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Abstract

Transmembrane channel proteins play pivotal roles in maintaining the homeostasis and responsiveness of cells and the
cross-membrane electrochemical gradient by mediating the transport of ions and molecules through biological
membranes. Therefore, computational methods which, given a set of 3D coordinates, can automatically identify and
describe channels in transmembrane proteins are key tools to provide insights into how they function. Herein we present
PoreWalker, a fully automated method, which detects and fully characterises channels in transmembrane proteins from their
3D structures. A stepwise procedure is followed in which the pore centre and pore axis are first identified and optimised
using geometric criteria, and then the biggest and longest cavity through the channel is detected. Finally, pore features,
including diameter profiles, pore-lining residues, size, shape and regularity of the pore are calculated, providing a
quantitative and visual characterization of the channel. To illustrate the use of this tool, the method was applied to several
structures of transmembrane channel proteins and was able to identify shape/size/residue features representative of
specific channel families. The software is available as a web-based resource at http://www.ebi.ac.uk/thornton-srv/software/
PoreWalker/.
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Introduction

Transmembrane channel proteins play pivotal roles in maintain-

ing the homeostasis and responsiveness of cells and the cross-

membrane electrochemical gradient by mediating the transport of

ions and molecules through biological membranes [1]. For instance,

aquaporins facilitate the flux of water and small uncharged solutes

across cellular membranes and, in humans, are involved in several

diverse functions, like concentrating urine in kidneys and partici-

pating in forming biological fluids [2–5]. In contrast, potassium

channels are fundamental regulators of cell membrane potential

and control the action potential waveform and the secretion of

hormones and neurotransmitters [6–8]. Moreover, a family of

transmembrane proteins, known as translocons, have been found to

mediate protein transfers between different cellular compartments

and consequently to be involved in the folding of membrane and

secretory proteins [9]. Understanding the structure and function of

transmembrane channel proteins and studying their properties and

biochemical mechanisms is therefore a very important task in

biological and pharmaceutical research [10,11].

Transmembrane channel proteins usually show a cavity

spanning the whole protein, herein designated as the pore, which

forms the path used by ions and/or molecules to cross the

membrane. The pore has two openings, one on each side of the

membrane, and it has been hypothesized (and in some cases

shown) that the specificity and selectivity to different solutes is

strongly dependent on the particular structural or amino acid

composition features of the channel [5,8,12]. Consequently,

computational methods for the identification and description of

pores in transmembrane protein 3D-structures represent key tools

to gain insights into how these proteins function.

To our knowledge, several methods for the analysis of protein

surface and cavities have been developed [13–19] but the only

currently available method for the structural analysis and

visualisation of transmembrane channels is HOLE, developed in

1993 and still widely used [20,21]. This elegant algorithm

implements a Monte Carlo simulated annealing approach to find

the path that a sphere of variable radius can use to go through a

channel and also provides pore anisotropy analysis and conduc-

tance prediction tools. The path is optimised so that it can be

considered as the route of a plastic sphere squeezing through the

channel, i.e. at each point of the path the channel can

accommodate the largest possible sphere. Three more recent

methods, developed for the detection of internal cavities and

tunnels in any protein structure, CAVER [22], its improved

version MOLE [23] and MolAxis [24] can be applied to identify

pores in transmembrane proteins. CAVER explores the protein

inner space using a grid-based approach, while MOLE implements
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an algorithm based on Voronoi polyhedra. Both approaches use an

optimality criterion based on the minimization of a cost function,

which depends on reciprocal atomic distances, and calculates the

optimal way out from a user-specified starting point inside the

protein to the outside environment. MolAxis exploits computational

geometry techniques, in particular the alpha shapes theory and the

medial axis concept, to detect possible routes that small molecules or

ions can take to pass through channels and cavities. It is worth

highlighting here that all the four programs, to be applied to

transmembrane proteins, require user-defined specific information

about the geometry of the channel that necessitate a fairly good

knowledge of the location of the pore and/or of key residues lining

the pore walls, like a starting point for the path search through the

channel or a vector approximating the location of the pore within

the protein 3D-structure. Moreover, they provide only a limited

description of the channel geometry mainly consisting of diameter

values and some of the residues lining the pore walls.

Herein we present PoreWalker, a method to provide a detailed

description of the three dimensional geometry of a channel (or pore)

through a transmembrane protein, given the coordinates of the

protein structure. These 3D pore descriptors provide a quantitative

description, including the size, shape and regularity of the pore,

which we hope will help to explain pore specificity, the critical

biological function of these molecules. PoreWalker is fully automat-

ed, requiring only the 3D protein coordinates from the PDB file, and

so can be applied to any new structure or across all transmembrane

proteins in the PDB. The method was applied to several structures of

transmembrane channel proteins and was able to identify shape/

size/residue features representative of specific channel families. The

software is implemented as a web-based resource at http://www.ebi.

ac.uk/thornton-srv/software/PoreWalker/ and its source codes will

soon be available upon request to the authors.

Materials and Methods

The main goal of PoreWalker is to identify a channel in a

transmembrane protein, through which a ligand (an ion or a small

molecule) might pass. The channel can be defined by the pore-

lining residues, which in most cases are accessible to solvent, and

approximated by an axis, which ideally connects the two entrances

of the pore and passes through the centre of the channel. The

computational challenge is to identify the pore-lining residues from

the protein 3D-structure and thus to define the axis and centre of

the pore. Once this is done, the parameters defining the size and

shape of the pore are easy to calculate.

The most direct approach to defining the channel would be to

find the solvent accessible residues, and from these residues try to

identify the pore-lining residues using geometric criteria. The most

straightforward way to distinguish pore-lining residues from other

accessible residues (on the outside of the protein) is to require that

they ‘point towards’ the pore axis. However, since the latter

cannot be defined without first knowing the pore-lining residues, it

is necessary to adopt an iterative approach, whereby the axis is first

approximated and then refined.

Ideally, the path taken by the ligand through the transmem-

brane protein will be linear and the pore will run approximately

perpendicular to the plane of the membrane. Therefore, to make

the first estimate of the channel axis, the algorithm takes into

account the ‘special’ geometry of transmembrane proteins, in

which the protein’s secondary structures also tend to lie

perpendicular to the transmembrane plane, running from one

side of the membrane to the other. The channel axis is thus

approximated as co-linear with these secondary structures and

passing through their averaged centre of gravity.

In practice, paths can be convoluted and channels can be far

from linear, as for the pores of some acid-sensing ion channels.

Moreover, pores can be very narrow, with diameter values less

than 1Å, so that pore-lining residues can not be straightforwardly

detected as accessible to solvent. Therefore, the algorithm

identifies a number of ‘‘local’’ pore centres at different pore

heights (or slices) through the membrane so that the geometrically

correct pore openings and path can be detected and a refined pore

axis generated.

The algorithm is heuristic and iterative, and includes the

following steps (see Figure 1):

1. Definition of the channel axis as the average of the secondary

structure vectors and passing through the centre of gravity of

the protein;

2. Identification and maximization of the number of putative

pore-lining residues and definition of the centre of the pore, as

follows:

a. use the current pore-axis to identify pore-lining residues as

those which are accessible, close to the pore axis and

whose C-alpha-C-beta vector points towards this axis;

b. use the detected pore-lining residues to redefine the centre

of the pore;

c. iterate steps a and b until the number of pore-lining

residues reaches a maximum.

c. This defines a new geometrical ‘centre’ for the pore and a

preliminary pore-axis, which is perpendicular to the plane of

the membrane and passes through the pore centre;

3. Iterative refinement of pore axis. The protein structure is

divided into slices (perpendicular to the current pore axis) and,

for each slice, the local ‘centre’ of the pore, defined to generate

a maximum diameter of the pore for that slice, is refined. These

centres define the optimised ‘path’ of the cavity through the

channel and are used to define the final pore axis. An example

Author Summary

Transmembrane channel proteins are responsible for the
transport of ions and molecules through biological
membranes and are pivotal for the physiology of the cell.
In fact, their incorrect functioning is involved or related to
several diseases (diabetes, myotonia, Parkinson’s disease,
etc.). Moreover, their specificity and selectivity to different
ions or molecules have been hypothesized and sometimes
shown to strongly depend on the shape and size or amino
acid composition of the channel. Therefore, computational
methods to identify and quantitatively characterise chan-
nel geometry in transmembrane protein structures are key
tools to better understand how they function. We have
developed PoreWalker, a new method to detect and
describe the geometry of these channels in transmem-
brane proteins from their 3D structures. The method is
fully automated, very user-friendly, identifies the location
of the channel and derives a number of channel features:
diameter profiles at given heights along the channel, all
the residues lining the channel walls, size, shape and
regularity of the channel. These features can be very
helpful in the study of how these channels might function.
We have applied PoreWalker to several channel protein
structures and were able to identify shape/size/residue
features that were representative of specific channel
families.
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of how the pore axis changes during the iteration of steps 1 to 3

is shown in Figure 2;

4. Calculation of 3D descriptors defining the geometry and

chemistry of the pore.

All programs included in the PoreWalker pipeline are developed

in-house in C and PERL programming languages. The web-server

is based on PERL-CGI protocol and the results of the four step

calculations are summarised in pictures and text files displayed on

the website and downloadable.

1. Preliminary definition of a pore axis and re-orientation
of the protein

In transmembrane proteins, the channel runs approximately

perpendicular to the membrane plane and parallel to the bundle

or barrel that makes up the transmembrane portion of the pore.

The first step of the program consists in re-orienting the protein

structure so that the origin lies at the centre of gravity of the

transmembrane portion of the protein and the bundle/barrel lies

perpendicular to the membrane plane. The main axis of the

transmembrane bundle/barrel is calculated according to the

position of the secondary structure elements that putatively form it.

Each secondary structure element in the protein is identified from

the separation of sequential C-alphas as described in Supplemen-

tary Text S1 and, if the helix or the strand is longer than 15 or 10

amino acids, respectively, it is approximated by a vector, which

starts at its centre of mass and points toward the centre of mass of

the terminal four and two amino acids of the helix or strand,

respectively. The length threshold was applied because, on

average, transmembrane helices and strands used for this

calculation need to be sufficiently long to cross the membrane.

This excludes small helices which often do not lie perpendicular to

the membrane plane. The sign of all the vectors is selected so that

they point in approximately the same direction and the averaged

vector is calculated. However, outlying secondary structures found

to be more perpendicular than parallel to the bundle/barrel axis

are excluded from the averaging at this stage so that the

transmembrane portion of the structure is orientated as parallel

to the membrane axis as possible.

The whole protein 3D structure is then re-oriented so that its

calculated main axis overlaps with the x-axis of the current 3D

system and the centre of gravity of its transmembrane portion lies

at the origin. In this way, the structure is moved into a new

reference frame that approximately aligns the transmembrane

secondary structure elements perpendicular to the membrane.

The pore axis is then approximated as coinciding with the protein

main axis (see Figure 2, step 2). This starting assumption, despite

its crudeness, simplifies and speeds up the following steps of the

method.

2. Definition of the centre of the pore
The centre of the pore is defined by iteratively maximising the

number of detected putative pore-lining residues, i.e. water-

accessible amino acids pointing towards the pore axis. At the

Figure 1. Flowchart of PoreWalker stepwise algorithm.
doi:10.1371/journal.pcbi.1000440.g001
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Figure 2. Changes of the pore axis during PoreWalker calculation for the ASIC1 acid-sensing ion channel (PDBcode 2qts [46]). Step 1:
the 3D structure as submitted to the program. Step 2. Preliminary definition of the pore axis (shown in red). Step 3. Definition of pore centre and
translation of the pore axis so that it passes through it (axis shown in red). Step 4–8. Iterative identification of local pore centres (red spheres) and
variations in the position of the pore axis (green) during the refinement of the pore axis. Step 9. PoreWalker output.
doi:10.1371/journal.pcbi.1000440.g002
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beginning of the process, the centre of the pore and the pore axis,

i.e. the linear vector going through the middle of the pore, are

assumed to correspond to the centre of mass of the protein and to

the x-axis, respectively. Putative pore-lining amino acids around

the pore axis are then selected to satisfy three criteria: (1) the

relative sidechain solvent accessibility calculated by NACCESS

([25], downloadable at http://www.bioinf.manchester.ac.uk/nac-

cess/) must be higher than 5%; (2) the vector defined by the C-

alpha-C-beta bond must point towards the pore axis; and (3) the

distance of the C-alpha atom from the pore axis must be below a

given threshold. The distance threshold is calculated at each

iteration as the smallest distance between any pore-lining residue

C-alpha and the current pore axis plus 6 Å. This prevents the

inclusion of ‘‘second shell’’ residues in the selection of putative

pore-lining residues and in the calculation of the final centre of the

pore. Glycines lack C-betas and are therefore treated differently.

For each Gly, a dummy atom is defined as the average of 3D-

coordinates of its backbone carbonyl carbon and amide nitrogen.

This atom can be considered a mirror image of the C-betas of a

virtual side chain located between the two hydrogen atoms bound

to its C-alphas and can therefore be used to evaluate the

orientation of Gly backbone atoms. Glycines with a total relative

accessibility higher than 5% and with the dummy atom pointing

away from the pore axis are defined as pore-lining.

A new centre of the pore is then calculated from the selected

putative pore-lining amino acids and the protein structure is

translated so that the new pore centre and the x-axis corresponds

to the origin of the 3D-system and to the new pore vector,

respectively.

The above procedure is performed iteratively and stops when

the number of newly selected putative pore-lining residues

converges to its maximum, indicating that the pore centre has

reached its optimal position. As a result of this first process, the

protein structure is translated in space so that the x-axis goes

through the current best-guess of the centre of the pore and a

preliminary list of putative pore-lining residues is generated (see

Figure 2, step 3).

The effectiveness of this step of the method was assessed by

monitoring the distance of the selected pore-lining residues from

the pore centre, as described in Supplementary Text S1 and

shown in Figure S1.

3. Refinement of pore axis and detection of cavity
To derive the best possible axis and cavity of the pore an

iterative slice-based approach is used, in which the centre of the

pore is systematically optimised for each slice and therefore

eventual irregularities in the cavity can be detected. At each

iteration, the protein structure is mapped onto a 3D-grid of 1Å

steps and then sliced along the x-axis (i.e. the current pore axis) in

1Å thick layers. The pore centre of each slice is then identified by a

grid-based approach so that it lies at the centre of the sphere with

the maximum radius that the slice can accommodate. The

maximum sphere and its centre are derived by expanding the

sphere from the current centre until it clashes with a pore-lining

atom, and systematically shifting the centre on the vertices of a

2D-grid so that the centre of the sphere of maximum volume for

that slice can be identified.

The pore centre of the slice is initially set as the average of C-

alpha and C-beta atoms of the putative pore-lining amino acids

belonging to the slice selected in the previous step of the program,

and the corresponding maximum sphere is calculated. A square

2D-grid perpendicular to the current pore axis (x-axis) is then built

and used to optimize the location of the pore centre. The grid has

0.1 Å squares, it is centred at the pore centre, and its size depends

on the sequence length of the protein and on the size of the pore.

Grid vertices not surrounded by atoms in all the possible y and z

directions are taken as located outside the pore and excluded from

the optimization process. The sphere of maximum volume at a

given centre is calculated by increasing its radius by 0.1 Å until it

hits a vertex of the 3D-grid occupied by a backbone or C-beta

atom. The current sphere radius is adjusted by subtraction of the

atomic van der Waals radius (1.8 Å, corresponding to the average

radius of all types of heavy atoms found in protein structures as in

the AMBER united force field [26]) or approximate residue side

chain radius (as in Levitt’s amino acid ‘lollypop model’ [27]) if a

backbone atom or a C-beta is hit, respectively. If the radius value

is above any previously calculated radius, the current radius and

corresponding sphere centre are taken as the maximum radius and

pore centre for that slice.

At the end of the iteration, coordinates of the last four

consecutive sphere centres at each end of the pore, that represent

the two pore openings, are averaged to generate two points, which

define the new pore axis. The structure is then re-oriented to align

with the new vector (see Figure 2, steps 4–8). The last four

consecutive spheres are used because the ends of the channels can

be very irregular in term of shapes and therefore pore axes derived

from the two very last sphere centres (one per end) often do not

cross correctly one or both the pore entrances (the value 4 was

derived on a trial-and-error basis in the range of values from 1 to

5).

The refinement process stops when the new pore vector

‘‘overlaps’’ to the old pore axis (i.e. when their angle is lower

than 0.5 degrees) and the current pore axis and maximum sphere

radii (i.e. those calculated in the previous iteration) are retained as

optimal and used in the further analysis of the pore shape.

4. Analysis and prediction of pore features
The last step of the method is the analysis and calculation of

three main pore descriptors: the pore-lining atoms and residues

(Section 4.1), and the shape of the pore cavity (Section 4.2) and its

regularity (Section 4.3).

4.1 Identification of pore-lining atoms and

residues. Pore-lining residues can be defined as amino acids

contributing at least one atom to the inside surface of the pore.

The pore surface can be considered as a continuum made up of

horizontal and vertical layers of atoms. To investigate each layer,

the protein structure can be cut horizontally through the pore axis

into slices of thickness comparable to the diameter of a heavy atom

(i.e. C, N or O), so that each slice in theory will include only one

layer of atoms. Since the average diameter of protein heavy atoms

in the AMBER force field is ,3.6 Å, the slice size was

approximated to its lower integer (3Å) so that the chance that

two atoms from two adjacent layers are included in the same slice

is minimised. Each slice can then be further divided into wedges

(again of thickness comparable to the diameter of a heavy atom) so

that, for each wedge, the atom closest to the pore centre can

reasonably be considered as ‘‘the’’ pore-lining atom of that wedge.

In particular, each 3Å slice is split into cylindrical segments

(wedges, Figure 1-step 4) perpendicular to the pore axis and of a

size dependent on the lowest distance (dmin) between the pore

centre and any atom belonging to that cylindrical segment and on

the average diameter of a heavy atom. In this way, it can be

assumed that each generated cylindrical segment includes only one

pore-lining atom (see Supplementary Text S1), which will be the

closest to the slice pore centre.

For each cylindrical segment, the lowest distance between the

pore centre and any atom is then calculated and a first list of pore-

lining atoms is derived. However, since pore sections included in

A New Tool for Transmembrane Pores
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slices are rarely circular, the wedge generation is repeated using

the largest distance between the pore centre and any pore-lining

residue (dPLAmax), so that more cylindrical segments are produced

and all atoms within the anulus defined by circumferences of radii

dmin and dPLAmax can be detected as pore-lining. This decreases

the chance of missing pore-lining residues because of irregularities

in the pore shape.

4.2 Description of the pore shape. The 3D shape of the

pore (see Figure 3A) is simplified as a stack of two types of

building blocks, truncated cones (i.e. conical frustums) and

cylinders, so that a schematic ‘‘cartoon’’ diagram of the channel

can be created. Building blocks are identified by analysing the

trend of the smallest diameters calculated, along the whole pore,

for each 3Å horizontal slice during the detection of pore-lining

residues. Truncated cones are used to describe pore areas where

diameter values vary linearly, while cylinders describe areas of

constant diameter.

The variation of calculated slice diameters is analysed by linear

fit of diameters within windows of variable width sliding across the

sliced pore. Given a window, if the corresponding R correlation

coefficient (R2) is lower than 0.5, the window is slid one slice

further. Otherwise, the window is extended to the next slice

diameter and a new R2 is calculated until R2
n+1,0.9 R2

n. The n-

window is then taken as the best building block of the shape of the

pore in this region.

Standard deviation (SD) values within windows giving positive

linear fitting are used to decide if those pore areas approximate

truncated cones or cylinders. As mentioned above, diameter

values of truncated cones vary linearly from the lower to the

upper circle, while they are constant in cylinders. The SD

derived from a set of diameters approximating a cylinder will

then be on average smaller (zero for a perfect cylinder) than the

SD derived from diameters that approximate a truncated cone.

Therefore, building block SD values above and below 1Å are

taken to indicate truncated cones and cylinders, respectively. In

addition, the type of a truncated cone (increasing or decreasing

diameter) is detected from the difference between its first and last

diameter.

To refine the description of the pore shape, the trend of

calculated diameters is re-analysed using the same method but

starting from the opposite end of the pore.

4.3 Analysis of the regularity of the cavity. The regularity

of the pore cavity is deduced from the positions of the pore centres

calculated from the third step of the program, aimed at the

optimization of the pore axis. If all the pore centres of a channel

are co-linear, then the pore is linear and the cavity must be very

regular and symmetric with respect to its axis. Otherwise, if only

pore centres of certain areas of the channel are co-linear the pore

may be symmetric but not linear and the cavity will be partly

regular. If very few pore centres are co-linear, the cavity must be

non-symmetric and the pore will be irregular.

Therefore, the deviation of the points modelling the pore

centres from a straight line can reasonably be considered a

measure of the linearity and regularity of the shape of the cavity.

Linear areas along the pore are identified with a window-based

approach similar to that described in section 4.2 from the 3D-

coordinates of the pore centres calculated at 1Å slices (Section 3)

and are defined as segments of the pore with an RMSD#0.5 Å.

RMSD values are calculated by PRINCIP, a program included in

the SURFNET package [18]). Ideally, a very regular pore will

have shape varying symmetrically with respect to the pore axis and

will show the pore centres calculated at various depths along the

cavity lying on a straight line, which passes through the centre of

the pore.

Results/Discussion

Output web-page
Pore descriptors calculated by PoreWalker for a submitted

structure are summarised in the corresponding output webpage,

which shows the features of the channel cavity and several

visualizations of the pore based on the identified pore-lining

residues. As an example, the output of the bovine aquaporin-1

(PDB code 1j4n) is summarised in Figure 3. The 3D shape of the

pore is simplified in 2D as a stack of building blocks shaped as

trapezia for funnel-like shapes (Figure 3B) going from the most

negative to the most positive coordinate along the pore axis. In

addition, the pore cavity is represented as a series of consecutive

straight and wiggly lines representing channel areas where pore

centres can (straight) or cannot (wiggly) be fitted to a line,

respectively (Figure 3E). It is worth highlighting here that the

approach does not take into account any chemistry (e.g. H-bonds)

but just calculates the path of the pore centres. In practice, ions/

molecules may well hop between low energy off-centre sites, within

the channel, that optimize their interactions with pore residues

during their passage through the channel.

Vertical and horizontal visualizations of the pore help to

provide a better understanding of the channel features. Vertical

sections (Figure 3A,D) are generated halving the protein structure

along the pore axis, while horizontal sections (Figure 3G,I) are

produced as 5Å slices of the protein structure perpendicular to the

pore axis. Amino acids are coloured according to whether they are

classified as pore-lining and red spheres represent optimal pore

centres.

Tests on experimental structures and comparison with
other methods

PoreWalker was tested on the 19 structures from the

‘‘Membrane Proteins of Known 3D Structure’’ resource (http://

blanco.biomol.uci.edu/Membrane_Proteins_xtal.html) listed in

Table 1, that include both ion and small molecule channels with

straight and curve pores. Results are shown in Table 1, Figure 4

and Supplementary Figure S2. Although there is no fully

comprehensive experimental data to assign with certainty the

location and residue composition of channels in transmembrane

protein 3D-structures, the position of the pore axis and of the pore

centres, visually analysed in relation to the protein structure, and

the minimum diameter value give a hint of the effectiveness of the

method. From visual inspection, PoreWalker seems able to locate

correctly the pore axis and the pore centres in most of the cases

and therefore to identify fairly correctly the amino acids that line

the pore walls with one or more atoms. In fact, the pore axis seems

wrongly located only for the Amt-B (Figure 4K), Amt-1

(Supplementary Figure S2E) and the SecYE-beta translocon

(Figure 4H) channels (PDB codes 1xqf, 2b2f and 2yxr, respective-

ly). Both Amt-B and Amt-1 channels share a common hour-

glassed shape with multiple exits at one of the pore gates and can

therefore be thought to include more than one transmembrane

tunnel of different length (Figure 5B). Likewise, the SecY-beta

translocon shows two flexible loops at both sides of the channel

that make a further narrower but longer cavity crossing the protein

structure. Despite the misassignments of pore axis and pore

centres, in these three examples most of the pore-lining residues

still seem to be identified correctly because the calculated optimal

cavities, indicated by red spheres, partially overlap with the ‘‘true’’

cavities, indicated by the black arrows.

In terms of pore shape, PoreWalker seems to recognise common

sub-shapes across channel families. For instance, all aquaglycer-

oporins show a DU-like string shape (where D and U represent

A New Tool for Transmembrane Pores
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Figure 3. PoreWalker output for the bovine aquaporin-1 water channel (1j4n). (A) visualization of a pore section showing pore-lining
residues and pore centres at 3Å steps: the section of the structure was obtained by cutting the protein structure along the xy-plane, where the x-axis
corresponds to the pore-axis, and y-coordinate.0 only are displayed. Pore-lining atoms and residues are coloured in orange and blue, respectively.
The remaining part of the protein is shown in green. Red spheres represent pore centres at given pore heights and their diameters correspond to 1/
10 of the pore diameter calculated at that point; (B) representation of the shape of the pore and shape characterization string: the pore is simplified
as a stack of building blocks going from the most negative to the most positive coordinate along the pore axis (x-axis). D, U and S indicate conical
frustums of decreasing diameter, conical frustums of increasing diameter and cylinders, respectively; (C) pore diameter profile at 3Å steps
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funnel-like shape of decreasing and increasing diameter, respec-

tively), which represents a hour-glasssed shape confirmed by a few

published data [5,28,29]. Likewise, potassium channels present a

shared sub-shape, a DUD sub-string shape at the cytoplasmic side

of the channel, that is in agreement with the channel features

reported by Mackinnon et al., i.e. a constriction at the cytoplasmic

side, the internal pore, widening into a larger water-filled void, the

internal cavity, which leads towards the narrow selectivity filter

located at the periplasmic side of the channel [12]. In addition, the

linearity of the cavity seems to give some insights on the pore

selectivity to different types of solutes (Table 1). In fact, 10 of the

13 channels for inorganic ions in the set showed a very regular

cavity, with average percentage of co-linear pore centres of 91.9%

(SD = 7.0%) and organic small molecule/ion channels had less

regular pores, with percentage of co-linear centres lower than

60%.

For completeness, PoreWalker output was also compared with

results obtained using HOLE and MolAxis on the same set of

structures. A systematic comparison with MOLE results could not

be performed because, probably due to the intrinsic looseness of

corresponding the pore shape in (B). Pore axis (X-Coord): the position along the pore axis is shown as x-coordinate in Å. Dia (Ang): pore diameter
value in Å; (D) visualization of a pore section showing the position of the biggest spheres (pore centres) that can be built along the channel at 1Å
steps: the section of the structure was obtained by cutting the protein structure along the xy-plane. The protein structure is coloured in green; (E)
diagram of the regularity of the pore cavity as number of lines that can approximate the positions of the pore centres at 1Å steps (PRINCIP). The pore
is represented as a series of consecutive straight and wiggly lines representing channel areas where pore centres can (straight) or cannot (wiggly) be
fitted to a line, going form the most negative to the most positive coordinate along the pore axis (x-axis). Vertical lines describe either the only low-
RMSD areas throughout a pore or low-RMSD areas that are co-linear. Diagonal lines represent low-RMSD areas, which are different from the low-
RMSD areas other identified along the channel. Curve lines indicate areas where pore centres are highly spread; (F) pore diameter profile at 1Å steps.
Pore axis (X-Coord): the position along the pore axis is shown as x-coordinate in Å. Dia (Ang): pore diameter value in Å; (G)–(I) horizontal sections of
the pore at the pore height highlighted in purple in (H) viewed from the bottom, i.e. the most negative coordinate along the pore axis (G) and from
the top, i.e. the most positive coordinate along the pore axis (I).
doi:10.1371/journal.pcbi.1000440.g003

Table 1. List of protein structures in the test set.

PDBid Protein name Resa Ref Shape Stringb
% centres
in linesc D(min) D(min) D(min) D(min)

R2 (PW-
HOLE)d

PW-3Å MolAxis PW-1Å HOLE (1Å)

1k4c KCSA potassium channel 2.00 [30] DUDU 91.53 0.922 0.611 0.500 0.681 0.740

1lnq MTHK calcium-gated potassium
channel

3.30 [33] DUD 55.41 0.315 1.128 1.000 20.046 0.958

1p7b KirBac1.1 inward-rectifier
potassium channel

3.65 [34] SUDSUDSU 100.00 1.110 0.709 1.100 0.508 0.918

1xl4 KirBac3.1 inward-rectifier
potassium channel

2.6 n.p. DUDUSDU 96.47 0.872 NF 1.000 0.512 0.925

1xqf AmtB ammonium channel 1.8 [35] UDUD 58.14 0.619 NF 1.000 20.075 0.750

2a79 Shaker Kv1.2 potassium channel 2.9 [36] UDUDSUDSUD 49.24 0.830 NF 1.000 0.981 0.583

2ahy Sodium-potassium channel 2.8 [37] SDUD 100.00 0.700 NF 0.500 20.018 0.127

2b2f Amt-1 ammonium channel 1.54 [38] DSUS 27.45 0.575 NF 1.000 20.098 0.017

1ymg AQP0 water channel 1.9 [39] DSD 78.57 1.631 NF 2.000 0.781 0.814

1j4n AQP1 water channel 2.2 [40] DUS 43.48 1.752 NF 1.000 0.997 0.615

1z98 SoPIP2;1 plant water channel 2.1 [41] SDUD 29.55 0.724 NF 1.000 0.191 0.000

2bg9 Nicotinic Ach receptor 4.0 [42] UDSUS 80.00 4.872 NF 3.099 2.087 0.814

2iub CorA Mg2+ channel 2.9 [43] DSD 85.71 3.466 1.580 3.099 1.247 0.834

2oar MscL mechanosensitive channel 3.5 [44] SDUDU 85.88 1.663 0.791 3.099 0.927 0.956

2oau MscS voltage-modulated
mechanosensitive channel

3.7 [44] DUD 90.43 3.595 2.629 4.099 1.674 0.951

2qks Kir3.1 prokaryotic Kir potassium
channel

2.2 [45] DUDUDS 100.00 0.629 0.464 1.000 0.281 0.817

2qts ASIC1 acid-sensing ion channel 1.9 [46] UDUDUD 42.73 0.275 0.630 1.000 20.029 0.450

2vl0 pLGIC pentameric ligand-gated
ion channel

3.3 [47] DUDSUDSU 89.11 2.019 1.153 3.099 0.956 0.776

2yxr SecYE-beta protein conducting
channel

3.6 [48] USDUS 32.20 2.854 0.572 1.000 0.079 0.095

aRes: atomic resolution of the protein structure in Å.
bShape String: shape identified by PoreWalker, going from the lowest to the highest coordinate along the pore axis. D, U and S indicate decreasing diameter conical

frustum, increasing diameter conical frustum and cylinder, respectively.
c% centres in lines: percentage of pore centres at 1Å step that have been identified as part of one or more lines by PoreWalker.
dR2 (PW-Hole): correlation of diameter values calculated by HOLE and PoreWalker at 1Å step.
doi:10.1371/journal.pcbi.1000440.t001
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Figure 4. PoreWalker visual representations. Images show xz-plane sections, z-coordinate.0 only, with the x-axis corresponding to the pore
axis. (A) KirBac1.1 potassium channel (1p7b); (B) bovine aquaporin-1 (1j4n); (C) KcsA potassium channel (1k4c); (D) MthK calcium-gated potassium
channel (1lnq); (E) CorA Mg2+ transporter (2iub); (F) MscS voltage-modulated mechanosensitive channel (2oau); (G) ASIC1 acid-sensing ion channel
(2qts); (H) SecYE-beta protein-conducting channel (2yxr); (I) Kv1.2 voltage-gated potassium channel (2a79); (J) sodium-potassium channel (2ahy); (K)
Amt-1 ammonium channel (2b2f); (L) nicotinic acetylcholine receptor (2bg9). Pore-lining atoms and residues are coloured in orange and blue,
respectively. The rest of the protein is shown in green. Red spheres indicate pore centres at 3Å steps and their size is proportional to the pore
diameter in that point. Black arrows indicate the main pore axis as identified by visual analysis of the structure.
doi:10.1371/journal.pcbi.1000440.g004
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some structures, like the MthK and the ASIC1 channels, many of

the tunnels identified by MOLE lie parallel and not perpendicular

to the membrane axis and could not be considered as

transmembrane. Within the set of pore features produced by

PoreWalker and HOLE, the only comparable quantitative

measure is the diameter, calculated along the pore at given

heights. Diameter profiles obtained at 1Å steps for the 19

transmembrane proteins in the set were compared using the R2

correlation coefficient (see Supplementary Text S1, Table 1, and

Figures 6, S3, S4 and S5). Pore diameter analyses performed with

Figure 5. PoreWalker results and the molecules of solute found in the 3D structures. (A)–(B) PoreWalker and HOLE results obtained for the
Amt-1 ammonium channel (2b2f). (A)-Vertical view. PoreWalker cavity is shown as y-coordinate.0 only of the protein section along the xy-plane,
where the x-axis corresponds to the pore axis. Pore-lining atoms and residues are coloured in orange and blue, respectively, and the rest of the
protein is shown in light grey. Red spheres represent pore centres at 3Å steps and their size is proportional to the pore diameter at that point. HOLE
cavity is shown as purple surface. Xenon atoms, indicating the presence of cavities within the protein structure, are shown in light blue. (B)-Top view.
The colour scheme is as in (A). White dots indicate the external loop, which divides the channel top gate into multiple exits. (C)–(F)-Comparison of
PoreWalker results with the actual position of solute molecules for the SoPiP2;1 water channel (C–D, 1z98) and the sodium potassium channel (E–F,
2ahy). Pore visualizations follow the colour scheme in (A). Water molecules are shown in yellow, Na+ ions in purple and Ca2+ ions in green. (C) and (E)
display PoreWalker sections as in (A). (D) and (F) show the pore only, represented as surface of the pore-lining atoms and residues only.
doi:10.1371/journal.pcbi.1000440.g005
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Figure 6. Comparisons of channel cavities identified by PoreWalker and HOLE and corresponding 1Å step profile diameters. (A)&(D)
MthK potassium channel (1lnq), (B)&(E) MscS voltage-modulated mechanosensitive channel (2oau); (C)&(F) bovine aquaporin-0 (1ymg), (G)&(J) ASIC1
acid-sensing ion channel (2qts); (H)&(K) Amt-1 ammonium channel (2b2f); (I)&(L) SoPiP2;1 water channel (1z98). PoreWalker cavities are shown as y-
coordinate.0 only of the protein section along the xy-plane, where the x-axis corresponds to the pore axis. Pore-lining atoms and residues are
coloured in orange and blue, respectively, and the rest of the protein is shown in light grey. Red spheres represent pore centres at 3Å steps and their
size is proportional to the pore diameter at that point. HOLE cavities are shown as purple surface. PoreWalker and HOLE profile diameters are shown
as solid and dotted lines, respectively. Corresponding R2 values are 0.958, 0.951, 0.814, 0.450, 0.017 and 0.000 for 1lnq, 2oau, 1ymg, 2qts, 2b2f and
1z98, respectively.
doi:10.1371/journal.pcbi.1000440.g006
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the two methods showed good agreement for 12 of the 19

diameter profiles, with R2 higher than 0.75. However, the

remaining 7 profiles showed very poor correlation coefficients,

with R2 very close or equal to zero. This behaviour seemed to be

strongly affected by the regularity of the cavity. In fact, R2 values

showed a good correlation with the number of co-linear pore

centres (Supplementary Figure S5) with a R2 of 0.70 and only one

strong outlier, the sodium-potassium channel (PDB code 2ahy).

The disagreement between the two profiles in this case was due to

a completely different pore exit at the top channel side identified

by HOLE that seems visually incorrect and makes the diameter

trend in that area very peculiar.

As for MolAxis, the program does not calculate diameter values

at given heights along the channel axis but provide a partial list of

the amino acids that contribute to the pore surface. Therefore,

minimum diameters and pore lining residues were used to

compare PoreWalker and MolAxis results. MolAxis could not

identify a channel for 9 of the 19 test protein structures (Table 1),

the water, glycerol and ammonia channels and three potassium

channels. For the remaining 10 proteins, minimum diameter

values derived from the two methods gave poor correlation

(R2 = 0.46). The exclusion of the SecYE-beta translocon, incor-

rectly characterised by PoreWalker, lead to an R2 of 0.69

(corresponding MolAxis-HOLE R2 were 0.60 and 0.57, respec-

tively). Minimum diameters calculated by HOLE and PoreWalker

gave a better correlation, with R2 of 0.54 and 0.90, respectively

(the overall R2 on the 19 structure set was 0.67). In term of pore-

lining residues, MolAxis provides a list of the amino acids

responsible for the calculated diameters, i.e. a subset of the amino

acids that make the surface pore. MolAxis pore-lining residues

were fully included in PoreWalker pore-lining residue list in all the

compared proteins but the SecYE-beta translocon. In this case, 23

of the 24 pore-lining residues detected by MolAxis were included

in the list generated by PoreWalker, showing that the method can

reliably identify amino acids which build a channel despite mis-

placements of its pore vector.

Finally, transmembrane pores identified by PoreWalker were

found to coincide well with molecules of solute found in the 3D

structure. Figure 5C–F shows the SoPIP2;1 plant aquaporin (1z98)

and the sodium-potassium channel (2ahy) filled with water

molecules and sodium and calcium cations, respectively. In both

cases the cavities generated by PoreWalker completely surround

and include water molecules and ions, which provide good

evidence for the location and shape of the pore. Interestingly,

PoreWalker is also able to identify the two main choke points in

the water channel of the SoPIP2;1 reported to be in a closed state -

the canonical Ar/R constriction site near the top of the pore and a

narrower restriction close to the bottom of the channel (Figure 5D).

The method can therefore analyse and characterise both ‘‘open’’

and ‘‘closed’’ transmembrane protein channels and transmem-

brane transporters.

An example case: the KcsA potassium channel
The KcsA potassium channel is a homotetrameric integral

membrane protein with high sequence similarity to all the

potassium channels, particularly in the pore region. Its channel

includes three elements: 1) a narrow entrance, known as the

internal pore, starting at the intracellular side of the membrane; 2)

an internal cavity, about 10Å in diameter, at the middle of the

membrane; 3) a further narrowing, the selectivity filter, which

leads to the extracellular environment [30]. The KcsA channel is

therefore a good target to assess the ability of PoreWalker to detect

constrictions, gates and internal cavities in the 3D-structure of a

channel protein.

The 3D structures of the Kcsa potassium channel in the

presence of low (3 mM, Figure 7A) and high (200 mM, Figure 7C)

K+ concentrations are available at the wwPDB (codes 1k4c [30]

and 1bl8 [8], respectively) and their pore features were derived

and analysed using PoreWalker (Figures 7–9). The diameter

profile of the low-K+ channel (Figure 7B, solid line) shows that

PoreWalker can neatly identify the three main features of the

channel: first a ,3Å narrowing corresponding to the internal pore,

the internal ,9.0Å bigger cavity and a second narrower (,1Å)

constriction corresponding to the selectivity filter, highlighted in

the Figure in orange, blue and red, respectively. It is interesting to

notice here that diameter values calculated at 1Å steps by both

HOLE (dotted line) and PoreWalker (dashed line) at the maximum

width of the internal cavity (,4Å) were significantly smaller than

those reported in the description of the 3D-structure [30] (,10Å)

and found using the standard PoreWalker protocol at 3Å steps

(,9Å).

The calculated diameters of the internal pore and cavity also

strongly agree with the proposed mechanism of ion conductance

through the pore. In fact, potassium cations are thought to move

through the internal pore and cavity in a hydrated form and to be

dehydrated at the selectivity filter. The internal pore detected by

PoreWalker is ,3Å in diameter and could allow through one

water molecule per time (the average diameter of a water molecule

is usually taken as 2.8Å). Therefore, K+ ion could move through it

alternating with water molecules. On the other side, the selectivity

filter has a predicted diameter of ,1Å and could therefore let

through only dehydrated K+ cations.

The comparison of the diameter profiles of the channel in

presence of low and high quantity of ions (Figure 7D, solid and

dotted line, respectively) showed that besides expected differences

at the cytoplasmic side of the pore, where a gate mechanism is

known to operate, the entrance of the selectivity filter is ,2.5Å

wider at high concentrations of K+. According to PoreWalker, the

pore lining residues, which define access to the selectivity filter, are

the Thr75s from the four chains making up the pore. The

difference in pore diameters at this point seems mainly to be due to

different Thr sidechain conformations (Figure 7E–F). A significant

difference in the two conformations of the KcsA selectivity filter

had been previously highlighted at the level of residues Val76 and

Gly77. A deeper analysis of the whole selectivity filter (Figure 8A)

showed that the periplasmic side of the filter (at the top of the

Figure) varies very slightly, while a major change is hinged at

Gly77 and extends through Val76 to Thr75, where a pincher-like

shutting mechanism could reasonably be hypothesized (RMSDs of

all-atom superpositions were 0.33Å, 0.58Å and 0.99Å for Gly77

(Figure 8B), Val76 (Figure 8C) and Thr75 (Figure 8D), respec-

tively). Besides, the internal cavity accommodates K+ ions as

hydrated by eight water molecules. The 3D-structure of the low-

K+ channel cavity (Figure 9) shows that the four water molecules

facing the filter are aligned to the sidechain oxygens of Thr75s and

can make hydrogen bonds with them (inter-oxygen distances are

3.9Å). Moreover, their distances from the corresponding K+ ion

are close to optimal (3.4Å versus 2.8Å [31]). Therefore, it might be

reasonably thought that the pinching mechanism could be aimed

at weakening the water-K+ hydration complex by increasing the

distance between the water molecules and the ion to facilitate its

way into the pore.

Conclusions
We developed PoreWalker, a novel web-available method for

the detection and characterisation of channels in transmembrane

proteins from their three-dimensional structure. PoreWalker is

fully automated and very user-friendly, requiring as input only the
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Figure 7. PoreWalker results for the 3D-structures of the KcsA K+ channel at low (1k4c) and high (1bl8) concentration of K+. (A),(C)-
PoreWalker visual representation (xz-plane section, z-coordinate.0 only, x-axis corresponding to the pore axis of KcsA K+ channel at low (1k4c, A) and
high (1bl8, C) concentration of K+. Pore-lining atoms and residues are coloured in orange and blue, respectively, and the rest of the protein is shown
in green. Red spheres represent pore centres at 3Å steps and their size is proportional to the pore diameter at that point. IN and OUT indicate the
cytoplasmic and periplasmic side of the pore, respectively. (B)-Diameter profiles calculated by PoreWalker standard protocol (3Å steps, solid line),
HOLE (1Å steps, dotted line) and PoreWalker-1Å steps (dashed line). The internal pore, the internal cavity and the selectivity filter are highlighted in
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3D coordinates of a transmembrane protein structure. A key

prerequisite of the submitted structure is the presence of a

transmembrane helix bundle or beta-barrel creating the pore,

which is needed for the geometrical identification of the main

protein axis. If this condition is not met, the detection/description

cannot be performed with the current version of the software.

In term of outputs, in addition to diameter profiles, PoreWalker

describes several specific pore features, in particular the shape and

the regularity of the channel cavity, the atoms and corresponding

amino acids lining the pore wall, and the position of pore centres

along the channel. These features can be very helpful to gain

further insights into the functional and structural properties of

transmembrane protein channels by triggering specific in silico or

experimental analyses, as shown from the recent characterization

of the bacterial TolC channel [32].

PoreWalker is based on the assumption that, in a transmem-

brane channel protein, the pore is made by the longest cavity

crossing the protein along the main axis of its transmembrane

portion and therefore detects the longest widest cavity in a

transmembrane protein structure. However, there are cases, as in

Figure 8. Superpositions of the selectivity filter 3D-structures of the low-K+ (green/red/blue colour scheme) and high-K+ (white/
orange/blue colour scheme) KcsA channels. (A) the whole filter (C-alpha RMSD = 0.38Å, all atom RMSD = 0.58Å), (B) G77s only, top view (all atom
RMSD = 0.33Å), (C) V76s only, top view (all atom RMSD = 0.58Å), (D) T75s only, top view (all atom RMSD = 0.99Å).
doi:10.1371/journal.pcbi.1000440.g008

orange, blue and red, respectively. (D)-Diameter profiles calculated by PoreWalker standard protocol for the low-K+ (solid line) and high-K+ (dotted
line) KcsaA channel structures. The entrance of the selectivity filter is shown in green and is found at the pore height highlighted by a green box in
the channel structures (A for the low-K+ channel and C for the high-K+ channel). (E)–(F) Different conformation of the Thr75s lining the entrance of the
selectivity filter in the low-K+ (E) and high-K+ (F) channels. Backbone and sidechain oxygens are coloured in dark pink and red, respectively, and their
atomic volume is shown by dots. Red spheres represent the pore centres at the entrance of the selectivity filter and their size is proportional to the
pore diameter predicted for that point (0.92Å and 3.63Å for the low-K+ (E) and high-K+ (F) channels, respectively).
doi:10.1371/journal.pcbi.1000440.g007
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the Amt-B and the SecYE-beta translocon, where the longest

widest cavity does not correspond to the most likely ‘‘true’’ channel

and in such cases the method assigns incorrectly one or both the

pore gates. Interestingly, for these examples, calculated optimal

cavities partially overlapped with the ‘‘true’’ cavities and most of

the pore-lining residues were anyway identified properly.

In summary, PoreWalker provides a robust and automated

resource to interpret, coordinate data and derive quantitative

descriptors, which help to provide a deeper understanding and

classification of membrane protein structures.

Supporting Information

Figure S1 Trends of coefficient of variation (CV) normalised

according to the distance threshold used to detect putative pore-

lining residues (CV/D) and to the number of detected putative

pore-lining residues (CV/N(aa)).

Found at: doi:10.1371/journal.pcbi.1000440.s001 (0.32 MB TIF)

Figure S2 PoreWalker visual representations. Images show xz-

plane sections, z-coordinate.0 only, with the x-axis corresponding

to the pore axis. The remaining protein structures in Table 1 are

shown. (A) KirBac3.1 potassium channel (1xl4); (B) MscS voltage-

modulated mechanosensitive channel (2oar); (C) bovine aqua-

porin-0 (1ymg); (D) Kir3.1 prokaryotic Kir potassium channel

(2qks); (E) Amt-B ammonium channel (1xqf); (F) pLGIC

pentameric ligand-gated ion channel (2vl0); (G) plant SoPIP2;1

water channel (1z98).

Found at: doi:10.1371/journal.pcbi.1000440.s002 (3.62 MB TIF)

Figure S3 PoreWalker and HOLE diameter profiles at 1Å steps.

Solid and dotted lines indicate PoreWalker and HOLE diameter

profiles, respectively. (A) KirBac1.1 inward-rectifier potassium

channel (1p7b, R2 = 0.918); (B) bovine aquaporin-0 (1j4n,

R2 = 0.615); (C) KcsA potassium channel (1k4c, R2 = 0.740); (D)

MthK calcium gated potassium channel (1lnq, R2 = 0.958); (E)

KirBac3.1 inward-rectifier potassium channel (1xl4, R2 = 0.925);

(F) Amt-B ammonium channel (1xqf, R2 = 0.750); (G) bovine

aquaporin-0 (1ymg, R2 = 0.814); (H) plant SoPip2;1 water channel

(1z98, R2 = 0.000); (I) shaker Kv1.2potassium channel (2a79,

R2 = 0.583); (J) sodium-potassium channel (2b2f, R2 = 0.017); (K)

Amt-1 ammonium channel (1p7b, R2 = 0.918); (L) nicotinic

acetylcholine receptor (2bg9, R2 = 0.814).

Found at: doi:10.1371/journal.pcbi.1000440.s003 (0.93 MB TIF)

Figure S4 PoreWalker and HOLE diameter profiles at 1Å steps.

Solid and dotted lines indicate PoreWalker and Hole diameter

profiles, respectively. (A) CorA Mg2+ channel (2iub, R2 = 0.834);

(B) MscL mechanosensitive channel (2oar, R2 = 0.956); (C) MscS

mechanosensitive channel (2oau, R2 = 0.951); (D) Kir3.1 prokary-

otic Kir potassium channel (2qks, R2 = 0.817); (E) ASIC1 acid-

sensing ion channel (2qts, R2 = 0.450); (F) pLGIC pentameric

ligand-gated ion channel (2vl0, R2 = 0.776); (G) SecYE-beta

protein conducting channel (2yxr, R2 = 0.095).

Found at: doi:10.1371/journal.pcbi.1000440.s004 (0.63 MB TIF)

Figure S5 Diameter profiles versus linearity of the cavity. The

correlation between R2 values of PoreWalker-HOLE diameter

profiles and the percentage of number of pore centres at 1Å steps

that can be fit on one or more lines with PRINCIP is shown. Each

point represents one protein. The starred point indicates the only

outlier point (sodium-potassium channel, PDBcode 2ahy).

Found at: doi:10.1371/journal.pcbi.1000440.s005 (0.12 MB TIF)

Text S1 Supplementary text.

Found at: doi:10.1371/journal.pcbi.1000440.s006 (0.06 MB

DOC)
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