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Abstract

Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central
intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way.
In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-
Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential
equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the
highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and
suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the
unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity,
where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations
also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P
concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times
among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different
gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses
mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the
authors upon request.

Citation: Vladimirov N, Løvdok L, Lebiedz D, Sourjik V (2008) Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate. PLoS Comput
Biol 4(12): e1000242. doi:10.1371/journal.pcbi.1000242

Editor: Christopher Rao, University of Illinois at Urbana-Champaign, United States of America

Received July 9, 2008; Accepted November 5, 2008; Published December 19, 2008

Copyright: � 2008 Vladimirov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the Bioquant Graduate Program of Land Baden-Württemberg ‘‘Molecular machines: mechanisms and functional
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Introduction

One of the central questions of modern systems biology is the

influence of microscopic parameters of a single cell on the

behavior of a cell population, a common problem in multi-scale

modeling. In terms of bacterial chemotaxis, this issue can be

formulated as the influence of signaling network parameters on the

spatiotemporal dynamics of a population in various gradients of

chemoattractants. The problem of efficient multi-scale simulation

imposes strict requirements on the model: it should be maximally

detailed to grasp the main features of the signaling network yet

computationally cheap to simulate large numbers of bacteria.

Chemotaxis plays an important role in microbial population

dynamics. Chemotactic bacteria in a nonmixed environment—

that is in presence of nutrient gradients—have significant growth

advantages, as shown experimentally for different bacterial species

[1–4]. Modeling of microbial population dynamics indicates that

motility and chemotactic ability can be as important for

evolutionary competition as cell growth rate [5,6].

Escherichia coli is an ideal organism for chemotaxis modeling,

because of the rich experimental information collected over years

of extensive research. In common with many other bacteria, E. coli

can migrate towards high concentrations of attractants and away

from repellents. In the adapted state, cells perform a random walk,

which becomes biased in the presence of a spatial gradient. This

swimming bias is based on temporal comparisons of attractant

concentrations during cell runs. If the direction of a run is

favorable, i.e. up the attractant gradient or down the repellent

gradient, the run become longer. Between runs, the cell tumbles

and reorients for the next run [7].

Chemotaxis in E. coli is mediated by an atypical two-component

signal transduction pathway (for recent reviews see [8,9]). Ligand

molecules bind to clusters of transmembrane receptors, which are

in complex with the histidine kinase CheA and the adaptor CheW.

Each receptor can be either active or inactive, depending on

ligand binding and the methylation level. The active receptor

activates CheA, eliciting downstream phosphorylation of the

response regulator CheY. Phosphorylated CheY (CheY-P) is

dephosphorylated by CheZ. Receptors can be methylated by the

methyltransferase CheR and demethylated by the methylesterase

CheB, and methylation regulates the receptor activity. The

methylation of receptors provides a sort of chemical ‘memory’,

which allows the cell to compare the current ligand concentration

with the past. Phosphorylation of CheB by CheA provides a

negative feedback to the system, although it appears nonessential

for exact adaptation [10,11]. Phosphorylated molecules of CheY-P

freely diffuse through the cytoplasm and bind to the flagellar

motor protein FliM, causing motors to switch from CCW to CW
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rotation. Switching of the motors to the CW state results in a

tumble and reorientation, whereas the CCW rotation corresponds

to straight runs.

A number of mathematical models of chemotaxis have been

proposed [10,12–18], including two recent programs that simulate

cell motion along with the intracellular pathway dynamics:

AgentCell [19], which is based on the StochSim pathway

simulator [20–22], and E. solo [23], which is based on the BCT

simulator [24–26]. The current version of AgentCell (2.0)

simulates the whole pathway stochastically, making it thus

computationally very expensive. The E. solo program simulates

the pathway using about 90 ordinary differential equations

(ODEs). However, simulation of large bacterial populations on

long time scales requires computationally cheaper models.

It was recently shown using fluorescence resonance energy

transfer (FRET) that the amplitude of the initial CheY-P response

can be described by a Hill function of a relative change in receptor

occupancy during stepwise ligand stimulation [27]. Recent

modeling efforts [12,28,29] show that a mixed-cluster Monod-

Wyman-Changeux (MWC) model of strongly coupled receptors is

consistent with the FRET data, and can account for the observed

sensitivity and precise adaptation over a wide range of ligand

concentrations. The amplitude of pathway excitation can therefore

be determined using several algebraic equations describing the free

energy of the cluster.

In our model (Figure 1A), we employed the MWC model for a

mixed receptor cluster [12] with a mean-field approximation for

adaptation kinetics [30]. Due to its hybrid approach, the model

allowed us to reduce the computational costs dramatically, while

keeping the main quantitative characteristics of the cell response

(methylation level, relative CheY-P concentration, motor bias)

consistent with experimental data. To couple the bias of individual

motors to the probability of tumbling, we applied a voting model

for several independent motors, based on detailed experimental

investigation of tumbling mechanics [31].

These components were combined into a new simulator for E.

coli chemotaxis—RapidCell, which uses a hybrid pathway

simulation instead of a fully stochastic or ODE approach, and is

therefore computationally cheap. This allows the simulation of

populations of 104–105 cells on a time scale of hours using a

desktop computer.

To study the dependence of chemotaxis on gradient strength in a

systematic way, we propose a new—constant-activity—gradient

which ensures a constant average CheY-P level and cellular drift

velocity along the gradient, in contrast to commonly used Gaussian

and linear gradients. We show that the MWC model gives an

approximately constant response over a wide range of ligand

concentrations. Though purely theoretical, such a gradient serves as

a perfect in silico assay to study the chemotactic properties of cells.

The chemotaxis pathway is robust to changes in network

parameters and intracellular protein concentrations [10,15,32].

This enables efficient chemotaxis with varying levels of intracel-

lular components and under perturbations from extracellular

environment. However, adaptation time is not robust

[10,11,33,34] and varies even among genetically identical cells

in a population because of stochastic variations in gene expression

and low copy numbers of the adaptation enzymes.

Our simulations predict that in liquid media for any given

gradient steepness, there is an optimal adaptation rate that

provides the highest cellular drift velocity. We suggest a simple

mechanism for this phenomenon: the optimal rate of adaptation is

observed in a narrow range of kinase activity, where the average

CheY-P level fits the operating range of the flagellar motor. In this

range, the relation between CheY-P and motor bias is approxi-

mately linear, and cells perform chemotaxis with the highest

efficiency.

The situation is different for cells swimming in agar. Here, the

optimal range of motor bias appears to be very narrow and just

slightly higher than in the non-stimulated state. Due to the porous

structure of agar, cells with a higher CCW motor bias stay trapped

for a longer time, thus negating advantage in chemotactic

efficiency. This leads to a strong selection against cells which

adapt slowly and therefore tend to overreact to chemotactic

stimulation. On the other hand, chemotaxis in agar poses only a

weak selection against cells with a high adaptation rate.

Our simulations suggest that in liquid media the variability in

protein levels among cells may be advantageous for bacterial

populations on a long time scales. In a nonmixed environment

with different food sources and gradient intensities, such variability

can help the whole population to respond to different gradients

more readily, due to positive selection of subpopulations with

optimal levels of adaptation enzymes in a given gradient.

Methods

Model of E. coli Signaling Network
MWC model. We applied the recently proposed MWC

model for a mixed receptor cluster [12,28,29], which accounts

for the observed experimental dose-response curves of adapted

cells measured by in vivo FRET [27]. An individual receptor

homodimer of type r (r = a and s for Tar and Tsr, respectively) is

described as a two-state receptor, being either ‘on’ or ‘off’.

Receptors form clusters with all receptors in a cluster either ‘on’ or

‘off’ together. The clusters are composed of mixtures of Tar and

Tsr receptors. At equilibrium, the probability that a cluster will be

active is [12]:

A~
1

1zeF
ð1Þ

where F = Fon–Foff, and Fon/off is the free energy of the cluster to be

on/off as a whole. For a cluster composed of na Tar and ns Tsr

Author Summary

Chemotaxis plays an important role in bacterial lifestyle,
providing bacteria with the ability to actively search for an
optimal growth environment. The chemotaxis system is
likely to be highly optimized, because on the evolutionary
time scale even a modest enhancement of its efficiency
can give cells a large competitive advantage. In this study,
we use up-to-date experimental and modeling information
to construct a new computational model of chemotactic E.
coli and implement it in a computationally efficient way to
simulate large bacterial populations. Our simulations are
performed in a new type of attractant gradient that
ensures a constant level of chemotactic excitation at any
position. We show that optimal chemotactic movement in
a gradient results from a fine balance between excitation
and adaptation. As a consequence, steeper gradients
require higher optimal rates of adaptation. Simulations
demonstrate that the observed intercellular variability of
adaptation times, which is caused by gene expression
noise, may play a positive role for the bacterial population
as a whole, by allowing its subpopulations to be optimally
tactic in gradients of different strengths. We further show
that optimal chemotactic properties in a porous medium
(agar) are different from those in a liquid.

RapidCell
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receptors, the total free-energy difference is, in the mean-field

approximation, F = nafa(m)+nsfs(m), which is the sum of the

individual free-energy differences between the two receptor states

fr mð Þ~f on
r mð Þ{f off

r ~er mð Þzlog
1z S½ �

�
Koff

r

1z S½ �
�

Kon
r

 !
ð2Þ

where [S] is the ligand concentration, K
on=off
r is the dissociation

constant for the ligand in the on and off state, respectively. The

methylation state of the receptor enters via the ‘offset energy’ er(m).

The model can also be generalized for binding multiple types of

ligand [12,28].

Adaptation model. Adaptation is modeled according to the

mean-field approximation of the assistance-neighborhood (AN)

model [12,30]. Both CheR and CheB are assumed to bind

receptors independent of their activity. A bound CheR (CheB) can

(de-)methylate any inactive (active) receptor within the AN. Each

bound CheR adds methyl groups at a rate a(12A), and each

bound CheB removes methyl groups at a rate bA. Under these

assumptions, the kinetics in the AN model are given by

dm

dt
~a 1{Að Þ CheR½ � MCP½ �

KRz MCP½ �{bA CheB½ � MCP½ �
KBz MCP½ � ð3Þ

We further assume that both enzymes work at saturation:

dm

dt
&a 1{Að Þ CheR½ �{bA CheB½ � ð4Þ

Note that this equation does not imply a first-order reaction

mechanism between the adaptation enzymes and receptors—the

enzymes work in the zero-order regime. The linear products

a(12A)[CheR] (bA[CheB]) mean that a bound CheR (CheB) can

only act if the receptor cluster is inactive (active), with probability

(12A) and A, respectively.

We further define the relative adaptation rate k:

dm

dt
~k a CheR½ � 1{Að Þ{b CheB½ �Að Þ:kV ð5Þ

The parameter k indicates the adaptation rate relative to the wild-

type adaptation rate V. In the cells with normal steady-state

activity (A* = 1/3), the rates and concentrations of the adaptation

enzymes are related through b[CheB] = 2a[CheR]. In this work we

assume that reaction rates a and b remain unchanged, and the

variability in adaptation rate k is caused by variability in

[CheR,CheB], provided that they change in a coordinated

manner with the fixed ratio: [CheR]/[CheB] = 0.16/0.28 [35].

The latter ODE for methylation is integrated using the Euler

method, so that the average methylation level evolves in time as

m tzDtð Þ~m tð ÞzkVDt ð6Þ

To achieve high computational efficiency in the model, we

assumed that the average methylation level m is a continuously

changing variable within the interval [0,8], with linear interpola-

tion between the key offset energies: er(0), 1.0; er(1), 0.5; er(2), 0.0;

er(3), 20.3; er(4), 20.6; er(5), 20.85; er(6), 21.1; er(7), 22.0; er(8),

23.0, according to [12,30].

Kinase activity. CheA kinase activity is assumed to be equal

to the activity of the receptor complex (A). The differential

equation for CheY-P is [32]

dYp

dt
~kY Ap Y T{Yp

� �
{kZYpZ{cY Yp ð7Þ

Here Yp is [CheY-P], YT — total [CheY], ZT — total [CheZ], Ap

— active CheA, and ky = 100 mM21 s21, kZ = 30/[CheZ]s21,

cY = 0.1 are the rate constants according to [32,36,37]. The rate

of phosphotransfer from active CheA to CheY is much faster than

the rate of CheA autophosphorylation (Table S1). Therefore, the

Figure 1. Model of chemotactic E. coli. (A) Scheme of the hybrid model. The activity of the receptor cluster depends on the local ligand
concentration and the methylation level according to the MWC model. Methylation (red arrow) and demethylation (blue arrow) are performed by
CheR and CheB. The phosphate group is transferred from active CheA to the response regulator CheY (black arrow). The concentration of CheY-P
modulates the motor bias of 5 independent motors (yellow arrows), and their collective behavior makes the cell run or tumble. Ligand binding,
receptors cluster switching, CheY phosphorylation and motor switching are considered to be in rapid equilibrium and are described by algebraic
equations, while the methylation and demethylation kinetics are relatively slow and simulated using an ODE. Motor switching is simulated
stochastically. (B) The model reproduces the swimming of E. coli cells up gradients of attractants, taking into account the effect of rotational diffusion.
A typical path of a swimming virtual cell is shown in 2D space, with the relative time course shown along the Z axis, demonstrating how the cell finds
the maximum attractant concentration and stays in its vicinity. The attractant concentration profile is overlayed.
doi:10.1371/journal.pcbi.1000242.g001

RapidCell

PLoS Computational Biology | www.ploscompbiol.org 3 December 2008 | Volume 4 | Issue 12 | e1000242



concentration of CheY-P is obtained as a function of active CheA

from the steady-state equation:

Yp~
kY ApY T

kY ApzkZZzcY

ð8Þ

In relative units, CheY-P½ �~3 kY ksA
kY ksAzkZZzcY

, where ks = 0.45 is a

scaling coefficient. The relative [CheY-P] = 0,1,3 correspond to

fully inactive, adapted and fully active cluster, respectively. The

absolute concentration relates to the relative as [CheY-

P]abs = 3.1[CheY-P] (mM), following [38].

CheB phosphorylation. To study the effect of kinase-

dependent CheB phosphorylation, we assumed that the

concentration of phosphorylated (active) CheB follows the

steady-state equation [15,32]:

CheB½ �~ CheB½ �tot

A

Azk0:5
ð9Þ

where [CheB]tot is the total concentration of CheB (relative), and A

is the kinase activity. In the steady state A�~ 1
3

we assumed that

100%, 50%, or 25% of CheB can be phosphorylated,

corresponding to [CheB]tot = 1,2,4 and k0:5~0, 1
3

,1, respectively.

Note that at maximum kinase activity A = 1, the active [CheB]

increases 1, 1.5 and 2 times compared to [CheR]; at steady state

A~ 1
3

both enzymes have equal levels, whereas at positive

chemotactic signal Av
1
3

[CheB] is equal to [CheR] (k0.5 = 0) or

lower than [CheR] (k0:5~
1
3

,1).

Time-scale separation. We assume that the rates of ligand

binding tl, rates of receptor-cluster conformational changes tk and

receptor covalent modification tm are well separated in scales:

tl%tk%tm. On our scale (,1 s) the reactions of CheA

autophosphorylation, phosphotransfer from CheA to CheY and

CheB can be described as a rapid equilibrium state through

algebraic equations. The slowest reactions—methylation by CheR

and demethylation by CheB—are described through an ODE to

reproduce the time scales of seconds and minutes required for

adaptation. Table S1 shows the comparative rates of the main

reactions.

Model verification. A summary of the parameters used in

the model is given in Table 1, and a summary of models and

assumptions is shown in Table 2. Along the lines of the MWC

model for a mixed receptor cluster [12], we model a cluster of 18

receptors, composed of 6 Tar and 12 Tsr receptors. The catalytic

rates a and b were chosen to achieve the proper time scale of

adaptation according to in vivo FRET dose-response curves.

As shown previously in [12,29,39], the MWC model for a mixed

receptor cluster correctly reproduces the in vivo FRET response

amplitudes to step-wise addition and removal of MeAsp [27,40].

We also compare our model output with the published FRET

response (Figure S1A), and show that the simulation is in good

agreement with experiment, both for the amplitude and the

duration of the chemotactic response. However, the steepness of

the adaptation curve after attractant removal can only be roughly

described by the existing model of CheB activity, a deficiency

which needs to be addressed for more precise modeling in future.

The spatially extended StochSim model gives lower response

amplitudes compared to FRET experiments [14]. Comparison of

RapidCell and StochSim responses to addition and removal of Asp

is shown in Figure S1B. The adaptation rate of StochSim seems

very high compared to FRET experiments and RapidCell

simulations (k = 8 times higher than the wild-type rate), which

suggests that RapidCell will be much more sensitive to gradients

than AgentCell [19].

RapidCell also reproduces experimental data on tethered cell

stimulation with pulse and step changes of Asp concentration [41]

(Figure S2A and S2B). The adaptation times after a step increase

of a-methylaspartate (MeAsp) concentration over three orders of

magnitude agree with experimental data reported in [33] (Figure

S2C).

Model of E. coli Motion
During a run, the cell is assumed to move with a constant speed

v = 20 mm/s, while the direction of motion is affected by rotational

diffusion [7,42]. After each time step, the running direction is

Table 1. Parameters used in RapidCell.

Parameter Value Reference

Kon
a 12 mM Tar to Asp [21]

Koff
a

1.7 mM Tar to Asp [21]

K*(KD) 4.52 mM Tar to Asp [14], this work

Kon
s 106 mM Tsr to (Me-)Asp [12,29,30]

Koff
s

100 mM Tsr to (Me-)Asp [12,29,30]

na 6 [12]

ns 12 [12]

[CheR] 0.16 mM wild-type level [35]

[CheB] 0.28 mM wild-type level [35]

a 0.0625 this work

b 0.0714 this work

[CheY]tot 9.7 mM [35]

A* 1/3 [12,30]

CCW mb0 0.65 [38,41]

H 10.3 [38]

v 20 mm s21 [38]

Dr 0.062 rad2 s21 [7,42]

Dt 0.01 s this work

doi:10.1371/journal.pcbi.1000242.t001

Table 2. Models used in RapidCell.

Model Reference

Receptor free energy: fr mð Þ~f on
r mð Þ{f off

r

f on
r mð Þ~er mð Þ

f off
r ~log

1z S½ �
�

Koff
r

1z S½ �
�

Kon
r

 !
[12,28–30]

Cluster free energy, in the mean-field approximation:
F = nafa(m)+nsfs(m)

[12,29]

Cluster activity: A~
1

1zeF

[12,28–30]

Rate of receptor methylation, AN-model at saturation:
dm

dt
~a 1{Að Þ CheR½ �{bA CheB½ �

[12,30]

Steady-state CheY-P concentration:

CheY-P½ �~3
kY ksA

kY ksAzkZZzcY

[32]

CCW motor bias: mb = (1+(1/mb021)(CheYp)H)21 [38,41]

doi:10.1371/journal.pcbi.1000242.t002
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changed by adding a stochastic component with normal

distribution N m,sð Þ~N 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt
p� �

and diffusion coefficient

Dr = 0.062 rad2 s21 [42].
Motor switching. The relative concentration of the response

regulator [CheY-P] is converted into motor bias using a Hill

function [38] (Table 2). Motor bias is the mean fraction of CCW

rotation time for a motor: mb = Tccw/(Tccw+Tcw), where Tccw and

Tcw are the means of exponentially distributed CCW and CW

intervals, respectively. The equation

lforw~1=Tccw~T{1
cw mb CheYpð Þð Þ{1

{1 ð10Þ

gives the frequency of the Poisson process of CCWRCW motor

switching. The frequency of reverse switching CWRCCW is

lrev = 1/Tcw. After each time step Dt, the motor can switch its

direction from the present state, according to the current switching

frequency lforw(rev), with probability Pforw(rev) = lforw(rev)Dt.
Runs and tumbles. Run and tumble events include the

complex interplay of filaments in a bundle, the details of which

have been investigated experimentally [31,43]. To simulate the

run and tumble behavior of a cell with several motors (N = 3–7) we

consider the voting model, where the majority of the motors

determines the cellular behavior.

Model of voting motors. The cell has N = 5 motors switching

independently, and the state of the cell is determined according to

a voting model [13,31,44]. The cell switches from ‘Run’ to

‘Tumble’, if at least 3 of its 5 motors rotate CW, and from

‘Tumble’ to ‘Run’, if at least 3 of the 5 rotate CCW. The choice of

N = 5 is arbitrary, and similar results are obtained for N = 3,7

under the condition of majority voting.

For model validation, simulations of cells with N = 3,5,7 motors

were carried out (Table 3). The simulated run times (1.04–1.11 s)

agree with the experimental value of 1.2461.16 s [45]. The

simulated tumble times (0.26–0.44 s) appear higher than the

measured 0.1460.08 s [7,31]. However, the latter study [31]

shows that the full tumble time, from bundle breaking in the old

run to bundle consolidation in the new is 0.4360.27 s. This

estimate of tumble time reflects not only cell reorientation, but also

the interplay of flagella and the resulting drop in cell speed, and

the voting model reflects specifically this kind of tumble time

estimate. The model with 5 motors is used in the following as

default.

Tumbling angle. The tumbling angle is distributed according

to the probability density function f(H) = 0.5(1+cosH)sinH,

0,H,p [46,47], with M(H) = 67.5u which is close to the

experimental measurement of 68u [7], and the corresponding

shape of the function (Figure S3).

Model of the Environment
The virtual cells are swimming in a 2D environment with a

predefined attractant concentration field S(x, y, t). The domain

geometry is either rectangular or circular, with reflecting walls.

The simulation time was chosen to be short enough to avoid

boundary effects. The rectangular domain is within (0, xmax)6
(0, ymax), and the circular domain within (0, rmax), with xmax = ymax =

2rmax = 20 mm.

The constant-activity gradient. The gradients used in

chemotaxis modeling are usually linear, Gaussian or exponential

[19,23]. However, in these gradients the signal is non-constant,

which means it is strong at low attractant concentrations, and

weak at high concentrations due to receptors saturation. Such a

non-uniform distribution of the signal makes it difficult to estimate

chemotactic efficiency over long time intervals—cells soon become

‘blind’ because receptors are saturated, and chemotactic drift

decreases.

According to the MWC model, an increase in ligand

concentration DS causes an initial rise in receptor free-energy

difference

Df ~log 1z
DS

SzKoff

� �
{log 1z

DS

SzKon

� �
ð11Þ

Using the Taylor-series approximation,

Df&
DS

SzKoff
{

DS

SzKon
ð12Þ

leads us to the following approximation for free energy per

concentration change:

Df ~DS
Kon{Koff

SzKonð Þ SzKoffð Þ ð13Þ

Simplified solution. The denominator in Eqn. 13 can be

simplified by assuming

SzKonð Þ SzKoff
� �

& SzK�ð Þ2 ð14Þ

and the unknown K* can be found from equation

SzKonð Þ SzKoff
� �

~ SzK�ð Þ2 ð15Þ

S2zSKonzSKoff zKonKoff ~S2z2SK�z K�ð Þ2 ð16Þ

S KonzKoff
� �

zKonKoff ~2SK�z K�ð Þ2: ð17Þ

which gives two alternative estimates for K*:K�~ KonzKoff

2
and

K�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KonKoff
p

, i.e. the arithmetic and geometric means of Kon

and Koff.

At zero or relatively low ligand concentrations, the geometric

mean has a high impact in Eqn. 17, and is preferable as an

estimate. Indeed, in earlier work it was earlier referred to as the

apparent dissociation constant KD of ligand binding [14].

However, at high concentrations, the arithmetic mean will have

a higher impact in Eqn. 17, so it can be used as an alternative

estimate. Our simulations indicate that within four orders of

aspartate concentration the geometric mean serves as the best

estimate of K* (Figure S4).

Table 3. Simulated run and tumble times for cells with
different number of motors. Parameters: Tccw = 1.33 s,
Tcw = 0.72 s, mb = 0.65, n = 10000.

N Motors Voting Threshold Trun Ttumble

3 2 1.11 0.44

5 3 1.09 0.33

7 4 1.04 0.26

doi:10.1371/journal.pcbi.1000242.t003

RapidCell
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Taken together, the energy difference is approximated by

DS Kon{Koff

SzK�ð Þ2 . The differential equation

S’ Kon{Koff
� �

KDzSð Þ2
~C ð18Þ

describes the unknown function S(x), which will give the ‘constant-

activity’ gradient shape. The function S(x) will give a constant

change of energy difference C per length unit dx of cellular path

along the gradient. In other words, such a shape of gradient will

give a constant cluster activity at any ligand concentration.

Within the accuracy of a constant term, the latter differential

equation was previously used by Block and Berg in [48], who

derived it assuming that receptor occupancy is proportional to S/

(S+KD), with a single KD for active and inactive receptors. The

authors assumed that the chemotactic response is proportional to

the change in receptor occupancy [27,48]. They simplified this

equation to reduce the variability of the 1

KDzSð Þ2 term, leading to

the exponential form of the solution.

However, we can solve Eqn. 18 analytically:

S xð Þ~ Kon{Koff
� � 1

C C1{xð Þ

� �
{K� ð19Þ

where C1~
Kon{Koffð Þ

C S 0ð Þ{K�ð Þ is the constant of integration, determined

by the initial condition S(0). The condition S(0) = 0 gives the

following chemoattractant function:

S xð Þ~K�
Cx

Kon{Koff

K� {Cx
ð20Þ

Constant-activity gradient of Asp. In the case of aspartate

(Kon = 12, Koff = 1.7, K* = 4.52 mM), the S(x) function reads:

S xð Þ~K�
Cx

2:28{Cx
ð21Þ

Our simulations demonstrate that this form of constant-activity

Asp gradient gives a constant cluster-activity response with

reasonably good precision (see Results).

Gradient steepness. A cell swimming with speed v along the

axis X from the point (x = 0) senses the monotonically increasing

function S(x) and a constant change in receptor free energy

dE=dt~Cdx=dt~Cv ð22Þ

per second, which is defined as the steepness of the constant-activity

gradient.

Limiting condition. Note the necessary condition

(K
on{Koff

K� {Cxw0) for Eqn. 20 to avoid singularity and negative

concentrations. It sets the upper limit CvCmax~
Kon{Koff

K�
1

xmax
for

the gradient steepness C within the domain (0, xmax). For example,

within a domain of size xmax = 10 mm, the maximum steepness of a

gradient of aspartate is Cv = 2.28/xmaxv = 4.5661023.

Constant-activity and exponential ramps. In contrast to

spatial gradients, which direct the cellular motility in a certain

direction, time ramps are used to study the chemotactic response

of tethered cells [41,48].

The constant-activity ramp of Asp was simulated according to

Eqn. 20:

S tð Þ~K�
Ct

Kon{Koff

K� {Ct
, C~

Kon{Koff

K�
:0:9999=Tmax ð23Þ

with simulation time Tmax = 1000 seconds. The resulting value of C

gives the maximum ligand concentration S(Tmax) = 9999K*.

The exponential ramp was simulated as:

Se tð Þ~0:31KDexp 0:005 t{200ð Þð Þ, t§200ð Þ ð24Þ

after 200 s of adaptation to the initial stimulus 0.31KD, following

the model and experiments of [48]. The concentration profiles are

shown in Figure 2A.
Constant-activity gradient simulations. The constant-

activity gradient (Eqn. 20) has an intensity C~ Kon{Koff

K�
0:999
xmax

, and

the domain has a rectangular (0, xmax)6(0, ymax) or circular (0, rmax)

shape. The gradient has its minimum S = 0 at x = 0 (or r = 0) and

reaches its maximum S = 999K* at x = xmax (or r = rmax) (Figure 3A).

In most simulations we used the circular gradient S(r), and the cells

start swimming in random directions from the center r = 0.
Comparative set of constant-activity gradients (N1, N2,

N3). The circular constant-activity gradient (rmax = 10 mm) has

steepness dE/dt = Cv = 4.5661023. A set of other constant-activity

gradients was obtained by changing the steepness by a factor of

two: (1.14, 2.28, 4.56, 9.11, 18.22, 36.44, 72.88)61023. We

further compare the chemotactic efficiency in three of them with

moderate steepness (2.28, 4.56, 9.11)61023, and designate them

as constant-activity gradients N1, N2 and N3. In other words, they

are radially symmetric and have the form

S rð Þ~K�
Cr

Kon{Koff

K� {Cr
, C~

Kon{Koff

K�
: 0:999

rmax

ð25Þ

with rmax = 20,10,5 mm for N1, N2 and N3, respectively.
Linear gradient. We use a linear gradient S(x) = Kx,

xM(0,10 mm) with coefficient K = 1028 M mm21 = 1022 mM mm21

(Figure 3A).
Gaussian gradient. Another form of gradient we used is

Gaussian S(x) = 10K exp(2(x210)2/(2s2)), with shape parameter

s = 3.33 and the same coefficient K = 1022 mM mm21 (Figure 3A).
Chemotactic efficiency. Chemotactic efficiency was

estimated as the average drift velocity of a cell population,

measured between 200 and 500 s of simulation time, in the three

basic constant-activity gradients N1, N2, N3. As shown in Figure 4,

within this interval the average CheY-P level of cells is constant,

and the drift velocity can be accurately measured by a linear fit.
Population behavior. The population behavior in the

absence of attractant fits the diffusion equation Ær2æ = 4Dt.

Simulations give a diffusion coefficient D = 2.5661026 cm2 s21,

in agreement with the experimental D = 2.5–3.861026 cm2 s21

(see [45] and the review of other published values therein).

Program RapidCell
The output file of the RapidCell program contains the key

characteristics of the intracellular state (CheY-P level, methylation

state, motor bias) and the geometric characteristics of cell motion

(position and orientation). The model was implemented using Java

classes similar to AgentCell [19], but with simplified architecture.

The algorithm is implemented as a discrete-time Monte Carlo

scheme with time step Dt = 0.01 s. For random-number genera-

tion, we used external Java libraries [49,50]. The code was written

RapidCell
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using Eclipse SDK (www.eclipse.org). The output data were

analyzed with MATLAB (The MathWorks, MA).

Computational costs. Extensive computations of the

chemotaxis signaling pathway are avoided in RapidCell due to

the hybrid description of the signaling network. This leads to a

dramatic drop in computational costs. For example, simulation of

1000 s long walk of a single cell in a ligand gradient takes only 1 s

to run in RapidCell, compared to 133 minutes for AgentCell

(based on StochSim without receptor coupling), while the spatially

extended version of StochSim requires several days on the same

hardware (Intel Pentium 4 CPU 2.40 GHz, RAM 1 GB, OS

Linux Suse 10.2). Simulation of 1000 s long series of step responses

with the BCT program—the core simulator of E. solo—takes 100 s

under similar conditions (PowerPC G5, 1.8 GHz, RAM 1 GB,

MacOS X).

RapidCell is platform-independent and runs as a console

application. Its implementation provides a computational speedup

of 8000 times compared to AgentCell (based on StochSim without

receptor coupling), and approximately 100 times compared to

BCT. It enables simulations of up to 100,000 cells to be completed

within a time frame of hours using a desktop computer with

comparable CPU power and RAM to those mentioned above.

Experimental Methods
Strains and plasmids. E.coli strain RP2867 (tap cheR cheB) is

a derivative of RP437 [51]. Plasmid pVS571 encodes cheR and

cheB-eyfp as parts of one operon under control of a pBAD promoter

and native ribosome binding sites. The insert cheR cheB-eyfp was

recloned with SacI and XbaI from the plasmid pVS145 which was

constructed by cloning a PCR-amplified fragment containing cheR

upstream of cheB-eyfp in the pVS138 plasmid [52] using a SacI site

introduced by the upstream PCR primer and a HindIII site in cheB.

Swarm experiments in soft agar plates. Tryptone-broth

(TB; 1% tryptone, 0.5% NaCl) soft agar plates were prepared by

supplementing TB with 0.27% agar (Applichem), 34 mg ml21

chloramphenicol, and indicated concentrations of arabinose. Cells

Figure 3. Simulations of chemotaxis in different gradients. (A) Concentration profiles of the gradients used in the simulations. (B)
Chemotactic drift of cells in these gradients. The average position ÆXæ of the cells is shown as a function of time. A population of 2000 cells starts
moving from the left wall (x0 = 10 mm, y0 randomly distributed in (0, ymax)), and swims for 2000 s. (C) Relative CheY-P concentration as a function of
time, averaged over 2000 cells in the same gradients. The gray line indicates the fully adapted state [CheY-P] = 1.0 in a medium without attractant.
Relative adaptation rate k = 1. All cellular parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g003

Figure 2. Simulation of the MWC model response to the constant-activity and exponential ramps of aspartate. (A) The concentration
profiles of constant-activity and exponential ramps of aspartate, relative to KD = 4.52 mM (logarithmic scale). (B) The response of the MWC model to
the applied constant-activity and exponential ramps. Upon stimulation with the constant-activity ramp, the [CheY-P] rapidly goes down during initial
excitation—the single non-smooth point on the slope is the result of the piece-wise linearity of the methylation energy function. The constant-
activity ramp produces a long flat response up to a concentration of 100KD, above which Tsr receptors become sensitive to the ligand and the cluster
activity falls. Upon stimulation with the exponential ramp, the cell initially adapts to the minimum concentration Cmin = 0.31KD, and after 200 s the
exponential ramp begins. After 700 s, adaptation overcomes excitation and [CheY-P] slowly returns to the steady state. Relative adaptation rate k = 1.
doi:10.1371/journal.pcbi.1000242.g002
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were inoculated from fresh colonies grown on LB agar plates.

Swarm assays were performed at 34uC for 10 hours or at 30uC for

17 hours. Following incubation, photographs of plates were taken

using a Canon EOS 300 D camera, and subsequently analyzed

with ImageJ (Wayne Rasband, NIH) to determine the diameter of

the swarm rings.

Quantification of gene expression. For quantification of

mean expression levels of the fluorescent reporter protein CheB-

YFP, cells were grown in liquid TB medium supplemented with

34 mg ml21 chloramphenicol, and indicated concentrations of

arabinose. Fluorescence was determined in a population of cells

using flow cytometry on a FACScan (BD Biosciences) equipped

with a 488 nm argon laser [32,52]. The autofluorescence

background was measured for control cells and subtracted from

all values. Single-cell levels of fluorescent reporter proteins in

swarm assays were measured by fluorescence imaging on a Zeiss

AxioImager microscope and quantified with an automated

custom-written ImageJ plugin [52].

To calibrate the fluorescence intensity in FACS and imaging

data, a PerkinElmer LS55 luminescence spectrometer was used to

determine the absolute number of reporter proteins in control

cells. The cells were sonicated with a Branson Sonifier 450 until

complete lysis was achieved and YFP fluorescence was measured

at 510 nm excitation and 560 nm emission. Sonicated cells

without a fluorescence reporter were used as a negative control,

and their autofluorescence was subtracted from all values as

background. A solution of purified YFP of known concentration,

determined by Bradford assay and absorbance measurement by a

Specord205 spectrophotometer (Analytik Jena), was used to

produce a calibration curve, relating fluorescence to molecule

number. Cell number in 1 ml culture was counted using a

Neubauer counting chamber, and cell volume was determined by

measuring cell width and length by imaging. These values from

one culture were used to provide a conversion factor from FACS

or imaging values to single-cell protein levels.

Results

Chemotaxis in Different Gradients
To test our model (Figure 1A), we compared cellular behavior

in the proposed universal constant-activity gradient with other

gradients, observing the single cell swimming (Figure 1B) and the

behavior of large populations. The key characteristics we consider

are the CheY-P concentration and the drift velocity along the

gradient.

Response of the MWC model to ramps. It was previously

shown that tethered cells respond with constant strength to an

exponentially rising gradient of MeAsp, in the range between 0.31

and 3.2KD [48]. We simulated the response of the MWC model to

increasing ramps of Asp in the exponential and constant-activity

form (Figure 2A). Indeed, the exponential ramp gives nearly

constant response between 0.5 and 3.0K*, consistent with the

model of [48].

However, the constant-activity ramp results in a chemotactic

response that remains approximately constant over three orders of

ligand concentration—between 0.1 and 100KD (Figure 2B). If Tsr

is non-sensitive to the ligand, constant activity remains up to

1000KD. However, since Tsr receptors are able to respond to

aspartate non-specifically, the activity drops to zero, as previously

shown for a mixed-receptor cluster [12,27].

Chemotactic efficiency of cell populations in different

gradients. To study chemotactic efficiency in common

gradients that arise from general diffusion models, we simulated

chemotactic motility in linear and Gaussian gradients (Figure 3A),

and compared them with the constant-activity gradient. The

chemotactic efficiency was estimated by the average drift velocities

of populations consisting of 1000 identical cells. In Figure 3B, one

can see that in the linear and Gaussian gradients the drift velocity

decays after about 400 and 800 s, respectively, indicating that cells

loose sensitivity due to receptor saturation. In contrast, the

constant-activity gradient keeps the drift velocity constant at any

point (Figure 3B), as expected.

This population behavior can be explained by the intracellular

CheY-P levels of the cells in these gradients. Gaussian and linear

gradients result in a strong excitation at low attractant concentra-

tions, and poor excitation at high concentrations (Figure 3B). In

contrast, the constant-activity gradient produces an approximately

constant level of CheY phosphorylation across the cell population

(Figure 3C). These two unique properties of the constant-activity

gradient—constant drift velocity and constant average CheY-P—

favor this gradient as a reliable in silico assay to study the

chemotactic motility of cells.

Average CheY-P level in the constant-activity

gradients. Simulation of cell populations in the constant-

activity gradients N1, N2 and N3 demonstrate that the average

CheY-P level depends on gradient steepness and remains stable

Figure 4. Average CheY-P levels of 5000 cells swimming in the constant-activity gradients N1 (blue), N2 (green) and N3 (red).
Relative adaptation rate k = 1. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g004
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over long time intervals (Figure 4). These three gradients were

used further, as default, to measure chemotactic efficiency under

different test conditions.

Optimal Adaptation Rates in a Liquid Medium
We used the constant-activity gradient to study the effect of

adaptation rate on chemotactic efficiency. For this purpose, we

simulated homogeneous populations consisting of cells with the

same adaptation rate. In a fixed constant-activity gradient, the

population drift velocity depends on adaptation rate in a unimodal

manner (Figure 5A). A zero level of adaptation enzymes (non-

adapting cells) results in a low drift velocity, though it is clearly

distinguishable from non-chemotactic behavior. A proportional

increase of adaptation rate improves cellular drift velocity up to a

certain maximum, after which it slowly declines again. Extremely

high adaptation rates, more than 100 times higher than wild-type,

make the cells non-chemotactic (Figure 5A).

To study chemotactic efficiency as a function of gradient

steepness, cells were simulated in six constant-activity gradients

with the steepness changing 64-fold, from 1.14 to 72.8861023,

(Figure 5B). In each gradient, we determined the optimal

adaptation rate, at which cellular drift velocity reaches its

maximum. The simulated drift velocities are in the same range

as those measured experimentally for E. coli in steep gradients

(7 mm s21) [53]. Our simulations indicate that experimental cell-

drift velocities are inlikely to exceed 15 mm s21, corresponding to

an extremely steep and short-scale gradient. In very weak

gradients, the drift velocity can be as low as 2.5 mm s21, still

distinguishable from the non-chemotactic cellular drift

(0.8 mm s21). Interestingly, we observed that the optimal adapta-

tion rate rises in proportion with the gradient steepness (Figure 5B).

To investigate the latter effect in more detail, we varied the

adaptation rate from 0 to 10-fold relative to the wild-type. In

steeper gradients, the optimal adaptation rate is indeed higher

(Figure 6A), and the peak of the drift velocity becomes less sharp.

To find the reason for the observed dependence between the

gradient steepness and optimal adaptation rate, we tracked the

average CheY phosphorylation levels of the virtual cells. As one

can see in Figure 6A and 6B, in all gradients the 90%-intervals

around the velocity peaks correspond to adaptation rate intervals

[0.1,0.5], [0.4,1.5], [1,3], respectively. These three intervals fall

into to the same interval [0.80#CheY-P#0.97], within the error

of estimation. The optimal adaptation rates which give maximal

drift velocities correspond to an average [CheY-P],0.9. In steep

gradients, the profile of average CheY-P flattens, and the optimal

adaptation rate becomes higher (Figure 6B).

The reason why the interval [0.80#CheY-P#0.97] corresponds

to optimal chemotaxis is evident from the profile of motor bias as a

function of CheY-P (Figure 6C). The interval [0.80#CheY-

P#0.97] corresponds to the operating range of the motor

[0.95$mb$0.72], where the dependence between mb and CheY-

P is approximately linear. In this interval, chemotactic behavior is

most efficient in liquid media. The optimal adaptation rate

therefore sets the CheY-P level to fit the motor operating range. In

steep gradients, the adaptation rate must be high enough to

balance the strong excitation and set CheY-P within this optimal

interval. In shallow gradients, adaptation must be slow enough to

allow excitation, otherwise the cells become adapted before they

are able to respond.

Effect of [CheR] to [CheB] Ratio on Chemotactic Efficiency
The effect of varying the [CheR] to [CheB] ratio was studied at

fixed [CheB] in three constant-activity gradients N1, N2, and N3

in a liquid medium. The chemotactic efficiency dramatically

decreases above [CheR] = 1 (Figure 7), because the resulting higher

steady-state CheY-P level produces tumbling behavior. Below

[CheR] = 1, chemotactic efficiency decreases slowly for N3, or goes

up for the N1 and N2 gradients. The latter effect is caused by a

shift of average CheY-P level to the optimal interval, where the

chemotactic sensitivity is the highest due to a more optimal fit to

the motor operating range.

Effect of CheB Phosphorylation on Chemotactic
Efficiency

We have further studied the effect of CheB phosphorylation

feedback on chemotactic efficiency in a liquid medium. Under the

Figure 5. Chemotactic properties of cells at different adaptation rates in constant-activity gradients. (A) Drift velocity of cells in the
constant-activity gradient N2 as a function of adaptation rate. The horizontal axis shows the adaptation rate k relative to the wild type (logarithmic
scale). Gray lines show standard deviations. (B) Maximal drift velocities (black) and the corresponding optimal adaptation rates (blue) as a function of
gradient steepness. The steepness of the constant-activity gradients was changed over a 64-fold range, as described in the section ‘Model of the
environment’.
doi:10.1371/journal.pcbi.1000242.g005
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assumption that [CheR] and [CheB] perfectly match each other

(A* = 1/3), the CheBp-effect is positive when the adaptation rate is

lower than the optimum, and negative when the adaptation rate is

higher, in the given gradient (Figure 8A). This effect is caused by

the reduction of CheB activity relative to CheR, when the kinase

activity A is below the steady-state level (A* = 1/3), as described in

the section ‘Model of E. coli Signaling Network’. The average

CheY-P level is thus shifted up, which results in a positive or

negative effect of CheB phosphorylation, depending on the rate of

adaptation (Figure 8B).

The positive role of phosphorylation can be significantly

increased when the ratio of [CheR] to [CheB] is non-perfect

(Figure 8C). For example, 25%-active CheB can significantly

counteract the strong negative effect of [CheR] = 1.25 in the N3

gradient—the drift velocity rises from 1.8 to 2.8 mm s21 (55%). At

[CheR] = 0.75 the effect is not so dramatic, but remains

significant—the average drift velocities increase by about 10–

15% in all three gradients. This suggests that CheB phosphory-

lation helps to maintain chemotaxis at fluctuating concentrations

of CheR and CheB, when their ratio is not perfect due to gene-

expression noise.

Swarm Plate Simulations
In the swarm assay in soft agar, bacteria consume an attractant,

thereby creating a local gradient, and follow it in the form of a

growing ring [54,55]. We assume that the intensity of the moving

gradient remains constant, and use the constant-activity gradient

as a simple model for the swarm assay simulation. The constant-

activity gradient provides a constant cellular-drift velocity at any

distance from the center of the plate. This property allows us to use

it as a stationary model of the real moving gradient of attractant.

In swarm assays, bacteria move in a labyrinth of agar filaments,

with obstacles and traps along the cell’s path. The cell can

encounter traps during its run, and stays trapped until it makes the

next tumble, as observed by Wolfe and Berg [55]. Therefore, non-

adapting cells and non-tumbling mutants form the smallest rings.

To simulate motility in such a porous medium as agar, we have

introduced a new state of the cell, corresponding to a stop in a trap

Figure 6. Optimal chemotactic behavior at different adaptation rates. (A) Drift velocities of cells as a function of adaptation rate, in the
constant-activity gradients N1 (blue), N2 (green), N3 (red). For each adaptation rate, the drift velocity was estimated from the simulation of 1000 cells,
with standard error of mean 0.05. (B) Average CheY-P levels of cells in the same simulations. Black dots indicate the adaptation rate at which drift
velocity is maximal. Gray rectangles show the intervals of optimal adaptation rates, defined by taking the 90%-interval from the drift velocity
maximum. The width of each rectangle indicates the optimal adaptation-rate interval, and height shows the corresponding CheY-P interval. All three
intervals of adaptation rates fall into the same CheY-P interval: [0.80,0.97], shown by the gray band. (C) The CCW motor bias as a function of CheY-P.
Gray bands indicate the optimal CheY-P interval and the corresponding operating range of the motor. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g006

Figure 7. Effect of variable [CheR] on chemotactic efficiency. The vertical axis shows drift velocities. The level of [CheB] is fixed at the wild-
type value (0.28 mM), while [CheR] is varied relative to wild type (0.16 mM). Note the steep fall in the drift velocities for [CheR].1, where the steady-
state CheY-P produces tumbling behavior.
doi:10.1371/journal.pcbi.1000242.g007
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during a run (Figure 9). The positions of traps are not fixed in

space. Instead, it is assumed that each cell encounters traps in an

exponentially distributed time series, which mimics the random

collisions of the cell with agar filaments. The mean free time

between traps is set to 2.0 s to achieve biologically realistic drift

velocities (about 1 mm s21). While it is trapped, the cell remains

stationary until it makes a tumble, whereupon normal run and

tumble behavior resumes until the next stop occures [55].

Optimal [CheR,CheB] in Agar—Experiments and
Simulations

In our model, we assumed that the levels of the adaptation

enzymes CheR and CheB vary in a coordinated manner, leaving

the [CheR]/[CheB] ratio the same as in the wild type. The ratio of

CheR to CheB can be assumed to remain largely fixed because

their genes are adjacent and transcriptionally coupled in the meche

operon. The adaptation rate in our model is thus proportional to

the level of co-expression of CheR and CheB, which will be further

denoted as [CheR,CheB].

In order to study chemotactic efficiency at different adaptation

rates in agar, we have experimentally measured chemotactic

efficiency on swarm plates. In these experiments, CheR and

CheB-YFP were co-expressed from one operon under control of a

pBAD promoter and native ribosome-binding sites. The pBAD

promoter gives expression levels lower or higher than the wild-type

value, depending on the strength of arabinose induction. Mean

protein levels in the population at a given induction were

determined as described in Experimental Methods.

Experiment and simulations show that cells with [CheR,CheB]

above a certain threshold perform chemotaxis equally efficiently

(Figure 10A and 10B). However, the cells with [CheR,CheB]

below the threshold have severely impaired chemotactic behavior.

According to the simulations, cells with low [CheR,CheB] tend to

run without tumbling and stay trapped most of the time. On the

other hand, cells with extremely high [CheR,CheB] loose their

sensitivity to the gradient and also have poor chemotactic

efficiency (Figure S5).

This suggests a positive selection for cells with optimal

[CheR,CheB] in liquid media—such cells can reach the nutrient

source faster and have more available substrates for growth. In

contrast, swimming in agar poses mainly negative selection—cells

with low [CheR,CheB] are filtered out from the chemotactic

population. The limits of motor bias for optimal chemotaxis in

agar are also different from those in liquid media. As one can see

in Figure 10C, the average CCW motor bias of successful cells is

just slightly higher than the steady-state mb0. Cells with higher

motor bias would drift faster in liquid media, but not in agar,

because the period of time they remain trapped also increases with

CCW motor bias.

Swimming in a Liquid Medium and Agar with a Log-
Normal Distribution of [CheR,CheB]

To model swarm assays more realistically, we simulated cell

populations with a log-normal distribution of [CheR,CheB] values.

The mean (1.6) and standard deviation (0.48) are fitted to reproduce

the variability of adaptation times observed for wild-type cells [33]:

Tad = 3116150 s in response to a 0–1023 M MeAsp step.

The scatter plot of distances travelled by cells along the gradient

N2 in a liquid medium shows that a subpopulation with optimal

[CheR,CheB] levels drifts more rapidly than other cells

(Figure 11A). Simulations in the N3 gradient in agar show that

cells with low [CheR,CheB] levels are hindered by agar traps,

while other cells drift successfully (Figure 11B). In Figure 11C and

11D the same cells are colored from deep blue to red, according to

their [CheR,CheB]. The outer edge of the bacterial ring in a liquid

medium contains many blue cells with [CheR,CheB] between 0.5

and 2. In contrast, the outer edge in the agar contains a uniform

mixture of cells with different [CheR,CheB] levels, while deep blue

cells with low [CheR,CheB] tend to be left behind.

Measurement of [CheR,CheB] in Individual Cells in
Different Parts of Swarm Rings

To confirm that chemotactic cells are selected for their

[CheR,CheB] levels in swarm plates, cells expressing CheR and

CheB-YFP from one operon were taken from two positions in the

swarm ring—at the center and at the outer edge—and protein

levels in individual cells were determined using fluorescence

imaging. The cells collected near the center at a standard agar

concentration (0.27%) have on average lower copy numbers of

adaptation enzymes than cells at the outer edge, confirming the

Figure 8. Effect of CheB phosphorylation on chemotactic efficiency in a liquid medium. (A) Drift velocity as a function of adaptation rate
in the constant-activity gradients N1 (blue), N2 (green), N3 (red). The ratio of [CheR] to [CheB] at steady state is left as in the wild type (0.16/0.28),
ensuring the steady-state activity A* = 1/3 in all cases. Solid lines correspond to cells with 100%-active CheB at steady state, dashed lines - 50%-active,
finely dashed - 25%-active CheB. (B) The average [CheY-P] resulting from the balance between CheR and CheB activity determines the positive or
negative role of CheB phosphorylation. Cells are simulated in the gradient N3, at adaptation rates of 1.0 and 3.0. Kinase-dependent CheB activity
means that CheB works more weakly at A,1/3, and thus the average [CheY-P] is higher than the level obtained for constantly active CheB. Such a
shift improves chemotaxis at low adaptation rates, but reduces it at high rates. The optimal range of CheY-P is shown by the gray band. (C) Drift
velocities at variable [CheR] and variable CheB activity and fixed [CheB] (0.28 mM, wild type). Solid, dashed and finely dashed lines indicate 100%, 50%
and 25% active CheB, respectively. Adaptation rate k = 1, other cell parameters as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g008
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predicted selection against low copy numbers (Figure 12A). As

expected, in the swarm plates with a reduced agar concentration

(0.20%), the difference between center and outer edge is much

smaller (Figure 12B), suggesting that there is no strong selection

against low copy numbers in liquid media. It should be noted that

agar concentrations below 0.20% do not produce a stable gel

structure, and therefore that is probably the most liquid agar that

can be used for swarm plate experiments.

Our simulations and additional experiments with a pTrc

promoter, which gives much higher basal expression level of

Figure 9. Model of motility in a porous medium (agar). A cell encounters traps along its run, and stops in the traps. It stays in the trapped state
until the first tumble occurs, then normal run and tumble behavior resumes. The trap positions are not fixed in the 2D space - instead, it is assumed
that each cell encounters traps in a series of randomly distributed time intervals.
doi:10.1371/journal.pcbi.1000242.g009

Figure 10. Swarm-plate assay at different [CheR,CheB]. (A) Experimentally measured chemotactic efficiency at different expression levels of
the cheR cheB-eyfp operon under the control of a pBAD promoter. The applied arabinose concentrations were 0.0, 0.0005, 0.001, 0.01%, respectively.
The CheB-YFP level reflects the concerted [CheR,CheB-YFP] due to strong translational coupling. For scale conversion, the wild-type level of CheB can
be taken as 240 copies/cell [35]. (B) Simulated chemotactic efficiency as a function of [CheR,CheB]. Cells are simulated in the constant-activity
gradients N1 (blue), N2 (green), N3 (red). The black open circle shows the experimentally observed drift velocity of wild-type cells, estimated from
Figure 4 of [55]. The cross shows the drift velocity of non-adapting cells, from Figure 6 of [55]. The cell parameters are as described in Table 1. (C)
Average motor bias of cells as a function of [CheR,CheB]. The steady-state motor bias is 0.65, with the gray band indicating the region of optimal
motor bias for chemotaxis in agar.
doi:10.1371/journal.pcbi.1000242.g010
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[CheR,CheB], show that very high levels of the adaptation

enzymes, over 20-fold, can again decrease chemotactic efficiency

in agar (Figures S5 and S6).

Discussion

In this paper, we present RapidCell—a model of chemotactic E.

coli, which allows us to study the effect of chemotaxis network

properties on the behavior of large bacterial populations.

RapidCell uses a hybrid model for pathway simulation, with

mixed algebraic and ODE description instead of a fully stochastic

model, AgentCell [19], or a complete system of ordinary

differential equations, E. solo [23]. Our model allowed us to

dramatically decrease in computational costs. Though many

molecular details are skipped or modeled in a rapid-equilibrium

(algebraic) approximation, the key steps of the network are

reproduced in agreement with up-to-date experimental data. In

contrast to detailed single-cell simulation programs which

reproduce the noisy behavior of individual cells [19,56], RapidCell

is aimed at predicting the averaged behavior of bacterial

populations, and to investigate how it is affected by the signaling

network parameters, neglecting the intrinsic noise coming from

molecular reactions. However, artificial sources of noise can be

further added in the deterministic model of the signaling pathway.

In the present version of RapidCell, the noise arises only from

rotational diffusion and stochastic switching of the motors.

For the receptor cluster simulation, we used the mixed-receptor

cluster MWC model [12,28,30], which accounts for the observed

broad range of sensitivity and reproduces the recent in vivo FRET

data [27]. Adaptation is modeled according to the mean-field

approximation of the assistance-neighborhood model, with the

assumption that the average methylation level of multiple

receptors can be represented as a continuous rather than a

discrete variable [30]. In contrast to the other reactions,

methylation and demethylation are relatively slow and therefore

described by an ODE. The ODE is integrated by the first-order

Euler scheme to ensure high computational speed of the program,

while the time step is chosen as 0.01 s to keep the simulation error

low.

Taking into account the available experimental studies on

tumble mechanics [31,57], we use a voting model of run-tumble

switching [13,31,44]. The model is in a good agreement with

experimentally measured run and tumble times. However, more

high-resolution experimental data on the interplay among multiple

Figure 11. Simulation of motility in a liquid medium and agar with a physiological [CheR,CheB] distribution. The distances R travelled
by 104 cells after 1000 s of simulation time in (A) the liquid medium, N2 gradient; (B) agar, N3 gradient. The (x,y)-positions of cells colored from deep
blue to red, according to their [CheR,CheB], are shown in (C) for the liquid medium, (D) for agar. The smallest [CheR,CheB] values correspond to deep
blue, the highest values correspond to red. Note the different scales of the figures. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g011
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flagella during the run and the tumble would be necessary for a

detailed model of run-tumble cellular behavior.

There are several types of gradients usually applied in computer

models of chemotaxis. The linear gradient arises between

stationary source and adsorber, and can often be observed under

natural conditions. The Gaussian, another commonly used

gradient, appears when a limited amount of molecules is injected

into the medium from a micropipette or a similar source [42].

Other gradients that arise from general models of diffusion have

hyperbolic or exponential shapes. However, all commonly used

gradients have a ‘blind’ zone where receptors are saturated and

cells do not respond. When cells drift along these gradients, the

average profile of CheY-P changes dramatically, from a steep fall

at low concentrations to a weakly stimulated state at high

concentrations (Figure 3C). This makes it difficult to compare

long-term chemotactic efficiency, because the average CheY-P

and drift velocity are non-stable along the gradient.

To study chemotaxis systematically, we propose a new—

constant-activity—type of gradient. This gradient has the unique

property of providing the same CheY-P level and cellular-drift

velocity over a wide range of ligand concentrations. The stability

of the CheY-P level allows us to study properties of virtual

chemotactic cells systematically, and to compare chemotactic

behavior over long time periods and concentration ranges.

The form of the constant-activity gradient is derived from the

MWC model, by formulating the differential equation for the

gradient shape which will give a constant rate of receptor free

energy change due to ligand binding. In earlier work, the

condition of constant chemotactic response was studied using a

phenomenological model of ligand binding, with a single

dissociation constant KD [48]. The study of Block and co-authors

showed that such a model can be simplified, and as a result an

exponential ramp of ligand should give a constant response in the

range between Cmin = 0.31KD and Cmax = 3.2KD, a prediction that

was supported by their experiments [48].

In our study, we show that the differential equation for the

constant-response gradient proposed in [48] is the result of the

MWC model. We further solve this differential equation

analytically, and find the exact form of the constant-activity

gradient. This gradient grows similarly to the exponential function

at moderate ligand concentrations, and increases faster than

exponential at low and high concentrations (Figure 2A).

Our simulations show that the chemotactic response of the

MWC model in the constant-activity gradient remains stable over

four orders of ligand concentration—between 0.1 and 1000KD, in

the case when Tsr receptors are fully insensitive to the ligand.

However, in the case of (Me)-Asp, the Tsr receptors are able to

respond non-specifically to high ligand concentrations, therefore

above 100KD the cluster activity drops to zero in a mixed-receptor

cluster [12,27]. However, our simulations of population behavior

consider only moderate Asp concentrations, so the cluster activity

remains nearly constant in all observed cases.

The exponential ramp also gives nearly constant response in the

MWC model, but over a much smaller range—between 0.5 and

3.0KD, in agreement with [48] and the recent study of Tu et al. [58].

We also show that the apparent dissociation constant KD can be

estimated by either the arithmetic or geometric mean of Koff and

Kon, but the geometric mean gives a better approximation over a

wide range of ligand concentrations.

The shape of the constant-activity gradient is also close to a

hyperbolic gradient, with the change of variables, KDCx/

(12Cx) = KD(1/y21),KD/y, (y = 12Cx, KD%1). The hyperbolic

gradient arises from simple models of diffusion, when ligand

molecules are emitted from a spherical source into the surrounding

medium. In nature, such conditions can be observed, for example,

in aquatic ecosystems where microalgae leak organic matter

attractive for bacteria [59]. This suggests that hyperbolic and

exponential gradients with appropriate parameters can be good

approximations for the constant-activity gradient.

In our model, the adaptation rate is assumed to be proportional

to the co-varied concentration of the adaptation enzymes

[CheR,CheB], and we use both terms to denote the rate of

adaptation. However, increasing expression of the adaptation

enzymes may lead to saturation of the adaptation rate at some

point, because the enzymes will start working out of saturation

kinetics. For these reasons, it is more correct to consider our results

in terms of adaptation-rate effects on chemotaxis, whatever the

origins of adaptation-rate variability may be.

Figure 12. Experimental measurement of [CheR,CheB-YFP] in individual cells at different points in the swarm ring, for plates with
(A) normal agar (0.27%); (B) liquid agar (0.20%). Blue columns show the least swarming cells in the center of the swarm plate, and the red
ones—the best swarming cells from the outer edge. The expression of cheR cheB-yfp was under the control of a pBAD promoter, which gives a basal
expression level close to wild-type. The bin size is 110 copies/cell.
doi:10.1371/journal.pcbi.1000242.g012
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The effect of adaptation rate on chemotaxis agrees in many

respects with the results reported in [13] for optimal noise filtering

of the chemotaxis signaling system. In their work, the authors

demonstrated the existence of an optimal cutoff frequency, an

analog of the adaptation rate in our study, for efficient chemotaxis.

For a fixed linear gradient, they show the same shape of

chemotactic efficiency as a function of cutoff frequency (Figure

3B in [13]) as we found in our simulations (Figure 5A). The

authors also show that the optimal cutoff frequency depends on

gradient steepness in a linear manner (Figure 5A in [13]),

consistent with our results (Figure 5B) for steep gradients.

Our simulations in the constant-activity gradient suggest a

simple biological mechanism that determines the optimal

adaptation rate for a given gradient steepness. Different optimal

adaptation rates correspond to a single CheY-P interval, which fits

the linear range of the motor-response function. This means that

the highest drift velocity in liquid media is observed when the

CheY-P level is in the narrow interval fitting the operating range

of the motor. In this range, the dependence between CheY-P and

mb is approximately linear (Figure 6C).

We found that the CheB phosphorylation feedback can have

either a positive or negative effect on chemotactic efficiency,

depending on how it shifts the average CheY-P level relative to the

region of linear motor response. In the case of non-perfect ratio of

CheR to CheB, the CheB phosphorylation mechanism can

partially counteract the negative effect of unbalanced [CheR]/

[CheB], by shifting the average CheY-P towards the optimal

region. This confirms that CheB phosphorylation can improve the

chemotactic properties of cells with deviations in the ratio of

[CheR]/[CheB], as well as in the ratios of other proteins, from the

optimum [32].

Chemotactic behavior in liquid media differs from that in agar.

We simulated agar effects using traps randomly distributed over

time - a cell can encounter traps during its run, and stays trapped

until it makes the next tumble, as observed by Wolfe and Berg

[55]. This restricts cellular motility—cells that are highly biased

towards running remain in traps longer. In agar, the region of

optimal motor bias is very narrow and is just above the

unstimulated state mb0, because higher bias increases the period

of time cells remain in traps.

In our model, we did not take into account the growth of a

bacterial populations. The typical swarm plate experiments last

several hours, and cells grow and divide during the experiment,

leading to variations in protein levels and to redistribution of

proteins from generation to generation. However, the effect of

different adaptation rates in our simulations is clearly visible

already within one cell generation over 1000 s of model time

(Figure 11B). The selection thus works on a time scale that is

shorter than the generation time, which, in our opinion, justifies

using a fixed protein distribution. Therefore, the addition of cell

growth should not change our results qualitatively. In experiments,

daughter cells with sub-optimal levels of CheR and CheB will

rapidly fall behind the spreading swarm ring in the vicinity of the

division site, while the subpopulation with optimal adaptation rates

will be always at the front edge of the ring.

In most of our simulations, we assume that the CheR and CheB

ratio is constant due to the genetic coupling between the two

respective genes, and that cell-to-cell variation in adaptation rates

arises from concerted variation in the levels of both enzymes [32].

We also investigated the effects of variation in the [CheR]/[CheB]

ratio, which results from translational noise, and affect both the

adaptation rate and the steady-state motor bias. In addition to

these investigated sources of noise, there is intrinsic noise in the

pathway activity which arises from the stochastic nature of (de-

)methylation events. The latter sort of noise can also have positive

effects on the spreading of cells in a ligand-free medium [56], and

even on chemotactic drift in weak gradients [60]. Superposition of

variable noise effects on chemotactic efficiency in variable

gradients would be an interesting issue for further study.

In this work, we have estimated the variability in concerted

CheR and CheB concentrations using available experimental data

on cell-to-cell variability in adaptation times [33]. We assumed a

log-normal distribution for protein concentrations, which also

gives a log-normal distribution of adaptation times to a step-wise

stimulus from 0 to 1023 M MeAsp [33]. There are also other

experimental estimates of cell-to-cell variation in adaptation times

[34] and related simulations [61], but the adaptation rates

observed in those experiments were several times higher,

presumably due to different culture growth conditions.

Our simulations suggest some evolutionary implications. In

liquid media with variable food sources and gradient intensities,

variability in adaptation times (protein levels) among cells can help

the whole population to respond to different gradients more

readily, due to positive selection of cells with optimal

[CheR,CheB]. In other words, for any given gradient steepness,

there will be a subpopulation which has the best [CheR,CheB] to

follow this gradient. In contrast, agar poses mainly negative

selection on cell populations - cells with low [CheR,CheB] are

filtered out from competition, while all other cells travel with

approximately equal efficiency.

Inspired by the implementation of AgentCell, RapidCell focuses

on highly efficient computation of large populations over long

periods, keeping cell-response properties consistent with experi-

mental data. The first version of RapidCell allows us to simulate E.

coli populations of size 104–105 cells over a time scale of hours,

while tracking the signal network dynamics of individual cells.

These capabilities permit the modeling of cellular behavior on a

macroscopic scale, as in swarm-plate experiments, and the

prediction of properties of heterogeneous populations with noisy

components of the signaling network.

Supporting Information

Figure S1 Comparison of the RapidCell network response with

experimental and simulated data. (A) FRET experiment and

RapidCell simulation of cell response to a step-wise stimulus of

MeAsp. The initial ambient concentration is zero; at t = 80 s

30 mM MeAsp is added and removed at 480 s. The best fit by

RapidCell is obtained with an adaptation rate of k = 0.5,

corresponding to the temperature T = 20uC at which the FRET

experiments were carried out. At T = 30uC, the fitted adaptation

rate will be k = 1.0 (V.Sourjik, unpublished data). (B) StochSim

and RapidCell simulations of cell response to a step-wise stimulus

of Asp. The initial ambient concentration is zero; at t = 20 s

3.5 mM Asp is added and removed at 70 s. The best fit by

RapidCell is obtained with an adaptation rate of k = 8 - a very

rapid rate of adaptation. The StochSim simulations were carried

out with a coupled model (Shimizu et. al, 2003), consisting of

65665 square receptor lattice with coupling energy EJ = 23.1 kT.

Found at: doi:10.1371/journal.pcbi.1000242.s001 (0.30 MB TIF)

Figure S2 Comparison of the RapidCell network response with

experimental data on tethered cells. (A) Simulation of CCW motor

bias response to a short pulse of attractant. The initial ambient

concentration is zero; at t = 5 s 1.0 mM Asp is added for a 0.35 s

interval; solid line - simulations (the best fit is obtained with an

adaptation rate of 2.0), circles - experimental data (Segall et. al.,

1986). (B) Simulation of CCW motor bias response to a step-wise

stimulus. The initial ambient concentration is zero; at t = 1 s

RapidCell
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0.075 mM Asp is added; solid line - simulations, circles -

experimental data (Segall et. al., 1986). The best fit is obtained

with an adaptation rate of 5.0. (C) Adaptation times to a step

increase of MeAsp from zero ambient level, obtained in

simulations (solid line) and in experiments (Berg and Tedesco,

1975) (circles). In the simulations, the dissociation constants used

were Ka
off = 0.02 mM and Ka

on = 0.5 mM (Keymer et. al., 2006).

The best fit is obtained with an adaptation rate of 1.3.

Found at: doi:10.1371/journal.pcbi.1000242.s002 (0.06 MB TIF)

Figure S3 Probability density function of tumbling angles

f(H) = 0.5(1+CosH)SinH used in the model (solid line), and

experimental measurements (cross markers) (Berg and Brown,

1972).

Found at: doi:10.1371/journal.pcbi.1000242.s003 (0.04 MB TIF)

Figure S4 The CheY-P response of the MWC model to the

constant-activity ramp of aspartate from 0.1 to 10000KD. The

ramp is simulated according to Eqn. 22 in two forms, with

K* = 0.5(Kon+Koff) (arithmetic mean), or K* = (KonKoff)0.5(geo-

metric mean). The MWC model shows an approximately constant

response for both approximations, but the geometric mean gives

the more stable response over a wider range of concentrations.

Found at: doi:10.1371/journal.pcbi.1000242.s004 (0.12 MB TIF)

Figure S5 Chemotactic efficiency in agar as a function of highly

over-expressed [CheR,CheB], observed in experiments and

simulations: (black line) swarm-plate efficiency of cells with CheR

and CheB-YFP expression under the control of a pTrc promoter.

The chemotactic efficiency was estimated relative to the diameters

of wild-type swarm rings. Color lines denote simulated chemotac-

tic efficiency in three constant-activity gradients N1 (blue), N2

(green), N3 (red). The chemotactic efficiency in the simulations

was estimated as the average distance travelled by cells, divided by

the distance with the optimal [CheR,CheB]. Error bars indicate

standard deviations.

Found at: doi:10.1371/journal.pcbi.1000242.s005 (0.06 MB TIF)

Figure S6 Measurement of [CheR,CheB] in individual cells in

different points of the swarm ring, for cells with (A) the least, and

(B) the best swarming efficiency. CheR and CheB-YFP were

expressed from one operon under the control of a pTrc promoter

and native ribosome-binding sites. The pTrc promoter gives high

basal expression relative to the wild-type level. The least swarming

cells were taken from the center of the swarm plate, and the best

swarming - from the outer edge of the swarm ring. The mean

protein levels were determined as described in Experimental

Methods.

Found at: doi:10.1371/journal.pcbi.1000242.s006 (0.06 MB TIF)

Table S1 Rates of reactions

Found at: doi:10.1371/journal.pcbi.1000242.s007 (0.02 MB PDF)
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