. Topological node role assignments and relation with avPCC. Plots for (a) Yeast network (FHC [4]—2,233 nodes, 63 communities)
and (b) Human network (CCSB-HI1 [49]—1,307 nodes, 38 communities) (see Materials and Methods for details). Following Guimerà and Amaral [31],
we designate the roles as follows: R1 – Ultra-peripheral; R2 – Peripheral; R3 – Non-hub connector; R4 – Non-hub kinless; R5 – Provincial hub; R6 –
Connector hub; and R7 – Kinless hub. We colour proteins according to the avPCC of expression with their interaction partners. We computed
expression avPCC using the stress response data set [40] (which was the largest, by a considerable margin, of the expression data sets used in the
original study [1]) for FHC and COXPRESdb [67] for CCSB-HI1. No partner expression data was available for a few proteins (25 in FHC, 1 in CCSB-HI1)—
these are not shown on the plots.
doi:10.1371/journal.pcbi.1000817.g003

Figure 4. Rolewise hub avPCC distributions. Plots show node role versus average expression correlation with partners for hubs in yeast (FHC
[4]—553 hubs with a minimum degree of 7) and human (CCSB-HI1 [49]—326 hubs with a minimum degree of 4) networks. Larger circles represent
means over all nodes in a given role. Note that ‘hub’ as used in the role names refers only to within-community hubs, but all of the depicted nodes
are hubs in the sense that they have high degree. In each case, we determined the degree threshold so that approximately the top 20% highest-
degree nodes are considered to be hubs. We also fixed the date/party avPCC threshold at 0.5, in accordance with Bertin et al. [4].
doi:10.1371/journal.pcbi.1000817.g004
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different data sets and data-gathering techniques, we compared

statistics and results for four different yeast interaction data sets:

FYI, FHC, Database of Interacting Proteins core (DIPc), and PCA

(see Table 2 and Materials and Methods for details of these). Our

motivation for these choices of data sets (aside from PCA) was that

they all encompass multiply-verified or high-confidence interac-

tions. We also used PCA data because it is from the first large-scale

screen with a new technique that records interactions in their

natural cellular environment [47]. For each data set, we counted

the number of nodes and links in common using pairwise

comparisons in the largest connected component of the network.

For the overlapping portions, we then computed the extent of

overlap in node roles and communities. For the latter, we

employed the Jaccard distance [51], which ranges from 0 for

identical partitions to 1 for entirely distinct ones (see Materials and

Methods). In Table 3, we present the results of our binary

comparisons of the yeast data sets.

Table 3 reveals that there are large variations amongst the

different networks reported in the literature. FYI, FHC, and DIPc

are all regarded as high-quality data sets, yet they contain

numerous disparate interactions. PCA has a very low overlap with

both FYI and DIPc (considered separately), suggesting that it

provides data that is not captured by either Y2H or AP/MS

screens. Such differences unsurprisingly lead to nodes having

variable community structure between data sets. The Jaccard

distance for each pairwise comparison amongst the 4 networks is

around 0.8, so on average the intersection of communities for the

same node covers only about a fifth of their union (for comparison

purposes, communities are computed over the complete network

in each case, and then each community is pruned to retain only

those nodes also present in the other network). Because we

compute topological node roles relative to community structure, it

is not surprising that the role overlap is also not very high in any of

the cases.

Given the above, it is difficult to make any general inferences

regarding proteome organisation from results on existing protein

interaction networks. They depend a great deal on the explored

data set, which in each case represents only part of the total

interactome and may also contain substantial noise.

The Roles of Interactions
Most research on interactome properties has focused on node-

centric metrics, which draws on the perspective of individual

proteins (e.g., [1,8,52,53]). Here we try an alternative approach

that instead uses link-centric metrics in order to examine how the

topological properties of interactions in the network relate to their

function. In order to quantify the importance of a given link to

global network connectivity, we use link betweenness centrality

[18,39] (see Materials and Methods). We investigate the

relationship between link betweenness and the expression

correlation for a given interaction. If date and party hubs

genuinely exist, one might expect a similar sort of dichotomy for

interactions, with more central interactions having lower expres-

sion correlations and vice versa. That is, given the hypothesised

functional roles of date and party hubs, most intermodular

interactions would connect to a date hub, whereas most

intramodular interactions would connect to a party hub. In

Figure 5, we depict all of the interactions in two yeast data sets,

which we position on a plane based on the values of their link

betweenness and interactor expression PCC (calculated using the

stress response data set as before). Additionally, we colour each

point according to the level of functional similarity between the

interacting proteins, as determined by overlap in GO (Cellular

Component) annotations (see Materials and Methods). We also

obtain similar results using the other two GO ontologies, which are

shown in Figure S3.

For the FHC data set, we find no substantial relation between

expression PCC and the logarithm of link betweenness (linear

Pearson correlation &{0:04, z-score &{3:1, p-value &0:0022).

For the FYI data set, there is a larger correlation ({0:31,

z-score &{13:6, p-value &4:5|10{42). Correspondingly, we

observe a dense cluster of interactions in the top left (i.e., they have

low betweennesses and high expression correlations), but most of

these are interactions within ribosomal complexes. If one removes

such interactions from the data set, then here too one finds only a

small correlation ({0:12, z-score &{4:5, p-value &5:8|10{6)

between expression PCC and (log of) link betweenness. (Note that

ribosomal proteins were already removed from FHC [4].) On the

other hand, we find a fairly strong correlation between link

betweenness (on a log-scale) and similarity in cellular component

annotations (which can be used as a measure of co-localisa-

tion): the PCC values are {0:51 (z-score&{23:9, p-value

&1:4|10{126) for FYI and {0:46 (z-score&{37:2, p-value

&1:6|10{303) for FHC (very similar values are obtained for the

Spearman rank correlation coefficient: {0:52 for FYI and {0:47
for FHC). In particular, there appears to be a natural threshold at

the modal value of betweenness. (As discussed in Materials and

Table 2. Protein interaction data sets.

Data set name Species Nodes Links Source

Total LCC Total LCC

Online Predicted Human
Interaction Database (OPHID)

H. sapiens 8,199 7,984 37,968 37,900 Brown & Jurisica [41]
(curated by Taylor et al. [2])

Filtered yeast interactome (FYI) S. cerevisiae 1379 778 2493 1798 Han et al. [1]

Filtered high-confidence (FHC) S. cerevisiae 2559 2233 5991 5750 Bertin et al. [4]

Database of Interacting
Proteins core (DIPc)

S. cerevisiae 2808 2587 6212 6094 http://dip.doe-mbi.ucla.edu/
(October 2007 version)

Center for Cancer Systems
Biology Human Interactome version 1 (CCSB-HI1)

H. sapiens 1,549 1,307 2,611 2,483 Rual et al. [49]

Protein-fragment complementation assay (PCA) S. cerevisiae 1124 889 2770 2407 Tarassov et al. [47]

The protein interaction data sets that we used in this paper. LCC refers to the largest connected component.
doi:10.1371/journal.pcbi.1000817.t002
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Methods, this is a finite-size effect.) This is somewhat reminiscent

of the weak/strong tie distinction in social networks [54,55], as the

‘weak’ (high betweenness) interactions serve to connect and

transmit information between distinct cellular modules, which

are composed predominantly of ‘strong’ (low betweenness)

interactions. For instance, we found that interactions involving

kinases fall largely into the ‘weak’ category. Additionally, GO

terms such as intracellular protein transport, GTP binding, and

nucleotide binding were enriched significantly in proteins involved

in high-betweenness interactions.

Discussion

In this paper, we have analysed modular organisation and the

roles of hubs in protein interaction networks. We revisited the

possibility of a date/party hub dichotomy and found points of

concern. In particular, claims of bimodality in hub avPCC

distributions do not appear to be robust across available

interaction and expression data sets, and tests for the differences

observed on deletion of the two hub types have not considered

important outlier effects. Moreover, there is considerable evidence

to suggest that the observed date/party distinction is at least partly

an artefact, or consequence, of the different properties of the Y2H

and AP/MS data sets.

In order to study the topological properties of hub nodes in

greater detail, we partitioned protein interaction networks into

communities and examined the statistics of the distributions of hub

links. Our results show that hubs can exhibit an entire spectrum of

structural roles and that, from this perspective, there is little

evidence to suggest a definitive date/party classification. We find,

moreover, that expression avPCC of a hub with its partners is not

a strong predictor of its topological role, and that the extent of

interacting protein co-expression varies considerably across the

data sets that we examined.

Additionally, a key issue with existing interaction networks is

that they are incomplete. We have compared some of the available

‘high-quality’ yeast data sets and shown that they have very little

overlap with each other. One can obtain protein interaction data

Table 3. Comparisons of yeast data sets.

Data sets
(number of nodes)

Common
nodes1 Links in overlap2

Between-community
Jaccard distance3 Role3 overlap4

FYI (778) vs. FHC (2233) 714 FYI–1444; FHC–2027; Both–1195 0.76 332 (47%)

FYI (778) vs. DIPc (2587) 660 FYI–1310; DIPc–1698; Both–956 0.77 265 (40%)

FHC (2233) vs. DIPc (2587) 1661 FHC–4395; DIPc–4141; Both–2665 0.85 854 (51%)

FYI (778) vs. PCA (889) 165 FYI–154; PCA–180; Both–65 0.74 109 (66%)

FHC (2233) vs. PCA (889) 460 FHC–512; PCA–667; Both–187 0.86 214 (47%)

DIPc (2587) vs. PCA (889) 492 DIPc–568; PCA–782; Both–183 0.86 206 (42%)

Pairwise comparisons of the largest connected components of different yeast protein interaction data sets. Notes: 1 Proteins occurring in both networks. 2 Links
amongst the common nodes as counted in the previous column: individually in either network and common to both networks. 3 Communities and node roles
computed over entire data sets; for pairwise comparison, we then narrow down communities in each case to only those nodes also present in the data set being
compared to. 4 The number of nodes with the same role classification in both networks, and their percentage as a share of the entire set of common nodes.
doi:10.1371/journal.pcbi.1000817.t003

Figure 5. Relating interaction betweenness, co-expression, and functional similarity. Plots show link betweenness centralities versus
expression correlations, with points coloured according to average similarity of interactors’ GO (Cellular Component) annotations, for two protein
interaction data sets: FYI [1] (778 nodes, 1,798 links) and FHC [4] (2,233 nodes, 5,750 links). PCC values of log(link betweenness) with functional
similarity are {0:51 (z-score &{23:9, p-value &1:4|10{126) for FYI, {0:46 (z-score &{37:2, p-value &1:6|10{303) for FHC.
doi:10.1371/journal.pcbi.1000817.g005
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using several experimental techniques, and each method appears

to preferentially pick up different types of interactions [11,29]. The

only published interactome map of which we are aware that

examines proteins in their natural cellular environment [47] is

largely disjoint with other data sets and shows little evidence of a

date/party dichotomy. We find similar issues in human interaction

data sets. A general conclusion about interactome properties is

thus difficult to reach, as it would require robust results for a

number of different species, which are unattainable at present due

to the limited quantity and questionable quality of protein

interaction and expression data.

As an alternative way of defining roles in the interactome, we

have also investigated a link-centric approach, in which we study

the topological properties of links (interactions) as opposed to

nodes (proteins). In particular, we examined link betweenness

centrality as an indicator of a link’s importance to network

connectivity. We found that this too does not correlate significantly

with expression PCC of the interacting proteins. For certain data

sets, however, it does appear to correlate quite strongly with the

functional similarity of the proteins. Additionally, there appears to

be a threshold value of betweenness centrality beyond which one

observes a sudden drop in functional similarity. We also found that

the high-betweenness interactions are enriched for kinase bindings

and other kinds of interactions involved in signalling and

transportation functions. This suggests that a notion of intramod-

ular versus intermodular interactions, somewhat analogous to the

weak/strong tie dichotomy in social networks, might be more

useful. However, further work would be required to establish such

a framework of elementary biological roles in protein interaction

networks. As the quantity, quality, and diversity of protein

interaction and expression data sets increases, we hope that this

perspective will enhance understanding of the organisational

principles of the interactome.

Materials and Methods

Protein Interaction Data Sets
Several experimental methods can be used to gather protein

interaction data. These include high-throughput yeast two-hybrid

(Y2H) screening [56–59]; affinity purification of tagged proteins

followed by mass spectrometry (AP/MS) to identify associated

proteins [60,61]; curation of individual protein complexes

reported in the literature [62]; and in silico predictions based on

multiple kinds of gene data [63]. There is also a more recent

technique, known as the protein-fragment complementation assay

(PCA) [47], which is able to detect protein-protein interactions in

their natural environment within the cell. However, only one

large-scale study has used this technique thus far [47]. Each of

these methods gives an incomplete picture of the interactome; for

instance, a recent aggregation of high-quality Y2H data sets for

Saccharomyces cerevisiae (the best-studied organism) was estimated to

represent only about 20% of the whole yeast binary protein

interaction network [11].

Each technique also suffers from particular biases. It has been

suggested that Y2H is likely to report binary interactions more

accurately, and (due to the multiple washing steps involved in

affinity purification) it is also expected to be better at detecting weak

or transient interactions [11]. Converting protein complex data into

interaction data is also an issue with AP/MS. This method entails

using a ‘bait’ protein to ‘capture’ other proteins that subsequently

bind to it to form complexes. Once one has obtained these

complexes and identified their proteins using mass spectrometry,

one can assign protein-protein interactions using either the spoke or

the matrix model [64]. The spoke model only counts interactions

between the bait and each of the proteins captured by it, whereas

the matrix model counts all possible pairwise interactions in the

complex. Unsurprisingly, the actual topology of the complex is

generally different from either of these representations. On the other

hand, AP/MS is expected to be more reliable at finding permanent

associations. Two-hybrid approaches also do not seem to be

particularly suitable for characterising protein complexes, giving rise

to the view that complex formation is not merely the superposition

of binary interactions [61]. Thus, the two major techniques appear

to be disjoint and to cover different aspects of the interactome, and

the differences between data sets from these sources perhaps

correspond mostly to false negatives rather than false positives [11].

Given these factors, choosing which data sets to use for building

and analysing the network is itself a significant issue (see the discussion

in the main text). For our analysis, we chose to work predominantly

with networks consisting of multiply-verified interactions, which are

constructed from evidence attained using at least two distinct sources.

Such data sets are unlikely to contain many false positives, but might

include many false negatives (i.e., missing interactions). In Table 2, we

summarise the data sets that we employed. Here are additional details

about how they were compiled:

N Online Predicted Human Interaction Database (OPHID):

This data was sent to us by Taylor et al. [2]; it is an updated

version of the interaction data used in their paper. It is based

on their curation of the online OPHID repository [41]; they

have mapped proteins to their corresponding NCBI (National

Center for Biotechnology Information) gene IDs. Additionally,

we removed genes that did not have expression data in

GeneAtlas [43] (avPCC cannot be calculated for these, as

GeneAtlas is the only expression data set used by Taylor et al.

[2]), leaving a network with 8199 human gene IDs and 37968

interactions between them.

N Filtered Yeast Interactome (FYI): Compiled by Han et al. [1].

This was created by intersecting data generated by several

methods, including Y2H, AP/MS, literature curation, in silico

predictions, and the MIPS (http://mips.gsf.de/) physical inter-

actions list. It contains 1379 proteins and 2493 interactions

that were observed by at least two different methods.

N Filtered High-Confidence (FHC): This data set was generated

by Bertin et al. [4] by filtering a data set called high-confidence

(HC), which was compiled by Batada et al. [3]. To conduct the

filtration Bertin et al. applied criteria similar to those used for

FYI and obtained 5991 independently-verified interactions

amongst 2559 proteins. HC consists of 9258 interactions

amongst 2998 proteins, taken from (published) literature-

curated and high-throughput data sets, and they were also

supposed to be multi-validated. However, Bertin et al. [4]

claimed that many interactions in HC had in fact been derived

from a single experiment that was reported in multiple

publications and thus removed such instances from it to

generate FHC.

N Database of Interacting Proteins core (DIPc): We obtained this

data set from the DIP website (http://dip.doe-mbi.ucla.edu/). DIP

is a large database of protein interactions compiled from a

number of sources. The ‘core’ subset of DIP consists of only

the most reliable interactions, as judged manually by expert

curators and also automatically using computational ap-

proaches [65]. We used the version dated 7 October 2007,

which contains 2808 proteins and 6212 interactions.

N Protein-fragment Complementation Assay (PCA): This new

experimental technique was used by Tarassov et al. [47] to

obtain an in vivo map of the yeast interactome that consists of
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1124 proteins and 2770 interactions. An attractive feature of

this data set is that it measures interactions between proteins in

their natural cellular context, in contrast to other prominent

methods, such as Y2H (which requires transportation to the

cell nucleus) and AP/MS (which requires multiple rounds of in

vitro purification). To our knowledge, this is the only published

large-scale interaction study of this sort.

N Center for Cancer Systems Biology Human Interactome

version 1 (CCSB-HI1): This data set was constructed by Rual

et al. [49] using a high-throughput yeast two-hybrid system,

which they employed to test pairwise interactions amongst the

products of about 8100 human open reading frames. The data

set, which contains 2611 interactions amongst 1549 proteins,

achieved a verification rate of 78% in an independent co-

affinity purification assay (that is, from a representative sample

of interactions in the data set, 78% could be detected in the

independent experiment).

Betweenness Centrality
Betweenness centrality is a way of quantifying the importance of

individual nodes or links to the connectivity of a network. It is

based on the notion of information flow in the network. The

(geodesic) betweenness centrality of a node/link is defined as the

number of pairwise shortest paths in the network that pass through

that object [18,39]. If there are multiple shortest paths between a

pair of nodes, each one is given equal weight so that all of their

weights sum to unity. Thus, the weighted count of all pairwise

shortest paths passing through a given node/link equals its

betweenness centrality.

For finite, sparse, unweighted networks such as the ones we

study, one observes an interesting effect in the distribution of link

betweenness centrality values. The distribution is almost normal,

with the exception of a large spike at a value well above the mean

(see the long vertical bar of points in the plots in Figure 5). This

results from the large number of nodes with degree 1. The link that

connects such a node to the rest of the network must have a

betweenness of N{1, where N is the total number of nodes in the

network. Simply, this link must lie on the N{1 shortest paths that

connect the degree 1 node to all of the other nodes, and it cannot

lie on any other shortest paths. Thus, for our networks, the link

betweenness centrality distribution shows a strong spike at a value

of precisely N{1.

Topological Metrics and Node Roles
The within-community degree refers to the number of connections

a node has within its own community. It is normalised here to a

z-score, which for the ith node is given by the formula

zi~
ki{�kksi

sksi

, ð1Þ

where si denotes the community label of node i, ki is the number

of links of node i to other nodes in the same community si, the

quantity �kksi
is the average of ki for all nodes in community si, and

sksi
is the standard deviation of ki in community si. The

participation coefficient of node i measures how its links are distributed

amongst different communities. It is defined as [31]

Pi~1{
XN

s~1

kis

ki

� �2

, ð2Þ

where N is the number of communities, kis is the number of links

of node i to nodes in community s, and ki is the total degree of

node i. The participation coefficient approaches 1 if the links of

node i are uniformly distributed amongst all communities

(including its own) and is 0 if they are all within its own

community.

In the main text, we plot all nodes in the network in a two-

dimensional space using coordinates determined by within-

community degree and participation coefficient, and we divide

the space into regions that correspond to different node roles. The

boundaries between regions are of course arbitrary, so for

simplicity we have used the demarcations employed by Guimerà

and Amaral [31]. First, it is important to distinguish between

‘community hubs’ and ‘non-hubs’; the former are defined as those

nodes with within-community degree z§2:5. In this context, the

term ‘hub’ is applied to nodes with high within-community degree

[31], so ‘non-hubs’ might have high overall degree. One can

further partition both ‘community hubs’ and ‘non-hubs’ on the

basis of the participation coefficient P as follows [31]:

N Non-hubs can be divided into ultra-peripheral nodes

(Pƒ0:05—virtually all links within their own community),

peripheral nodes (0:05vPƒ0:62—most links within their

own community), non-hub connector nodes (0:62vPƒ

0:80—links to many other communities), and non-hub kinless

nodes (Pw0:80—links distributed roughly homogeneously

amongst all communities).

N Community hubs can be divided into provincial hubs

(Pƒ0:30—vast majority of links within own community),

connector hubs (0:30vPƒ0:75—many links to most other

communities), and kinless hubs (Pw0:75—links distributed

roughly homogeneously amongst all communities).

We depict these 7 roles as demarcated regions in the plots in

Figure 3.

Jaccard Distance
If one has two partitions of a given set of nodes, and a node i is

part of subset (or community) C1
i of nodes in one partition and

part of subset C2
i in the other partition, then the Jaccard distance

[51] for node i across the two partitions is defined as

J ið Þ~1{DC1
i \C2

i D
�
DC1

i |C2
i D: ð3Þ

The symbols \ and | correspond, respectively, to set intersection

and union, and DCD denotes the number of elements in set C. A

Jaccard distance of 0 corresponds to identical communities,

whereas the distance approaches 1 for very different communities.

By averaging J ið Þ over all nodes in the set, we can get an estimate

of the similarity of the two partitions.

Functional Similarity
In order to compute the functional similarity of two interacting

proteins, we first define the set information content (SIC) [66] of

each term in our ontology for a given data set. Suppose the

complete set of proteins is denoted by S, and the subset annotated

by term i is denoted by Si. The SIC of the term i is then defined as

SIC ið Þ~{ log10

DSi D
DSD

� �
: ð4Þ

Now suppose that we have two interacting proteins called A and

B. Let SA and SB, respectively, denote their complete sets of

annotations (consisting of not only their leaf terms but also all of
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their ancestors) from the ontology. Then the functional similarity

of the proteins is given by

f A,Bð Þ~

P
i[ SA\SBð Þ

SIC ið Þ

P
j[ SA|SBð Þ

SIC jð Þ : ð5Þ

Supporting Information

Figure S1 Hub deletion effects for AP/MS-only and Y2H-only

data sets.

Found at: doi:10.1371/journal.pcbi.1000817.s001 (0.07 MB PDF)

Figure S2 Topological node role assignments and relation with

avPCC.

Found at: doi:10.1371/journal.pcbi.1000817.s002 (0.24 MB PDF)

Figure S3 Relating interaction betweenness, co-expres-
sion, and functional similarity. Plots show link betweenness

centralities versus expression correlations, with points coloured

according to average similarity of interactors’ GO Biological

Process (BP, above) and Molecular Function (MF, below)

annotations, for two protein interaction data sets: FYI (778 nodes,

1,798 links) and FHC (2,233 nodes, 5,750 links). Pearson

correlation coefficient values of log(link betweenness) with

functional similarity are BP: 20.41 (z-score>218.6, p-value>
3.9610277) for FYI, 20.42 (z-score>233.9, p-value>
4.76102252) for FHC; MF: 20.39 (z-score>217.3, p-value>

4.5610267) for FYI, 20.31 (z-score>224.7, p-value>
1.66102134) for FHC.

Found at: doi:10.1371/journal.pcbi.1000817.s003 (0.15 MB PNG)

Figure S4 Community structure in the largest connected

component of the FYI network.

Found at: doi:10.1371/journal.pcbi.1000817.s004 (0.07 MB PDF)

Table S1 Evaluating community partitions.

Found at: doi:10.1371/journal.pcbi.1000817.s005 (0.02 MB PDF)

Text S1 Communities in the Interactome.

Found at: doi:10.1371/journal.pcbi.1000817.s006 (0.05 MB PDF)
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61. Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, et al. (2002)

Functional organization of the yeast proteome by systematic analysis of protein

complexes. Nature 415: 141–147.
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