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Abstract

Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to
significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is
expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector
concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration
differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the
probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of
tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly
assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict
existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence
of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the
degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in
mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of
the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which
arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to
be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial
chemotaxis.
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Introduction

Many motile unicellular organisms are known to direct their

movement in gradients of specific chemical substances – the process

called chemotaxis. Chemotaxis plays an important role in the

microbial population dynamics with chemotactic bacteria in a

nonmixed environment – that is in presence of nutrient gradients –

having significant growth advantage [1–4]. Modeling of microbial

population dynamics indicates that motility and chemotactic ability

can be as important for evolutionary competition as cell growth rate

[5,6]. The chemotaxis system is thus expected to be highly

optimized, as has been indeed suggested by several studies [7–10].

The best example of such optimization is bacterial chemotaxis

strategy itself. While eukaryotic cells are able to sense the gradients

by direct comparison of concentrations at the opposite sides of the

cell [11], bacteria like E. coli employ temporal comparisons along

their runs [12]. Theoretical analysis suggested that such strategy is

superior to direct spatial comparisons for objects of bacterial size

and swimming speed [7]. Adapted E. coli has two swimming

modes: runs, which are periods of long straight swimming, and

tumbles, when bacterium stops and changes its orientation. The

runs of a swimming bacterium are interrupted by tumbles which

abruptly change the swimming direction. For cells swimming up

an attractant gradient, the runs become longer due to suppression

of tumbles, and the cell population migrates up the gradient. The

frequency of tumbles is controlled by the chemotaxis network

through switching of individual motors. During a run, flagellar

motors rotate counter-clockwise (CCW) causing flagella to form a

bundle, whereas switching of one or several flagellar motors to

clockwise (CW) rotation breaks up the bundle and initiates a

tumble. The direction of motor rotation depends on the

concentration of phosphorylated CheY molecules, which bind to

the motor and switch its direction in a highly cooperative mode.

The CheY phosphorylation is controlled by the histidine kinase

CheA, which forms sensory clusters together with transmembrane

receptors and the adaptor CheW. Each receptor can be either

active or inactive, depending on ligand binding and on the

methylation level. The active receptor activates CheA, eliciting

downstream phosphorylation of the response regulator CheY.

Phosphorylated CheY (CheYp) is dephosphorylated by CheZ.

Receptors can be methylated by the methyltransferase CheR and

demethylated by the methylesterase CheB. Methylation regulates

the receptor activity. Because the reaction of receptor methylation

is much slower than the initial response, methylation provides

chemical ‘memory’, which allows the cell to compare the current

ligand concentration with the recent past.
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Early single-cell tracking experiments reported no dependence of

the tumbling angle, i.e. turning angle between consequent runs, on

the direction of the gradient and the inclination of a run [12], and it

was thus presumed to be random in subsequent modeling of

bacterial chemotaxis. However, in recent study that used high-

resolution fluorescence video microscopy [13], it was shown that the

cell turning angle depends on the number of CW-rotating filaments

involved in the tumble, and thereby the turning angle rises

proportionally to the number of motors that switched to CW

rotation. Because the CW switch probability is set by the chemotaxis

system dependent on the cellular swimming direction along the

gradient, the tumbling angle can be expected to depend on the

swimming direction, too. If the cell swims up a gradient of attractant,

the probability of CW rotation is smaller, and fewer motors are likely

to change directions. Therefore, even if the cell makes a tumble, the

tumbling angle should be small. When the cell swims down the

gradient of attractant, the probability of CW rotation is higher and

more motors are likely to change directions during a tumble, with the

consequence that the tumbling angles will be larger.

The goal of this study was thus to investigate the magnitude of

the tumbling angle dependence on the swimming direction and

the effect of such dependence on the chemotactic efficiency. We

introduced dependence of the turning angle on the number of

CW-rotating motors in a recently constructed hybrid model of

chemotactic E. coli, RapidCell simulator [14]. Our simulations

demonstrate that although the estimated difference of tumbling

angles up and down the gradient is only few degrees, even such a

small difference significantly improves the chemotactic efficiency

of E. coli. We thus suggest that tuning of tumbling angle depending

on swimming direction serves as an additional navigation

mechanism for E. coli and other peritrichously flagellated bacteria

with similar chemotaxis behavior.

Results/Discussion

Dependence of tumbling angle on the number of CW-
rotating motors

The tumbling angle dependence on the number of switching

motors was investigated by extending the recently published

hybrid model of chemotactic E. coli [14]. First, a more detailed

model of tumbling was developed to bring the model in a closer

agreement with the tracking experiments of [12]. While previous

version of the model relied on a simple voting model of tumbling,

which started the tumble as soon as the majority of motors rotate

CW, our new model takes into account the duration of CW-

rotation of every motor (Fig. 1A). The complex hydrodynamics of

multiple flagella is described in simplified form, through a

distortion factor which is a function of tcw of each motor (see

Methods). Despite this simplification, the simulated swimming of

E. coli is in a very good agreement with the original tracking

experiments [12]. The model realistically reproduces nearly all

data provided by tracking experiments: mean cellular speed, run

times, tumbling angles (Tab. 1), as well as individual motor

switching and graduate recovery of cellular speed after a tumble.

Second, we introduced a dependence of tumbling angle on the

number of CW-rotating motors that cause the tumble (Fig. 1B).

This was done by fitting the experimental data of [13] with a

realistic choice of discrete tumbling angles at each number of CW-

switched motors (Fig. 1C). To ensure consistency with experimen-

tal data, we further assumed dependence of tumbling angle on the

total number of motors. This model was called anisotropic, and it

was compared to a conventional model of isotropic tumble, which

chooses the tumbling angle stochastically. In simulations without a

gradient, both models produce equal cellular drift velocities, with

the accuracy of estimation error. To keep the mean angles of both

models consistent, we defined the frequencies of the discrete angles

in the anisotropic model as shown in Fig. 1D.

Dependence of tumbling angle on swimming direction
The model of swimming proposed here allows tumbling with

variable number of motors, as soon as the sum of their CW-

rotation times exceeds 0.15 s threshold needed for tumbling (t0
cw).

A cell swimming down the gradient will sooner reach the

threshold, because each motor has higher probability of switching

to CW. As a first consequence, the average run down the gradient

will be shorter. As a second consequence of higher switching

probability, the average number of motors that switch CW during

that tumbling period will be higher than in case of up-gradient

swimming. For example, cells with 3 motors when swimming

down the gradient N1 tumble with M(ncw)~1:64+0:001 motors

while up the gradient with M(ncw)~1:58+0:001 motors

(mean+s.e.m.).

Therefore, the tumbling angles for anisotropic model depend on

the swimming direction prior to tumbles (Fig. 2A). This

dependence naturally arises from the dependence of tumbling

angle on the number of CW-rotating motors. The simulated cells

which turned with the smallest ncw were swimming in slightly

skewed directions up the gradient before the tumble, whereas the

cells which turned with the highest ncw were swimming with even

smaller skew down the gradient before the tumble. A more

detailed analysis shows that the total angular difference between

tumbling angles that correspond to the movement up and down a

gradient is only about 3o (Fig. 2B). Such a small difference is within

the error of the early tracking experiments, about 5o [15], which

explains why it remained undetected.

Effect of anisotropic model on cell drift velocity
Despite such a small difference of mean angles, it can

significantly increase the chemotactic performance, with the mean

drift velocity being up to two times higher for anisotropically

tumbling cells (Fig. 2C). The positive effect of anisotropic tumble

becomes more visible in steeper gradients and for higher number

Author Summary

Chemotaxis of bacteria plays an important role in their life,
providing them with the ability to actively search for an
optimal growth environment. The chemotaxis system is
supposed to be highly optimized, because on the
evolutionary time scale even a modest enhancement of
its efficiency can give cells a large competitive advantage.
For a long time it was believed that the only navigation
mechanism of bacteria is increasing the run length toward
the preferred direction. The tumble was assumed to be a
purely random change of direction between runs. We
analysed recently published experimental data that
demonstrate a dependence of tumbling angle on the
number of CW-switched motors. We introduced such a
dependence into our model of chemotactic E. coli, and
simulated it under different conditions. Our simulations
show that this dependence is an important additional
mechanism of bacterial navigation, which was previously
unrecognized because it lays below the experimental
errors of conventional single-cell tracking. We show that
such a fine tuning of tumbling significantly improves
efficiency of chemotaxis, and represents a new level of
evolutionary optimization of bacteria.

Auxiliary Navigation Mechanism of Bacteria
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of motors, which suggests that highly flagellated cells can adjust

their tumbling angle more precisely.

In the case of N~3 motors and moderate gradient (N1), the

mean tumbling angle is M(H)~67:0o. This value is only 0:5o

smaller than the angle in ligand-free simulations, so the increase of

the drift velocity in the anisotropic model cannot be attributed to

the change of the total mean tumbling angle. The mean tumbling

angle up the gradient H(cos(aw0))~66:4o, while down the

gradient it is H(cos(av0))~67:6o. Therefore, the 1:2o difference

in mean tumbling angles causes a 52% increase in the population

drift velocity, from 0.92 to 1.4 mms{1 (Fig. 2C).

Dependence of anisotropic model effect on the
magnitude of angle adjustment and on rotational
diffusion

As a control, we simulated chemotactic cells that tumble with a

constant angle (67.5 deg.), and compared them to cells that tumble

with slightly smaller angle (67.52D), when they swim up the

gradient, and with slightly higher angle (67.5+D), when they swim

down the gradient. Here, the D was a constant parameter changed

from 1 to 5 deg. A difference of D~5 degrees increased the drift

velocity by about 100% in the gradient N1, and by * 50% in the

gradient N2 (Fig. 3A). This confirms that the observed increase in

drift velocity shown in Fig. 2C is due to small changes in tumbling

angles of up- and down-swimming cells, and does not arise from

model-specific parameters.

Bacterial movement in gradients is further affected by the

Brownian motion for both isotropic and anisotropic tumbling

models (Fig. 3B). In our simulations we used Dr~0:062 rad2s{1

(Tab. 1). At lower coefficients of rotational diffusion, both models

demonstrate better chemotaxis, and the advantage of the

anisotropic tumbling is most pronounced, which is due to lower

noise factor arising from rotational diffusion [16]. Since rotational

diffusion depends on the cells size, flagellar length, media viscosity

and temperature [17,18], predicted effects of anisotropic tumbling

Figure 1. Anisotropic model of E. coli tumbling. (A) The output series for a single swimming cell (from bottom to top): switching of a single
motor (blue), its distortion dcw (green), the sum of distortions of 3 motors Dcw (red), the resulting falls of swimming speed during tumbles (black). (B)
The schematic illustration of tumbling angle (green arrow) dependence on the number of CW-rotating motors (green circles). (C) Anisotropic model
of tumbling. The tumbling angle Hi at different number of CW-rotating motors i~ncw. Inset. Experimental data sets reproduced from Fig. 12 of [13].
Solid lines show means, errorbars show standard deviations, circles correspond to individual tumbles. Color code of the inset is the same as in the
main panel. (D) Frequencies pi of tumbles which involve i~ncw CW-rotating motors out of the total number of motors N~2::5.
doi:10.1371/journal.pcbi.1000717.g001
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can be even more pronounced for other bacteria or under different

environmental conditions.

Conclusions
Taken together, our results suggest that in addition to

extending the run length while swimming up the gradient, E.

coli uses an auxiliary mechanism of tumbling angle tuning

according to the swimming direction. This fine tuning of tumble

is mediated by the same adjustment of tumbling frequency that

underlies the conventional chemotaxis strategy of E. coli (Fig. 4).

Since both navigation mechanisms arise from the same basic

mechanism of altered motor switching, evolutionary optimiza-

tion of the basic mechanism depends on both the effect from the

tumble frequency and the number of flagella that reverse per

tumble. The previously unrecognized mechanism shown here is

expected to be shared by other peritrichously flagellated bacteria

with similar chemotactic behavior, and it seems to represent yet

another level of evolutionary optimization of the chemotaxis

system.

Methods

Model of chemotaxis signaling network
We applied the recently proposed Monod-Wyman-Changeux

(MWC) model for mixed receptor clusters [19,20], which accounts

for the observed experimental dose-response curves of adapted

cells measured by in vivo FRET experiments [19,21], as shown in

[20,22,23]. According to the MWC model, an individual receptor

homodimer is described as a two-state receptor, being either ‘on’

or ‘off’, with the free energy being a function of methylation level

m and ligand concentration ½S�

fr(m)~er(m){ log
1z½S�=Koff

r

1z½S�=Kon
r

� �
ð1Þ

where er(m) is the ‘offset energy’, and Kon
r , Koff

r are the dissociation

constants for the ligand in the ‘on’ and ‘off’ state, respectively. Groups

of receptors form larger sensory complexes, or signaling teams, with

all receptors in a team being either ‘on’ or ‘off’ together. The teams

are composed of mixtures of Tar (r~a) and Tsr (r~s) receptors,

and the total free energy of the team is given by

F~nafa(m)znsfs(m) ð2Þ

The probability (A) that a team will be active is a function of its free

energy

A~
1

1zeF
ð3Þ

The adaptation is modeled according to the mean-field theory

[24,25], assuming that the CheB demethylates only active

receptors, CheR methylates only inactive receptors, and both

enzymes work at saturation

dm

dt
~a(1{A)½CheR�{bA½CheB� ð4Þ

This equation implies that both enzymes work in the zero-order

regime. The linear products a(1{A)½CheR� and (bA½CheB�)

Table 1. Comparison of the RapidCell output and the tracking data from (Berg and Brown, 1972).

Parameter Isotropic model Anisotropic model Experiment

Tumbling angle, control (o) 67.5 67.5 68

Run length, control (s) 0.81 + 0.63 0.81 + 0.63 0.86 + 1.18

Run length, gradient (s) 0.89 + 0.77 0.92 + 0.86 0.90 + 1.56

Run length, up gradient (s) 0.93 + 0.83 0.98 + 0.95 1.07 + 1.80

Run length, down gradient (s) 0.83 + 0.69 0.86 + 0.75 0.80 + 1.38

Swimming speed, control (mms{1) 17 + 5.4 17 + 5.4 14.2 + 3.4

Drift velocity, control (mms{1) 0.36 + 0.03 0.39 + 0.03 –

Drift velocity, gradient (mms{1) 0.92 1.40 0.90

The model parameters are as in Tab. 2, the number of motors N~3, the gradient is N1. Values are estimated from 1000 cells simulated for 500 s. Controls correspond to

a ligand-free medium. Means and std (where relevant) are shown.
doi:10.1371/journal.pcbi.1000717.t001

Table 2. Parameters used in E. coli model.

Parameter Value Reference

mbccw
0 0.65 Steady-state CCW motor bias [30,31]

Tccw 1.33 s Av. CCW rotation time of a motor at
resting state [34]

Tcw 0.71 s Av. CW rotation time, given that

mbccw
0 ~

Tccw

TccwzTcw

t0
cw

0.15 s Max. time the flagellum rotates CW in
semicoiled form [13]

D0
cw

1.0 Threshold of total distortion to initiate a
tumble [13]

Vmax 20 mms{1 Maximum swimming speed [12,35]

Dr 0:062 rad2s{1 Rotational diffusion coefficient [17]

H 10.3 Hill coefficient of motor response to
[CheYp] [30]

Dt 0.01 s Time step in simulations (this work)

Kon
a 0:5 mM Diss. constant of Tar to MeAsp [22]

Koff
a

0:02 mM Diss. constant of Tar to MeAsp [22]

K� 0:1 mM Geometric mean of Kon
a and Koff

a

doi:10.1371/journal.pcbi.1000717.t002
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mean that a bound CheR (CheB) can only act if the receptor

team is inactive (active), with probability (1{A) and A,

respectively.

The average methylation level m is assumed to be a

continuously changing variable within the interval ½0,8�, with

linear interpolation between the key offset energies, er(i),i~0::8,

as suggested in [25,26]. The ODE for methylation (Eqn. 4) is

integrated using the explicit Euler method to ensure high

computational speed of the program, while the time step is chosen

as 0.01 s to keep the simulation error low.

The details of network model were previously described in [14].

CheA kinase activity is assumed to be equal to the activity of the

receptor complex (A). The rate of phosphotransfer from active

CheA to CheY is much faster than the rate of CheA autopho-

sphorylation [9,27]. Therefore, the relative concentration of

CheYp is obtained as a function of active CheA from the

steady-state equation

½CheYp�~3
kY ksA

kY ksAzkZZzcY

ð5Þ

where ks~0:45 is a scaling coefficient, ky~100 mM{1s{1,

kZ~30=½CheZ� s{1, cY ~0:1 are the rate constants according

to [9,28,29].

The relative concentration of CheYp is converted into the

CCW-motor bias using a Hill function [30]:

mb(CheYp)~(1z(1=mb0{1)(CheYp)H ){1 ð6Þ

where H~10:3 [30], mb0~0:65 [30,31].

Model of bacterial swimming
To simulate the experimentally observed hydrodynamics of

bacterial swimming and tumbling [13,32] in simple terms, we

introduce a distortion factor dcw which reflects how one CW-

rotating flagellum influences the cellular speed and angular

deviation

dcw~
tcw=t0

cw, tcwƒt0
cw

e{20(tcw{t0cw), tcwwt0
cw

(
ð7Þ

This functional form implies that the distortion rises proportionally

to the CW rotation time tcw as long as it is below the threshold t0
cw

(the first period). After this threshold is reached, the distortion

exponentially decays (the second period). The first period

corresponds to unwinding of a flagellum from the bundle and its

rotation in the right-handed semicoiled form, which initiates a

tumble. In the second period, when the flagellum rotates CW

longer than the threshold time, a rapid transformation from

semicoiled to curly 1 form occurs, and the flagellum twists around

Figure 2. Behavior of cells with anisotropic tumbling model. (A)
Distribution of cellular orientations prior to tumbles. The tumbling
events are divided into 3 groups, by the number of CW-rotating motors
involved in a tumble. The rose histograms are normalized by the
number of counts. The inner black circle shows unbiased (isotropic)
distribution as a reference. Cell orientation is given relative to the
gradient. The gradient steepness is N1. (B) Average tumbling angle as a
function of orientation along the gradient prior to tumbles. (C)

Chemotactic drift velocity of cells in gradients of different steepness.
Bars show the drift velocities of cells with 3 motors (left group) or 5
motors (right group) in the medium without a gradient (gray), in
gradient N0 (blue), N1 (green) and N2 (red). Left bars show the isotropic
model, right (hatched) bars – anisotropic model of tumbling. In the
absence of gradient, the difference is within the error of estimation.
Standard error of the mean is about 0.03. Cells in (A) and (B) have 3
motors, other parameters are as described in Tab. 2. The number of
simulated cells is 103 in each case.
doi:10.1371/journal.pcbi.1000717.g002
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the bundle during the new run, due to high flexibility of the latter

form [32].

The influence of several simultaneously CW-rotating motors is

assumed to be proportional to the sum of their distortion factors

Dcw~
Xncw

i~1

di
cw ð8Þ

This implies that the tumble can occur if a single motor rotates

CW for at least t0
cw period, or if two or more motors rotate CW

together for a shorter time. Formally, a tumble occurs when

Dcw§D0
cw, where D0

cw is a threshold value. In principle, the

threshold depends on the total number of motors: the larger N,

the higher D0
cw is required to generate a tumble. This is

consistent with experimental data of [13], Fig. 12 therein, where

switching of 1 motor is sufficient for a tumble at N~2,3,4, but

for N~5 at least 2 motors are necessary for a tumble. However,

we keep the same D0
cw~1 for N~2,3,4,5 for simplicity, to avoid

additional arbitrarily chosen thresholds. The simulated run

lengths in a ligand-free medium have distribution close to

exponential.

The cellular swimming speed depends on the distortion in a

piece-wise linear form

v~
Vmax(D0

cw{Dcw), DcwvD0
cw

0, Dcw§D0
cw

(
ð9Þ

In our model, we considered only ‘complete’ tumbles, which occur

when Dcw reaches D0
cw and the swimming speed falls to zero: at

this time point the cell instantly changes its orientation by the

tumbling angle H, which is determined by two alternative models,

isotropic and anisotropic. For simplicity, we assumed that if the

distortion Dcw does not reach D0
cw, it causes only a drop of speed,

without a change of the swimming direction.

During a run, the direction of cellular swimming is affected by

the rotational diffusion [12,17]. After each time step, the

swimming direction is changed by adding a stochastic component

with normal distribution N(m, s)~N(0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt
p

), where the

diffusion coefficient Dr equals 0:062 rad2s{1 [17].

Isotropic tumbling. The tumbling angle H is distributed

according to the continuous probability density function

f (H)~0:5(1zcosH)sinH, 0vHvp, as suggested in [33]. The

mean M(H) of this angle distribution, 67:5o, is close to

experimental measurement of 68o [12], and shapes of the

simulated and experimental distributions are simular. The angle

distribution does not depend on any external factors.

Anisotropic tumbling. The tumbling angle H is determined

by number of CW-rotating motors ncw involved in the tumble, and

the total number of motors N. For each pair of (ncw,N), we

simulated the cell swimming in a ligand-free medium and

calculated the frequency pi of the tumbles which are caused by

i~ncw CW-rotating motors. Using the frequency pi, we chose the

turning angle Hi close to the experimental values [13], while

keeping the average turning angle constant in all models,

XN

i~1

piHi~67:5o ð10Þ

Note that here tumbling angles are discrete, as opposed to the

continuous probability density function of isotropic tumble.

The program RapidCell is available at www.rapidcell.

vladimirov.de.

Constant-activity gradient
In order to measure the chemotactic efficiency accurately and to

avoid the effects of receptors saturation, we simulated the cells in

an artificial constant-activity gradient, which ensures a constant

chemotactic response CheYp and a constant cell drift velocity over

a wide range of ligand concentrations, in contrast to commonly

used Gaussian and linear gradients [14]. Drift velocity in constant-

activity gradient was measured by a linear fit of SX (t)T in the time

interval from 200 to 500 s. The constant-activity gradient has the

following form:

Figure 3. Effects of tumbling angle adjustment and rotational
diffusion on chemotactic efficiency. (A) Dependence of chemo-
tactic drift velocity on fixed tumbling angle deviation D in a simplified
tumbling model. The cells swimming up the gradient tumble with a
smaller angle 67:5{D, while cells swimming down the gradient tumble
with higher angle 67:5zD. Cells with D~0 tumble with a fixed angle
67.5o, i.e. isotropically. (B) Dependence of chemotactic drift on
rotational diffusion coefficient for cells with isotropic (blue) and
anisotropic (green) models of tumbling. The number of simulated cells
is 103 in each case, the gradient is N1. Cells in (A) and (B) have 3 motors,
other parameters are as described in Tab. 2.
doi:10.1371/journal.pcbi.1000717.g003
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S(x)~K�
Cx

Kon{Koff

K�
{Cx

ð11Þ

where S(x) is the ligand concentration in position x, and

K�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KonKoff
p

is the geometric mean of Tar methyl-aspartate

dissociation constants. Here C is a free parameter which

determines the steepness of the gradient, and thereby the drift

velocity of cells up the gradient. We compare the drift velocities in

three constant-activity gradients, with relative steepness changing

two-fold from one to another, and designate them as N0, N1 and

N2. The corresponding gradient functions are

S(x)~K�
Cx

Kon{Koff

K� {Cx
, C~

Kon{Koff

K�
: 0:999

xmax

ð12Þ

with xmax~40,20,10 mm for N0, N1 and N2, respectively. Here

xmax is the size of square 2D domain, where cells were simulated

starting from the center of left wall x~0.
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