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Abstract

The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn–Taylor
functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the
X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between
the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key
elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is
shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the
structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized
by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial
opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path
demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin
binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is
elucidated. The origin of the partial untwisting of the central b-sheet in the rigor to post-rigor transition is described.
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Introduction

Motion is one of the hallmarks of life. Myosins are molecular

motor proteins that use ATP to power interactions with actin

filaments, so as to generate force and directed movement. A

variety of different myosins are found in eukaryotic cells from yeast

to man [1]. They perform a wide range of essential functions,

including transport of different particles (e.g., secretory vesicles),

signal transduction, cell adhesion, endocytosis, muscle contraction,

and cell mobility, amongst others. The class V myosins are of

special interest because they act individually to carry out their

function, which is the transport of vesicles inside the cell. Myosin V

is composed of two catalytic domains (called ‘‘motor’’ domains),

which can bind to actin. They each have long ‘‘lever arms’’, which

are joined to a coiled-coil region that ends in a globular domain for

binding the cellular cargo; each lever arm consists of six IQ motifs

to which light chains or calmodulin domains bind. Recently, it has

been shown that myosin V moves along F-actin by a processive

‘‘hand-over-hand’’ mechanism with steps approximately 36 nm in

length [2,3] although the details of the stepping are still under

investigation [4,5]. Thus, myosin V poses in the clearest fashion

the question of how the relatively small conformational changes

occurring in the catalytic domains can result in very large

displacements of the molecule as a whole. The most commonly

accepted mechanism is the ‘‘swinging lever arm hypothesis’’ [6,7].

This model proposes that small conformational changes in the

motor domain are coupled to and amplified by the lever arm,

whose position is controlled by the rotation of the converter

subdomain. Given such coupling, it is likely that the induced

motion is diffusive and corresponds to transitions between different

conformational states which are stabilized by the nature of the

ligand; i.e., no ligand; ATP; ADP?Pi; ADP. This implies that the

motor domain cycles through well-defined, though fluctuating,

structural states which differ in their nucleotide and actin binding

affinities. Such a description is analogous to the binding change

mechanism for F1-ATPase [8,9]. Myosin V binds strongly to actin

in the absence of ATP and apparently hydrolyzes ATP in a state

that has a relatively weak affinity for actin. Binding to actin

accelerates the release of Pi (H2PO4
2), which promotes the

transition from the weak to the strong actin-binding myosin states

[10]. Strain is thought to be introduced when both myosin heads

bind to the actin filament, and their conformations are altered. As

a result, the release of ADP from the trailing head is slightly

accelerated and that from the leading head is significantly slowed

down [11,12].

As formulated by Lymn and Taylor [13], the myosin V cycle

can be regarded as consisting of two parts: the states corresponding

to free myosin (i.e., myosin not bound to actin) and the states of the

actomyosin complex (Figure 1). At the present time, no high

resolution structures of the latter are available, although there is

evidence from cryo-electron microscopy that one of the structures

recently obtained for myosin V with no nucleotide bound [14]

(referred to as the rigor-like conformation) corresponds to the

strongly bound actomyosin complex (the so-called rigor state) [15].
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There is also a structure for the post-rigor state of myosin V [16], as

well as for myosin II [17], formed when ATP binds to actomyosin

and myosin dissociates from actin. The post-rigor state is in

equilibrium with the pre-powerstroke state, which is stabilized by Pi

and ADP in the active site after ATP hydrolysis [18,19]. Myosin

then binds to actin with the lever arm in a position corresponding to

the beginning of the powerstroke, i.e., the force generation phase of

the cycle. Release of the hydrolysis products, Pi and ADP, and the

powerstroke follow; the specific structures of actomyosin involved at

this stage are not known. Rebinding of ATP causes myosin to

dissociate from actin and a new cycle begins.

Some insights concerning how myosin functions have been

obtained by comparing sets of structures that are thought to

represent various stages in the cycle. These analyses are based on

the implicit assumption that an essentially linear interpolation path

can describe the change from one conformation to another. To

obtain a more complete understanding of the actual motions, it is

necessary to complement the structural data by simulations. For

the post-rigor to pre-powerstroke transition considerable informa-

tion has been obtained by use of a variety of simulation methods

[20,21]. Here, we present the first study of the rigor to post-rigor

transition by using myosin V structures and employing normal

mode (NM) analysis [22–24], a well established method for

studying the conformational changes of biomolecules [25–29]. For

the post-rigor to pre-powerstroke transition in myosin II [30–33],

several normal-mode based studies have been published. In this

report, a Block Normal Mode (BNM) approach [34,35] is used to

explore the relationship between structure, ligation and function.

The availability of the high resolution rigor-like state for myosin V

[14] offers the first opportunity to study the dynamics of the so

called ‘‘cleft-opening’’ motion, which is one of the essential

elements in unbinding from actin. A structure for a rigor-like state

of scallop myosin II with a closed cleft [36] was published after the

present analysis was essentially complete; it supports the

significance of the myosin V structure.

Comparison of the rigor-like unliganded structure with the

ATP-bound post-rigor structure has provided information con-

Author Summary

Myosins are molecular motor proteins that interact with
actin filaments to perform a wide range of cellular
functions. They use the universal energy storage molecule
adenosine triphosphate (ATP). The functional cycle in-
volves myosin binding to actin, a ‘‘powerstroke’’ leading to
directed movement, and myosin release in preparation for
the next step. A fundamental question concerns the
mechanism by which the local structural changes due to
ATP binding, hydrolysis, and products release can generate
the large myosin changes of conformation required for this
cycle. Here, we focus on the rigor to post-rigor transition of
myosin V, which results in the release of myosin from actin.
Starting from the X-ray structures of the two states, we
have used the optimal superposition of normal modes to
determine the transition path. The path shows the
allosteric mechanism by which ATP binding leads to the
opening of the U50/L50 cleft, the essential step in the
unbinding of myosin from actin. More generally, the new
normal-mode superposition model can be useful for
describing large-amplitude conformational transitions
encoded in protein structures by evolution.

Figure 1. The Lymn–Taylor functional cycle of the actomyosin complex [6,13] (adapted from Yu et al. [19] to indicate the motion of
the lever arm appropriate for myosin V). Only a myosin monomer is shown for simplicity. Binding of ATP to the actomyosin complex (the rigor
state) leads to rapid dissociation of myosin from actin without immediate hydrolysis of ATP. Coupled with a major structural change in the orientation
of the lever arm (‘‘recovery stroke’’), ATP hydrolysis proceeds and the motor domain weakly rebinds to actin. Following the release of Pi, the motor
domain undergoes the ‘‘powerstroke’’ during which the lever arm moves back to the rigor state and the motor domain becomes strongly bound to
actin. Dissociation of ADP leads the system back to the rigor state.
doi:10.1371/journal.pcbi.1000129.g001
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cerning the structural changes involved [16]. In the present paper,

we elucidate the nature of the coupling among the characterized

subdomains and connectors (see Figure 2) that results in the rigor

to post-rigor transition. Analysis of forty of the low-frequency

modes makes possible a determination of the motions that are

likely to be important. Using a method that determines a pathway

from the rigor-like to the post-rigor state based on the

superposition of the normal modes we are able to obtain insights

into the mechanism of allosteric communication in myosin V. The

next section describes the materials and methods. The results are

presented in the third section. A discussion of the significance of

the results is given in the ending section.

Materials and Methods

Structures
The proteins were modeled with the polar-hydrogen potential

function [37] and solvation effects were approximated by an

effective solvent model, EEF1 [38], which contains screened

electrostatic interactions and a Gaussian term to represent full

hydrophobic interactions. The initial coordinates of the myosin

molecule in the rigor-like and post-rigor functional states were

obtained from the PDB (PDB entries 1OE9 and 1W7J,

respectively). The rigor-like structure is a nucleotide-free myosin

conformation, while the post-rigor structure represents an ATP-

bound state. The RMS difference between the rigor-like and post-

rigor structures is 5.4 Å (5.2) for X-ray and 5.3 Å (5.2) after energy

minimization; the all heavy-atom result is given first and the Ca

result in parentheses. Details concerning the model and the

preparation of the structures for the normal mode calculations are

given in Text S1. The structural definition of the various

subdomains, secondary-structure elements, and linkers of myosin

V is given in Table S1 and Table S2.

Normal Mode Calculation
Normal mode analysis was performed on both functional states

of myosin V by using the block normal mode (BNM) method

[30,35] as implemented in the program CHARMM [39]. In the

BNM approach, the molecule is partitioned into moving units

(blocks, here each unit contains one residue) and the Hessian

matrix is projected onto the subspace spanned by the translation

and rotation vectors of the blocks. Even though the internal

degrees of freedom of the moving units are frozen in the BNM

description, which limit the side-chain motions, previous studies

have shown that the results are appropriate for the investigation of

the modes of primary interest for conformational changes

[34,35,30]. For details concerning the normal mode calculation,

analysis and inherent limitations see Text S2.

Overlap Coefficients
To compare individual modes of the rigor-like and post-rigor

conformations, overlaps between pairs of eigenvectors belonging

to the different functional states were computed. The rigor-like

and post-rigor conformations were first aligned by fitting all Ca

atoms which were not missing in the original X-ray structures (i.e.,

837 centers out of the total of 908 included in the normal modes).

The overlap coefficient, Cij, between modes i and j of structures a
and b, respectively, is defined as the dot product of the

Figure 2. The myosin motor domain presented in the rigor-like conformation. (A) The motor subdomains and its functional sites. The
nearly rigid motor subdomains are shown in space-filling models (on the left) and cartoons (on the right). The N-terminal (N), the upper 50 kDa (U50),
the lower 50 kDa (L50), the converter (C), the first IQ motif (IQ), and the essential light chain (ELC) are colored in orange, blue, red, lime, pale green,
and yellow, respectively. In the space-filling representation the location of the myosin functional sites is indicated: the actin-binding site at the
interface of the U50 and L50 subdomains; the nucleotide-binding site at the interface of the N and U50 subdomains; and the beginning of the lever
arm, whose position is controlled by the rotation of the converter. (B) The subdomain connectors in the myosin motor domain. The various
connectors are color-coded as follows: the P-loop, switch I, switch II, the strut, the relay, helix SH1, and loop 76–81 are cyan, magenta, orange, red,
yellow, slate, and violet. The P-loop, switch I and switch II contribute to the formation of the active site involved in nucleotide binding and hydrolysis
at the interface of the N, U50, and L50 subdomains; the strut joins U50 and L50 in the upper part of the U50/L50 cleft; the relay group connects L50 to
C; helix SH1 and loop 76–81 connect the converter to the N-terminal subdomain. In the text, the terms ‘‘upward’’ and ‘‘downward’’ are used to
indicate motion in the direction of the top and bottom of the figure.
doi:10.1371/journal.pcbi.1000129.g002
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corresponding eigenvectors Li and Lj

Cij~ La
i
:Lb

j

���
��� ð1Þ

Large overlaps (i.e., Cij values close to one) indicate that the

eigenvectors point in the same direction, so that they describe

similar harmonic oscillations.

Involvement Coefficients
To determine the mode contribution to the rigor-like/post-rigor

transition, individual and cumulative involvement coefficients [25–

27,30] were computed. A transition pathway is determined by

linearly interpolating the transition end-points (i.e., the initial, ~XX1,

and final, ~XX2, structures of a conformational transition) upon optimal

superposition of all the Ca atoms. The resulting ‘‘displacement

vector’’ is expanded as a linear combination of normal modes of the

initial state. The projection of the normalized displacement vector on

the kth normal mode vector, Lk, is computed as

I 0k~
~XX2{~XX1

~XX2{~XX1

�� �� :Lk ð2Þ

The corresponding involvement coefficient is defined as

Ik~ I 0k
�� ��, which describes the degree of involvement of the kth

mode in the conformational transition. Thus, the individual

involvement coefficients indicate in a semi-quantitative way which

collective motions are important for a given conformational

change. A complementary quantity that indicates the weight of a

set of normal modes along the transition is the cumulative

involvement coefficient CIn~
Pn

k~1 I2
k . In the present case, as we

shall see, a small number of low-frequency modes (40 out of a total

of 5,448 in the residue-based BNM analysis) appear to give a

highly accurate description of the motions along the rigor-like/

post-rigor transition. ‘‘Specialized’’ involvement-coefficient analy-

ses are used to identify the mode contributions to the structural

transition of specific elements. In such analyses, suitably defined

portion of the molecule are considered separately and a

‘‘specialized’’ displacement vector is determined by zeroing the

elements of the original vector that correspond to atoms outside

the region of interest.

Dynamic Domain Analysis
The program DynDom [28] (version 1.5) was used to analyze

the interdomain conformational change described by the low-

frequency modes and identify the dynamic domains and hinge

regions.

Generation of Transition Pathway
The linear combination of a subset of normal modes, weighted

by their involvement coefficients is optimal for describing a given

conformational change [26]; i.e., it gives the smallest RMSD

relative to the target. In this approach, the involvement coefficients

are used to superpose a subset of M modes, starting with the first M

lowest-frequency modes after removing the translational and

rotational modes. The evolution vector of the structure based on

the involvement coefficients is given by

~XX jð Þ~~XX1zjD~XX ð3Þ

where D~XX, the optimal superposition of the considered modes, is

given by

D~XX~ ~XX2{~XX1

�� ��XM

k~1

I 0kLk ð4Þ

The evolution coefficient, j, is the fractional evolution of the

structure along the transition path; j varies from 0 to 1. The

coefficients, I 0k, of the linear combination are the ‘‘signed’’

involvement coefficients, as defined by Equation 2. At the beginning

of the evolution (j = 0) ~XX jð Þ corresponds to the starting state; at the

end (j = 1) ~XX jð Þ represents the molecular structure corresponding to

the minimal RMSD from the final state that can be obtained by the

set of M normal modes; it is hereafter referred to as the normal mode

superposition model (NMSM) conformation ~XXM

� �
. We use ~XX jð Þ to

study the evolution from the initial (rigor-like) state ~XX 0ð Þ, to the best

approximation to the final (post-rigor) state, ~XXM. The NMSM

evolution is used to obtain insights into the allosteric communication

in the myosin head that leads from the binding of ATP in the rigor-

like structure to the post-rigor structure (see Results).

Results

In this section, we first determine the contributions of the low-

frequency internal modes (it turns out that only 40 modes out of

5,448 are needed) to the global changes and subdomain

displacements involved in the transition between the rigor-like

and post-rigor states. We then combine the modes into a vector

that gives a description of the transition and provides an

understanding of the mechanism by which the local structural

changes induced by ligand binding are coupled to achieve an

overall transition from the rigor to the post-rigor state.

Normal Mode Contributions to Flexibility and the
Transition

The lowest-frequency internal normal modes (i.e., the overall

translational and rotational modes have been removed) are very

similar in the rigor-like and post-rigor states (see Figure 3). As

shown by the overlap map, modes 1–7 are strongly correlated

(overlaps .0.8), and modes 9–15, with the exception of mode 14,

plus modes 20 and 21 are significantly correlated (overlaps .0.6);

see Table S3. Higher-frequency modes (other than mode 30) show

considerably less correlation. The 21 lowest-frequency modes have

a frequency range of only 3.5 cm21 (see Table S3) and a number

of them are interchanged in the two structures: 2–3, 8–9, 10–11,

and 14–16. The high correlation between the low-frequency

modes of the two functional states, which represent distinct myosin

conformations (Ca-RMSD of 5.2 Å) is striking. The intrinsic

‘‘robustness’’ manifested by these modes suggests that they are

likely to be functional [40] and, therefore, of direct interest.

Involvement Coefficient Analyses
The relevance of the low-frequency modes of both the rigor-like

and post-rigor states to the conformational transition can be

quantified by their involvement coefficients (ICs); see Materials

and Methods. Individual and cumulative involvement coefficients

computed for the two states are reported in Figure 4. The first

internal 15 (40) modes are sufficient to describe about 71% (75%)

of the transition starting with either state, as measured by the

cumulative ICs. Modes 1–3, 4–15, and 16–40 contribute 52%,

19%, and 4% of the conformational change, respectively.

The rigor-like and post-rigor states activate their normal modes

somewhat differently in making the conformational transition. The

Allosteric Communication in Myosin V
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first three modes, which show the largest involvement coefficients,

behave similarly in the two structures. However, the activation of

modes 4–15, which leads to a cumulative IC of 71% is specific to

each conformation (see Figure 4B). In rigor-like, each normal

mode brings a small contribution to the global change that results

in a continuous increase of the cumulative curve; in post-rigor, the

mode contribution is less homogeneous (see modes 7 and 13, in

particular) and results in a more step-wise cumulative profile. An

involvement-coefficient analysis performed on the ‘‘backward’’

(post-rigor to rigor-like) transition using a post-rigor structure

without the nucleotide showed no changes in both the direction of

the low-frequency eigenvectors and the mode activation pattern to

the rigor-like state (see Text S3). This demonstrates that the

primary effect of ATP is to stabilize the post-rigor structure, rather

than to alter the intrinsic myosin flexibility.

To identify the structural contributions of the individual modes

to the observed transition, a ‘‘specialized’’ involvement-coefficient

analysis was carried out for both functional states (see Materials

and Methods). As a first step, we focus on the two largest

functional regions of the myosin molecule present in the crystal

structure: the entire motor domain responsible for ATP hydrolysis

(named the ‘‘head’’), which structurally corresponds to the N, U50,

and L50 subdomains, and the region connecting the motor

domain to the lever arm (named the ‘‘neck’’), which includes the

converter, the first IQ motif and the essential light-chain (see

Figure 2). The specialized involvement coefficients for the 40

lowest-frequency modes determined for these two portions of the

molecule are reported in Table 1. The first three modes show very

large involvement coefficients for the conformational transition of

the neck region. The activation of these modes plus mode 5 in

post-rigor, is sufficient to describe the change in the converter/

lever-arm region, whereas slightly higher-frequency modes (i.e.,

modes 7–15) are required for the internal rearrangements of the

motor domain (see Figure 5); modes 16–40 contribute relatively

little to the overall transition (4% of the transition) but they are

included because they are important for a better description of the

more local changes.

To determine the internal rearrangements of the motor domain

that involve the subdomain displacements, another specialized

involvement-coefficient analysis was carried out. Upon optimal

superposition of all Ca-atoms belonging to the motor domain (aa

61–762), the rigor-like/post-rigor ‘‘displacement vector’’ was

decomposed into five subvectors, one for the entire motor domain

and four corresponding to the individual subdomains (i.e., N, U50,

L50, and C). The results of the analysis are reported in Table S5.

Several modes in the medium-frequency range, from mode 7 to

mode 24, have involvement coefficients larger than 0.15 and

contribute significantly to the conformational transition of the

motor: modes 8, 9, 10, 11, 12, 13, 14, 15, 18, and 21 in rigor-like,

and modes 7, 8, 13, 15, 21, and 24 in post-rigor. To investigate the

correlation between the various subdomain motions, pairs of

specialized involvement coefficients that are relatively large in

magnitude and of the same sign were identified. Pairs of

involvement coefficients of the same sign for a given mode

indicate a correlated motion of the corresponding subdomains,

while pairs of opposite sign indicate an anticorrelated motion. As

reported in Table 2, modes 13, 10, 8 and 21, 14 and 12, 9, and 11

in rigor-like describe the relevant coupling between the N/U50/

L50, U50/L50, L50/C, N/L50, N/U50, and U50/C subdo-

mains, respectively. Similarly, modes 8 and 13, 7, and 15 in post-

rigor are involved in the coupled rearrangements of the N/U50/

Figure 3. Rigor-like/post-rigor normal mode overlaps (see
text). Dark colors indicate large overlaps (values close to unity) and
correspond to strongly correlated motions.
doi:10.1371/journal.pcbi.1000129.g003

Figure 4. Involvement-coefficient analysis of the rigor-like/post-rigor conformational transition (see text). Individual (A) and
cumulative (B) involvement coefficients are shown for the ‘‘forward’’ (from rigor-like to post-rigor) and ‘‘backward’’ (from post-rigor to rigor-like)
transitions in red and green, respectively. Negative indices correspond to pure translational and rotational modes.
doi:10.1371/journal.pcbi.1000129.g004
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L50, N/U50, and U50/C subdomains, respectively. The fact that

a different number of rigor-like and post-rigor modes are primarily

involved in the specific rearrangements of the motor domain

confirms that there is a slight change in flexibility as a consequence

of the structural changes due to nucleotide binding (see above).

Intrinsic Flexibility of the Myosin Neck
The lowest-frequency modes of myosin V in both rigor-like and

post-rigor states (i.e., modes 1–3 with frequencies ranging from

0.22 to 0.58 cm21, see Table S4) dominate the motion of the

converter/lever region (i.e., the ‘‘neck’’) with respect to the myosin

head. The motor domain essentially moves as a rigid unit. The

amplitudes of the Ca fluctuations computed upon optimal

superposition of the head (aa 61–699) clearly show that only very

small fluctuations are present in the N, U50 and L50 subdomains

with the exception of the relay group (aa 467–493) that is coupled

to the converter (see Figure 6A). Mode 1 shows a large swing of the

lever arm in a direction that is essentially perpendicular to the

observed conformational transition, while modes 2 and 3 involve

the twisting of the lever arm in a clockwise and counterclockwise

direction, respectively. In the latter two, the twisting is coupled to a

short-amplitude swinging motion; i.e., a rotation of the lever arm

as a whole. In mode 3 for rigor-like, which corresponds to mode 2

in post-rigor (see above), the displacement corresponds to the

direction of the observed conformational transition, which results

in the large involvement coefficients (see Table 1). The collective

motions described by these modes are similar in both states and

essentially split the molecule in two dynamic domains, i.e., the

head domain and the neck region, as determined by DynDom (red

and blue regions in Figure 6B). An important point is that the

converter belongs to the head in the rigor-like state and to the neck

in the post-rigor state (see Figure 6B); the molecular mechanism

leading to the uncoupling of the converter from the motor head is

described below. The DynDom analysis of modes 1–3, indicates

that the hinge is located at residues 763–769 in rigor-like (i.e., at

the pliant region located at the beginning of the lever arm [41]),

and at residues 696–697 in post-rigor (i.e., at the junction between

the SH1 helix and the converter); see Figure 6B, in green. Due to

the different location of the hinges, the converter subdomain tends

to be more independent of the head in post-rigor than in rigor-like.

This is likely to be important for making possible the transition to

the pre-powerstroke state; kinetically the post-rigor and pre-

powerstroke states are in equilibrium with ATP bound [18].

In Figure 7, the direction of the lever-arm motion as described

by the first three lowest-frequency modes is shown. Modes 1 and 3

are essentially perpendicular in both states, with mode 3 in the

direction of the transition in rigor-like, in accord with the

involvement coefficient (see Table 1).

Allosteric Communication in the Myosin Head
An essential element in a complete description of the transition

from the rigor to the post-rigor state in the myosin cycle is the

elucidation of the mechanism by which nucleotide binding is

coupled to the opening of the U50/L50 cleft. For this purpose, we

computed the optimal superposition of the low-frequency modes of

the rigor-like state to generate the transition vector ~XXM from the

Table 1. Rigor-like and post-rigor involvement coefficients for the conformational transition of the entire molecule (head plus
neck), the head domain (N, U50, and L50; aa 61–699) and the neck region (C, IQ, and ELC; aa 700–946).

Mode # Head+Neck Head Neck Mode # Head+Neck Head Neck

Rigor Post Rigor Post Rigor Post Rigor Post Rigor Post Rigor Post

1 0.23 0.41 0.08 0.21 0.22 0.36 21 0.05 0.04 0.10 0.14 0.08 0.05

2 0.45 0.33 0.19 0.22 0.36 0.28 22 0.06 0.06 0.05 0.06 0.01 0.06

3 0.51 0.48 0.24 0.22 0.50 0.39 23 0.02 0.01 0.10 0.05 0.01 0.00

4 0.03 0.10 0.03 0.05 0.01 0.12 24 0.01 0.07 0.00 0.12 0.01 0.00

5 0.00 0.14 0.13 0.11 0.14 0.32 25 0.02 0.02 0.02 0.01 0.04 0.03

6 0.14 0.13 0.03 0.11 0.12 0.03 26 0.04 0.01 0.01 0.05 0.01 0.01

7 0.19 0.29 0.23 0.28 0.06 0.10 27 0.05 0.01 0.07 0.02 0.03 0.02

8 0.19 0.14 0.14 0.28 0.06 0.10 28 0.02 0.00 0.01 0.02 0.10 0.00

9 0.04 0.04 0.19 0.09 0.10 0.05 29 0.00 0.02 0.05 0.00 0.01 0.04

10 0.12 0.00 0.17 0.07 0.01 0.04 30 0.02 0.03 0.01 0.02 0.03 0.02

11 0.12 0.01 0.13 0.03 0.06 0.03 31 0.01 0.01 0.08 0.06 0.02 0.04

12 0.14 0.06 0.18 0.08 0.02 0.03 32 0.09 0.03 0.02 0.04 0.01 0.04

13 0.19 0.14 0.29 0.25 0.04 0.08 33 0.02 0.02 0.00 0.03 0.05 0.04

14 0.10 0.03 0.20 0.01 0.02 0.07 34 0.04 0.05 0.05 0.05 0.01 0.01

15 0.03 0.11 0.16 0.19 0.03 0.07 35 0.01 0.06 0.00 0.10 0.04 0.00

16 0.07 0.10 0.09 0.13 0.03 0.00 36 0.03 0.07 0.04 0.08 0.01 0.02

17 0.03 0.01 0.04 0.05 0.04 0.06 37 0.04 0.05 0.05 0.03 0.02 0.03

18 0.06 0.02 0.07 0.03 0.03 0.03 38 0.02 0.02 0.03 0.05 0.00 0.01

19 0.00 0.02 0.01 0.07 0.02 0.01 39 0.01 0.03 0.05 0.02 0.02 0.03

20 0.04 0.02 0.04 0.01 0.03 0.03 40 0.03 0.01 0.01 0.06 0.00 0.00

The involvement coefficients are given for both ‘‘forward’’ (from rigor-like to post-rigor) and ‘‘backward’’ (from post-rigor to rigor-like) directions. Modes contributing
more than 0.10 and 0.15 to the structural rearrangement of the entire molecule and its domains, respectively, are shown in bold.
doi:10.1371/journal.pcbi.1000129.t001
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rigor-like state toward the post-rigor state; see Equations 3 and 4 in

Materials and Methods. The superposition of the first 40 low-

frequency modes based on the signed involvement coefficients

produces a myosin conformation with a Ca-RMSD of only 1.28 Å

from the post-rigor conformation; we refer to the resulting

conformation as the Normal-Mode Superposition Model (NMSM)

conformation. This value is to be compared with the Ca-RMSD of

5.2 Å for the entire molecule between the rigor-like and post-rigor

energy-minimized conformations. The choice of the number of

modes (40 modes) was based on the involvement coefficients; 40

modes represents only the 0.7% of the total (5,454 modes) in the

BNM approximation. The analysis (Table 1) suggests that the use

of 40 modes is sufficient to include both the large-scale motions

and a significant fraction of the local rearrangements, such as those

involving the switches in the ATP-binding site. Of these 40 modes,

only 14 modes are required to describe the overall rigor-like/post-

rigor conformational transition and lead to an RMSD of 1.5 Å (see

Figure 8). Even though 40 modes give a detailed representation of

the transition, still higher-frequency modes would have to be

included to obtain a complete description of the local rearrange-

ments, such that of the P-loop.

As a first step in analyzing the transition, we consider the rigor-

like/post-rigor structural change as a combination of rigid-body

subdomain movements. After optimal superposition of the Ca atoms

of the rigor-like and the NMSM post-rigor conformation, the

intermolecular distances between the centers of mass of the

corresponding subdomains (N, U50, L50, C, and IQ/LC) in the

two structures are equal to 4.2, 3.2, 0.9, 3.7, and 6.6 Å, respectively.

These values are in good agreement with the corresponding

distances in the X-ray conformations; they are 4.1, 2.9, 1.3, 3.2,

and 7.2 Å, respectively. Large translational displacements are

observed for the N, U50, C, and IQ/LC subdomains, while there is

only a small translation of L50 (see Table 3, last column). N and U50

move upwards with respect to L50, while the converter and the lever

arm move in the opposite direction, as shown by the increase of its

distance from N, U50, and L50 (see Figure S1). The motion of U50

relative to L50 results in the partial opening of the U50/L50 cleft;

i.e., both the N/U50 and N/L50 center-of-mass distances are

essentially preserved, while U50 and L50 move away from each

other by 1.9 Å (see Table S6). At the same time, the downward

movement of the converter, which is followed by L50, weakens the

coupling between the neck region and the head domain; i.e., both

N/C and U50/C distance changes are almost twice as large as L50/

C (see Table S6).

The overall rigid-body motion of the various subdomains is best

described in terms of individual screw axes (see Figure 9, Table 3,

and Text S4). As shown in Figure 9, n̂ and l̂ are oriented similarly

and are almost orthogonal to û; i.e., n̂ and l̂ differ in orientation by

only 38u and form angles of 83u and 89u with û, respectively. It

follows that the N/L50 interface is preserved along the NMSM

transition, while both the N/U50 and U50/L50 interfaces change

substantially. As a result, the P-loop and switch I nucleotide-

binding elements change their relative position and the U50/L50

cleft opens. The l̂ screw axis coincides with the one of the inertia

axes of L50, suggesting that the contributions of U50 and L50 to

the opening/closing of the cleft are different in nature; i.e., a

rotation coupled to a translation describing a shear-like motion of

the former and a pure rotation of the latter.

Visual examination of the NMSM transition pathway (see Video

S1) shows a coordinated motion of the myosin motor subdomains in

which the nucleotide-binding elements (P-loop and switch I)

approach the binding site, the lever-arm is displaced downward,

and the U50/L50 cleft opens. In the next subsections, the coupling

between the large-amplitude motions of the individual subdomains,

as described by the NMSM evolution of the rigor-like state, is

analyzed in detail. We examine the pairwise (N/U50, N/C, L50/C,

Figure 5. Involvement coefficients specialized for the rigor-like/post-rigor transition of the head domain and the neck region. The
frequency range for the specialized modes is indicated.
doi:10.1371/journal.pcbi.1000129.g005
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and N/L50) subdomain motions and their components. These

rearrangements have important consequences concerning both the

transmission and amplification of the allosteric signal.

N/U50 Subdomains
The rotations of the N and U50 subdomains described by the

NMSM evolution lead to a striking rearrangement of the relative

position of the P-loop and switch I (see Figure 10, A and B); both

the P-loop (part of N) and switch I (part of U50) tend to move as

rigid bodies with the corresponding subdomains (see Text S5).

This, perhaps, rather surprising result is one of the essential

requirements for the allosteric transition. The rearrangement of

the P-loop and switch I elements is best described by monitoring

their change in position and orientation along the NMSM path

(see Video S2). As listed in Table 4, the distance between their

centers of mass is reduced by 0.7 Å. At the same time, the angle

between P ˆ/swI (the vector linking the centers of mass) and ĤF
(the direction of the axis of helix HF) increases by 6u. In doing so,

the P-loop and switch I move in the post-rigor direction to a

position that would permit them to interact with the triphosphate

moiety of ATP, presumably increasing the nucleotide-binding

affinity. As shown in Figure 10B, switch I approaches the P-loop

and moves ‘‘over’’ it. The further displacement of the P-loop (2.1

Å) that is required to complete the rigor-like/post-rigor transition

is not found in the NMSM state. This local rearrangement is

expected to be induced by the interaction with ATP in the post-

rigor state.

Helices HF and HH, which are structurally linked to the P-loop

and switch I, respectively, allow the repositioning of the

nucleotide-binding elements by a rigid-body movement that

modifies their relative position and orientation. As a result, Thr

170 (on HF, part of N) and Ser 218 (on switch I, part of U50) move

in the post-rigor direction (see Table 4) and the distance between

them decreases; the distance between their Ca atoms is 11.2 Å in

rigor-like and 7.8 Å in post-rigor. These two residues directly

contribute to the coordination of the Mg2+ ion in the ATP-bound

state of myosin [42]. Further, the relative displacement of helices

HF and HH brings Lys 174 (on HF) and Glu 204 (on HH) closer

(see Figure 10B). These two residues form a salt-bridge in the post-

rigor state that is not present in the rigor-like state; the H-bond

donor/acceptor distances are 12.1 and 2.6 Å in rigor-like and

post-rigor, respectively. This interaction is expected to stabilize the

post-rigor conformation of the myosin active site.

The effect of the transition on the binding site for the adenosin

moiety, i.e., the portion of ATP composed of the adenine ring and

the ribose sugar, was also investigated. Overall, the observed

rearrangements of the amino acids contributing to the adenosine

pocket in the X-ray structures are very small; i.e., a Ca-RMSD of

0.6 Å is observed between the rigor-like and post-rigor states. This

small change is not captured by the NMSM transition vector; the

RMSD between the adenosine pocket in the X-ray and NMSM

post-rigor structures is slightly larger than that between the X-rays

rigor-like and post-rigor (see Table 4). The analysis suggests that

the change of this portion of the ATP site (the adenosin pocket) is

local, i.e., involves higher-frequency modes, and is not expected to

have allosteric effects. This result supports the conclusion that the

rigor/post-rigor conformational transition is triggered by the

binding of Mg2+ and the triphosphate moiety of ATP.

A consequence of the large-amplitude reorientation of the U50

subdomain is a small upward movement of switch II. The shear-

Table 2. Subdomain coupling on the most-involved low-frequency modes.

Functional state Mode # Motor N U50 L50 C Subdomain coupling

Rigor-like 13 0.31 0.29 0.13 0.14 0.01 N/U50/L50

10 0.23 0.05 0.23 0.17 20.08 U50/L50

15 0.21 20.07 20.24 0.02 20.09 U50

8 0.20 20.06 20.06 20.16 20.15 L50/C

14 0.20 20.12 0.01 20.18 20.10 N/L50

12 0.19 0.14 0.06 0.15 20.02 N/L50

9 0.18 0.12 0.17 0.08 20.02 N/U50

21 0.17 20.04 0.08 0.15 0.19 L50/C

18 0.15 20.20 20.07 0.12 20.09 N

11 0.15 20.06 20.13 0.04 20.17 U50/C

7 0.12 20.12 20.13 0.02 0.07 N/U50

16 0.11 20.16 0.14 0.12 0.08 U50/L50

17 0.09 20.20 0.02 0.14 20.14 N/C

Post-rigor 8 0.35 0.15 0.21 0.25 0.06 N/U50/L50

13 0.33 20.19 20.20 20.20 0.02 N/U50/L50

7 0.28 0.13 0.21 0.08 0.04 N/U50

15 0.23 0.05 0.25 20.04 0.16 U50/C

24 0.17 20.17 20.03 20.03 20.09 N

21 0.15 0.15 20.11 20.29 20.09 L50

16 0.11 0.12 20.10 0.11 0.12 N/C

Rigor-like and post-rigor involvement coefficients relative to the motor domain and the individual subdomains sorted by their contribution to the transition of the
motor domain (aa 61–762). The coupling between the individual subdomains along the most involved normal modes is given, as deduced by the analysis of the signed
involvement coefficients.
doi:10.1371/journal.pcbi.1000129.t002
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like motion of U50 results in the displacement of the fifth strand of

the b-sheet (b5, part of U50), which connects to switch II and leads

to its upward movement. Further, part of switch II extends b5 by

two additional H-bonds with b4 (part of N) in the rigor-like state

[16]; these are lost in the post-rigor state. Note also that the ‘‘rigid-

body’’ movement of switch II results in the breaking of the

interaction with the SH1 helix present in the rigor-like state (see

below).

The Central b-Sheet
The NMSM transition path shows that the N/U50 large-

amplitude rearrangement is associated with a partial untwisting of

the 7-stranded b-sheet that structurally connects the two

subdomains; strands b1–b4 are part of N, strands b5–b7 are part

of U50 [14]. Given its location in the core of the motor domain

and its large size, the myosin b-sheet connects several important

elements and has been suggested to play an important role in the

allosteric communication between the various functional sites [16].

Three b-strands are directly linked to the nucleotide-binding

elements: b4 to the P-loop, b5 to switch II, and b6 to switch I (see

Figure 11A). Thus, there is a coupling between the internal

rearrangements of the b-sheet and the relative position and

orientation of the P-loop, switch I and switch II. If the individual

strands are represented as unit vectors, whose direction is

determined by fitting their Ca atoms, the twist of the entire sheet,

t, can be computed as the inverse cosine of the dot product

between b̂b1 and b̂b7, i.e., the vectors corresponding to the structural

borders of the sheet. The twist angle, t, is shown as a function of

the fraction of the NMSM transition in Figure 11A (box diagrams).

The total untwisting of the 7-stranded b-sheet corresponds to a Dt
equal to 14.5u. Almost the same Dt value is obtained by

comparing the two X-ray structures (i.e., t is equal to 107.5u
and 93.3u in rigor-like and post-rigor, respectively), indicating that

the rigor-like/post-rigor transition of this key structural element is

encoded in the low-frequency modes. The movement of the

individual strands along the NMSM path can be described by their

Dt relative to the starting conformation. As shown in Figure 11A,

the relatively small Dt values observed between neighboring

strands (e.g., Dt between 1.1u and 4.0u, see Table S7) are additive

and result in the observed large flattening of the b-sheet.

To determine the origin of the partial untwisting of the b-sheet,

which is energetically unfavorable [43,36], the actual NMSM post-

rigor conformation was compared with the structure obtained by

pure rigid-body motions, as described by the screw axes given in

Table 3 (see Text S4). Although the overall b-sheet twist (i.e., that

between b1 and b7) is the same in both structures, Dt is restricted

to strands b4 and b5 in the rigid-body transformation with a

dramatic effect at the N/U50 interface; strands b1–b4 in N, and

strands b5–b7 in U50 have Dtij = 0, and Dt45 is equal to 13.7u. As

shown by Figure 11B, the rigid-body motion of the N and U50

subdomains results in the loss of five out of six main-chain H-

bonds between b4 and b5. This would correspond to an energetic

penalty on the order of 15 to 20 kcal/mol [44] since the hydrogen

bonds would not be replaced by water hydrogen bonds in the

interior of the protein. By contrast, the energy cost of partial

untwisting of the b-sheet is expected to be on the order of a few

kcal/mol [45]. In the NMSM description of the untwisting, all the

Figure 6. Rigor-like and post-rigor lowest-frequency modes that are essentially independent of the motor head. (A) Amplitude of the Ca

fluctuations along the sequence computed upon optimal superposition of the head domain (aa 61–699) for the three lowest-frequency modes. Black and
red profiles correspond to the rigor-like and post-rigor states, respectively. In the background, pink, light blue, grey, light green, cyan, and yellow indicate
the boundaries of the N, U50, L50, C, IQ, and ELC subdomains. Rigor-like and post-rigor fluctuations show a difference in the conformational freedom of
the converter in the two states (light green region). (B) DynDom analysis of the rigor-like and post-rigor lowest-frequency modes. In both cases two
dynamic domains corresponding to the head domain (red) and the neck region (blue) are identified. The analysis indicates that the converter subdomain
(shown surrounded by a dashed circle) belongs to the head domain in the rigor-like state and to the neck region in the post-rigor state.
doi:10.1371/journal.pcbi.1000129.g006
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strands of the b-sheet are involved and no H-bonds are lost by

standard criteria. Thus, the untwisting of the b-sheet appears to be

an ‘‘adaptation’’ to avoid a large energy penalty from the relative

motion of the U50 and N subdomains induced by the P-loop and

switch I displacements.

N/C Subdomains
The large-amplitude rotation of the N subdomain, which is a

consequence of the repositioning of the P-loop, has important

effects on the position/orientation of the converter (Figure 10C).

The tight coupling between these two subdomains is such that the

rotation of the N-terminal is transformed into a coupled

translational and rotational movement of the converter, as evident

from Table 3; i.e., both Q and d values for the converter are large in

magnitude. The communication between the N and C subdomains

in the rigor-like state is enabled by a short and rather rigid loop (aa

76–81; referred to as loop 76–81) that is involved in a complex

network of H-bond interactions at the N/C interface (see

Figure 10C). These H-bonds are listed in Table 4; in the post-

rigor state these contacts are lost. The key interactions are formed

between residues of the loop 76–81 and three residues on the

converter; the former are Ala 76 and Ser 78, the latter Ser 700, Gly

754, and Ala 757. They are all part of secondary-structure elements

that allow for efficient structural communication: Ser 700 is part of

a quite rigid three-stranded b-sheet (see Table S8), and Gly 754 and

Ala 757 belong to helix HZ, the last helix of the converter. The

analysis thus assigns an important functional role to loop 76–81, as

a connector of the N and C subdomains responsible for their

coupling. The effect of such a coupling is two-fold: on the one hand,

the translation of the converter promotes a large-amplitude

rotation of the L50 subdomain; on the other hand, the rotation

of the converter reorients the lever arm (see below).

L50/C Subdomains
The translational movement of the converter is transmitted to

the L50 subdomain by specific electrostatic interactions at the

L50/C interface (see Figure 10D). The proximity of three

negatively charged residues located on the relay helix (Glu 473,

Glu 476, and Glu 480), and three positively charged residues

located on the three-stranded b-sheet of the converter (Arg 701,

Lys 746, and Lys 748) suggest that these amino acids are crucial

for the L50/C coupling; as reported in Table 4, these residues

contribute two salt bridges and two H-bonding interactions. Given

these interactions, the L50 subdomain follows the downward

movement of the converter which induces a large-amplitude

rotation of L50 (Figure 10D). This motion is facilitated by the

rigid-body movement of switch II initiated by the shear-like

motion of U50 (see above) and completes the opening of the U50/

L50 cleft. Switch II moves upwards by 0.5 Å and breaks the H-

bonding interaction between Phe 441 (part of switch II) and Ala

684 (part of the SH1 helix) leading to the full opening of the cleft.

Figure 7. Lever-arm motion encoded in the lowest-frequency modes in the rigor-like and post-rigor states of myosin V. (A) Pictorial
representation of the lever oscillation along modes 1 (red) and 3 (blue) in the rigor-like and post-rigor states. (B) Lever-arm motion reported in
spherical coordinates along the lowest-frequency modes. The spherical coordinates Q and h, which correspond to the zenith and the azimuth angle,
respectively, were determined by fitting the coordinates of the lever-arm backbone atoms (aa 754–792) upon optimal superposition of the N, U50,
and L50 subdomains to the equilibrium structure. The circle and square correspond to the orientation of the lever arm in the rigor-like and post-rigor
conformations, respectively. Mode 1 and 3 are essentially perpendicular in both functional states.
doi:10.1371/journal.pcbi.1000129.g007
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N/L50 Subdomains
The interface of the N and L50 subdomains is essentially

preserved along the NMSM path; the angle of 38u between the

corresponding screw axes is too small to observe important effects

at the subdomains interface (see n̂ and l̂ in Figure 9). Helix SH1,

which couples the converter to switch II in the rigor-like state by a

specific H-bond involving Phe 441 and Ala 684, lies at the N/L50

interface; it is not part of either subdomain. The rigor-like position

of helix SH1 is further stabilized by multiple hydrophobic contacts

with the side chains of neighboring amino acids [16], i.e., residues

75, 80, 82, and 85 on the N-terminal, and residues 488 and 490 part

of the relay loop on L50. None of these contacts is lost along the

NMSM transition path. The breaking of the H-bond between Phe

441 and Ala 684 (see above) is an important factor in permitting the

large-amplitude rotation of L50 that is coupled to a rigid-body

movement of the group formed by the relay loop, the SH1 helix, and

the N subdomain. The reorientation of the SH1 helix along with a

local deformation of the region connecting the helix SH1 to the

converter (aa 695–699), which acts as a hinge, results in the observed

downward movement of the latter. This movement weakens the

coupling between the converter and the head domain.

Figure 8. Ca-RMS deviation of the NMSM post-rigor conforma-
tion from the ‘‘target’’ (i.e., the X-ray post-rigor conformation
after energy minimization) as a function of the number of low-
frequency rigor modes included in the optimal superposition.
The rigor modes were first sorted according to their rigor-like/post-rigor
involvement coefficients and then combined as described in Materials
and Methods. Only 14 modes are sufficient to obtain a NMSM
conformation that is at 1.5 Å RMSD from the target structure. The
mode indexes of these 14 highly involved modes are indicated.
doi:10.1371/journal.pcbi.1000129.g008

Table 3. Rigid-body description of the NMSM transition in terms of subdomain screw-axis transformations.

Subdomain Axis Vector v̂ Vector ṽc Q d com

N n̂ 20.84 0.25 0.48 22.28 24.42 50.60 13.7 1.4 4.2

U50 û 20.32 0.68 20.66 22.80 210.70 70.60 10.4 2.0 3.2

L50 l̂ 20.33 0.59 0.74 20.95 212.90 48.80 10.9 0.0 0.9

C ĉ 0.34 0.29 20.89 215.57 10.40 13.50 12.4 2.9 3.7

IQ/LC q̂ 0.74 20.60 20.31 21.70 2.74 21.54 14.4 0.3 6.6

Vectors v̂ and ~vvc correspond to the position and orientation of the screw axis, scalars Q and d to the rotation angle and the translational shift involved in the screw-axis
transformation, respectively. The screw axes for individual subdomains were determined as described in Text S4. The last column reports the intermolecular distances
between the centers of mass (com) of the corresponding subdomains of the rigor-like and the NMSM conformation.
doi:10.1371/journal.pcbi.1000129.t003

Figure 9. The rigor-like to NMSM post-rigor conformational
transition. The energy-minimized rigor structure is color-coded as in
Figure 2. The NMSM post-rigor conformation (referred to as ~XXM in the
text) is shown in grey. The subdomain screw axes used to describe the
transition in terms of individual subdomain rigid-body motions (see
Table 3 and Text S4) are indicated; the screw axis corresponding to the
C subdomain, ĉ, is omitted for clarity and shown in Figure 10E.
doi:10.1371/journal.pcbi.1000129.g009
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The NMSM path suggests that the breaking of the H-bond with

switch II is the key element in the release of the converter. Since

the ‘‘sliding’’ of the SH1 helix between the relay loop and the N-

terminal does not occur in the NMSM state, it appears not to be

directly involved in the release of the converter. Rather, the

change in the interaction pattern of the SH1 helix with its

surroundings, as observed in comparing the rigor-like and post-

rigor structures [16], is a more local event likely to contribute

primarily to stabilizing the post-rigor conformation.

Reorientation of the Lever-Arm
The rigor-like to post-rigor transition promotes a small

reorientation of the lever arm; a swinging motion of ,14u, as

observed from the X-ray structures. The NMSM transition

pathway suggests that this small ‘‘swing’’ is a consequence of the

allosteric communication between the N, C, and L50 subdomains.

The large-amplitude rotation of the N-terminal is coupled to a

translational movement of the converter, as described above. The

tight coupling between the converter and L50 constrains the

conformational freedom of the former and transforms the

translational input from N into a torque about helix HX (see

Figure 10E). This results in a large-amplitude rotation of the

converter that reorients the lever arm, which is the structural

prolongation of the converter helix HZ.

Discussion

The purpose of this paper is to obtain an understanding of the

rigor to post-rigor transition in myosin V. This transition is an

essential part of the functional cycle because it is directly involved in

Figure 10. Structural rearrangement of the myosin subdomains along the rigor-like/post-rigor NMSM path; see also the
corresponding sections in the text. The energy-minimized rigor-like structure is shown in colors; the NMSM post-rigor conformation is in grey
with the nucleotide-binding elements shown in pale colors. The color code for the motor subdomains is the same as in Figure 2. The red arrows
indicate the direction of motion of the subdomains along the NMSM transition. Insets on the left-hand side of each panel help to localize the
structural elements which are being discussed. (A) N/U50 subdomains. Large-amplitude rotation of the N and U50 subdomains coupled to a local
rearrangement in the ATP binding site; the screw axes û and n̂ are shown. (B) Structural transition of the nucleotide-binding elements. The two
perpendicular views show the way switch I approaches the P-loop and moves ‘‘over’’ it. In doing so, the distance between Ser 218 and Thr 170, and
Glu 204 and Lys 174 is substantially reduced (top), as reported in Table 4. In the ATP-bound state, the former pair of residues contributes to the
coordination of the Mg2+ ion, while the latter pair makes a salt-bridging interaction. (C) N/C subdomains. On top is shown the network of H-bonds at
the N/C interface responsible for the coupling. On bottom is shown the large-amplitude rotation of the N subdomain promoting the repositioning of
the converter. The movement of the N-terminal is transmitted to the converter by specific interactions (shown as cyan dashed solid lines) involving
Loop 76–81 (in violet). (D) L50/C subdomains. On the left are shown the large-amplitude motions of the converter and the L50 subdomain, which
contribute to the opening of the U50/L50 cleft; on the right are shown the specific interactions involving the relay helix responsible for the L50/C
coupling (on top) and the effect of the motion of L50 on the position of switch II (on bottom). The large-amplitude rotation of the L50 subdomain,
which completes the opening of the U50/L50 cleft, is coupled to a rigid-body movement of switch II that breaks the rigor-like H-bonding interaction
(Phe 441 - Ala 684) with the SH1 helix (see Table 4). (E) Reorientation of the lever arm. The lever arm, the relay helix, and the SH1 helix are shown in
yellow, red, and magenta, respectively. Along with the orthogonal view (see panel C, on bottom), the picture shows how the displacement of the N
subdomain is transmitted to the converter and transformed into a torque about axis ĉ that reorients the lever arm. The analysis suggests that the
‘‘short swinging’’ of the lever arm as observed in the X-ray structures [36] is a consequence of the rigor-like/post-rigor displacement of the converter.
doi:10.1371/journal.pcbi.1000129.g010

Table 4. Observables that serve to monitor the allosteric mechanism which links ATP-binding to the opening of the U50/L50 cleft.

Subdomains
pair Elements involved Observable Description Rigor Rigor Post Post

X-ray min NMSM X-ray

N/U50 P-loop/Switch I Distance (Å) C.O.M.–C.O.M. 11.9 11.8 11.2 11.4

Angle (deg) P̂/swI?ĤF 39.4 42.3 48.7 67.9

HF/HH Distance (Å) Lys 174/Ca–Glu 204/Ca 15.3 14.5 11.7 11.5

Mg2+ site Distance (Å) Ser 218/Ca–Thr 170/Ca 11.2 10.3 8.9 7.8

Adenosine pocket (aa 111–119,
99–100, 171, 175)

Ca-RMSD (Å) from 1W7J 0.6 0.6 0.9 0.0

Ca-RMSD (Å) from 1W7I 0.5 0.5 1.0 0.2

b-Sheet Angle (deg) b-Sheet (t) 107.5 108.7 94.2 93.3

N/C Loop 76–81/Converter H-bond (Å) Ala 76/O–Ser 700/Oc 4.6 2.8 3.2 9.4

Ser 78/Oc–Ser 700/Oc 4.4 2.8 2.9 9.2

Ser 78/Oc–Ala 757/N 3.0 2.9 3.1 7.4

Ser 78/O–Gly 754/N 3.0 2.9 2.9 5.6

L50/C Relay helix/Converter H-bond (Å) Glu 473/Oe1–Arg 701/NH1 2.9 2.8 3.0 5.2

Glu 473/Oe2–Arg 701/NH2 2.7 2.8 2.8 3.0

Glu 476/Oe–Lys 748/NZ 4.2 2.9 2.9 5.5

Glu 480/Oe–Lys 748/N 2.9 3.0 2.9 3.0

Glu 480/O–Lys 746/N 2.9 3.1 2.8 2.9

Switch II/SH1 Phe 441/N–Ala 684/O 3.0 2.9 3.4 4.9

doi:10.1371/journal.pcbi.1000129.t004
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going from a strongly bound actomyosin complex (after the

powerstroke) to the separated actin and myosin molecules, in

preparation for the re-priming of the latter. The ‘‘trigger’’ of the

dissociation is the binding of ATP to myosin and the resulting

opening of the actin-binding cleft. A fundamental question concerns

the allosteric mechanism by which the local changes induced by

ATP binding to myosin lead to the global change involving opening

of the cleft and lever-arm uncoupling. The present paper uses a block

normal mode analysis of the rigor-like and post-rigor functional

states of myosin V to obtain insights into this mechanism.

The intrinsic flexibility of the myosin molecule, as described by

the low-frequency normal modes, was investigated in the two

functional states. Despite the large-amplitude conformational

change (i.e., the Ca-RMSD between the two structures is 5.2 Å)

the low-frequency modes are very similar in the rigor-like and

post-rigor states, pointing to their ‘‘robustness’’ [40]. The modes

Figure 11. Structural rearrangement of the 7-stranded b-sheet. (A) Side and top views of the central b-sheet are shown on the left- and right-
hand side of the panel, respectively. Individual b-strands, bi, are represented by red and black arrows indicating the direction of the rigor-like and
NMSM post-rigor b-strand vectors, respectively. In the box diagrams, the twist of the entire sheet, t, and the difference in the twist angle between the
individual strands and b7, Dti,7, relative to the rigor-like conformation are monitored along the NMSM path. The former is computed as
t jð Þ~t1,7 jð Þ~arccos b̂b1

:b̂b7

� �
, where b̂b1 and b̂b7 are the unit vectors corresponding to the structural borders of the b-sheet; the latter as

Dti,7(j) = Iti,7(j)2ti,7(0)I, where j = 0 indicates the rigor-like conformation and j = 1 the NMSM post-rigor conformation. (B) The comparison of the
NMSM post-rigor conformation with the structure obtained by the pure rigid-body motion described by the screw axes given in Table 3; see text. The
inset on the left shows the structural location of the central b-sheet in the myosin head.
doi:10.1371/journal.pcbi.1000129.g011

Allosteric Communication in Myosin V

PLoS Computational Biology | www.ploscompbiol.org 14 August 2008 | Volume 4 | Issue 8 | e1000129



identify two dynamic domains: the ‘‘head’’ or motor domain that

is responsible for ATP hydrolysis and actin binding, and the

‘‘neck’’ region connecting the lever arm to the myosin head. In

both functional states, the three lowest-frequency modes corre-

spond to the motion of the neck relative to the head, with

essentially no internal rearrangements in either domain. The

dynamic behavior of the converter subdomain, which is located at

the interface between the head and neck domains, differs between

the rigor and post-rigor states; i.e., the dynamic domains obtained

from the modes show that the converter belongs to the head in the

rigor-like state and to the neck in post-rigor; in fact, the converter

is only weakly coupled to the head domain in post-rigor. Thus, the

post-rigor converter appears free to move to the pre-powerstroke

state to ‘‘re-prime’’ the lever arm, the next conformational

transition in the actomyosin cycle. This conclusion is in accord

with experimental and simulation results indicating that, in the

post-rigor state with ATP bound, there is an equilibrium between

the post-rigor and pre-powerstroke positions of the converter

[18,19]; the latter is stabilized by the presence of the hydrolysis

products, ADP and Pi.

Analysis of the lowest-frequency modes, which dominate the

lever-arm displacements, showed that the lever-arm orientation is

essentially uncoupled from the head domain in both states. In

accord with the above paragraph, the hinge region defining the

structural boundaries of the head and neck domains is located

differently in the two structures; i.e., the hinge region is at the

junction between the converter and the lever arm in the rigor-like

state, and at the end of the SH1 helix (i.e., before the converter) in

post-rigor, as shown in Figure 6B. Thus, the lever arm appears to

be uncoupled from the converter in the rigor-like state and to

move with it in the post-rigor state. The uncoupling in the rigor-

like state makes possible the reorientation of the lever arm without

internal reorganization of the motor domain. Moreover, the lever

arm can move easily in perpendicular directions. This freedom of

movement, as well as the observed twisting motion, is likely to be

involved in the hand-over-hand stepping of myosin V on actin

[2,3]. Possible examples occur when the rigor state is present with

both heads bound to actin and dissociation of ADP from the

trailing head has preceded the strong binding to actin of the

leading head [12,46]. The flexibility of the lever arm in the trailing

head may be required to absorb stress introduced by the

powerstroke of the leading head and prevent dissociation from

actin. Also, in the forward step, flexibility may be required in the

trailing head to permit the motor domain of the leading head to

rebind to actin. Despite the enhanced flexibility observed in the

post-rigor state, the converter is not free to ‘‘spin’’. To acquire

such conformational freedom, something like the ‘‘detached state’’

observed for the scallop myosin head would be required [47].

Unwinding of the SH1 helix in this state leads to a converter that is

essentially free to rotate.

During the powerstroke when myosin is bound to actin, a force is

transmitted from the motor domain to the lever arm. The lever arm

must therefore be coupled to the motor domain in this step of the

cycle. Given the analysis described above, the required coupling

appears not to be present in the rigor-like state, which represents an

actin-bound state. Whether the coupling is already present in the

pre-powerstroke state or occurs later in the cycle, possibly as a

consequence of structural changes induced by the release of the

hydrolysis products and/or by actin binding is not known; the

intrinsic flexibility of the myosin molecule in the pre-powerstroke

state of various myosins is being studied (MC and MK, in progress).

The next set of low-frequency modes provides a description of

the rearrangements within the head domain in going from the

rigor-like to the post-rigor state. Approximately ten additional

modes are required for the global motions of the subdomains,

although a larger number (around 40) are needed for a detailed

representation of the transition pathway. The normal mode

analysis suggests that the primary effect of ATP is to stabilize the

post-rigor structure, rather than to alter the intrinsic myosin

flexibility. There is a small change in flexibility as a consequence of

nucleotide binding as indicated by the slightly different activation

of the modes in the two myosin states.

The involvement coefficients projected on specific structural

elements demonstrate that several modes contribute to the

structural rearrangements in all cases; i.e., no individual mode

gives an adequate description of the complete transition pathway

for any structural element. For example, the rearrangement at the

U50/L50 interface, which is an essential part of the opening/

closing of the cleft, involves at least three modes. The same is true

for the N/U50 and L50/C interfaces, whose rearrangements are

associated with ATP binding and the structural communication

between the actin-binding site and the lever arm; they require

three and four modes, respectively. This confirms that analyses of

conformational transitions of myosin [32,33] and other proteins

[29,48] based on a single mode with a large involvement

coefficient provide at best a rather crude description [49–51].

Given the above, we describe the rigor-like/post-rigor transition

path by an optimal superposition of the required number of low-

frequency modes, as determined from the involvement coefficients.

By using 40 modes of the rigor-like state (out of the total of 5,448

in the block normal mode approximation) the optimal superpo-

sition results in a conformation that is close to the post-rigor

structure. It has a Ca-RMSD of only 1.28 Å as compared with the

rigor-like/post-rigor Ca-RMSD of 5.2 Å. We refer to this structure

as the normal mode superposition model (NMSM) conformation.

The NMSM path (i.e., the one from the rigor-like to the NMSM

conformation) shows a highly coordinated set of movements that

provides new insights concerning the mechanism of the rigor/post-

rigor conformational change. It demonstrates that the coupling

between the local structural changes due to ATP binding and the

global motions of the protein encoded in these low-frequency

modes leads to the allosteric transmission required for the

amplification of the signal. In particular, the path shows the

nature of the coupling between the myosin subdomains and offers

a rational explanation for the mutual exclusion of ATP and actin

binding. The rearrangement of the P-loop and switch I is the

triggering event, in which the two nucleotide-binding elements

come close to each other and move in the post-rigor direction so as

to be able to interact with ATP. This local change initiates the

more global motions in the myosin head. The NMSM path shows

two distinct structural communication pathways coupling the

nucleotide-binding site to the U50/L50 cleft. The immediate

structural consequence of the switch I motion is a partial opening

of the cleft on the U50 side, while the P-loop motion leads to a

large-amplitude rotation of the N subdomain. The tight coupling

of the N-terminal subdomain to the converter through loop 76–81,

which belongs to the former and forms H-bonds to residues in the

latter, results in a translational/rotational movement of the

converter as a consequence of the rotation of the N subdomain.

The translation of the converter promotes a large-amplitude

rotation of the L50 subdomain that leads to the complete opening

of the U50/L50 cleft, presumably followed by the detachment of

myosin from actin. The rotation of the converter coupled to its

translational movement causes the lever arm to move downward

by a small rotation (swinging) in a direction almost orthogonal to

the recovery-stroke, as observed in various myosin X-ray

structures [36]. The position of the converter appears to be

controlled by a main-chain hydrogen bond between switch II (Phe

Allosteric Communication in Myosin V
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441) and the SH1 helix (Ala 684). During the transition to post-

rigor this H-bond is lost as a consequence of a small upward

movement of switch II; i.e., the rigid-body movement of switch II

is initiated by the displacement of b5 coupled to the shear-like

motion of U50, and is completed by the large-amplitude rotation

of L50 that opens the cleft. The uncoupling of the SH1 helix from

switch II results in a large downward movement of the converter

which is released from the motor domain and becomes ready for

the transition to the pre-powerstroke state. This completes the

rigor to post-rigor transition (Figure 12).

The molecular mechanism described by the NMSM model

proposes an important role for the converter subdomain in the

allosteric communication between the nucleotide and actin

binding sites. Mutations that either weaken the coupling between

the converter and both the N-terminal and the L50 subdomain, or

block the converter in its rigor-like position are expected to hinder

the rigor/post-rigor transition and thereby alter the release from

actin. In particular, two residues at the N/C interface (i.e., Ser 78

and Ser 700) and six residues at the L50/C interface (i.e., Glu 473,

Glu 476, Glu 480, Arg 701, Lys 746, and Lys 478), which are all

involved in strong interactions with the converter appear to be

good candidates for mutagenesis. Cross-linking switch II to the

SH1 helix by engineering specific disulfide bridges is an alternative

suggestion. For this type of approach, Phe 441 (part of switch II)

and Ala 684 (part of SH1 helix) appear to be the best candidates.

The key H-bonding interaction between switch II and helix

SH1 is not present in the available rigor-like structures of myosin

II [36,52] or myosin VI [53]. In rigor-like myosin V, this H-bond

is allowed by the ‘‘down’’ position of switch II that corresponds to

the largest extent of cleft closure that has been observed [36]. By

stabilizing the unique position of switch II, this interaction

facilitates the large-amplitude rotation of the L50 subdomain,

allows a fully closed cleft, and ‘‘locks’’ the converter in its rigor-like

position. Thus, this hydrogen bond is expected to increase the

conformational stability of the strong actin-binding states of

myosin and play a role in the processive nature of myosin V.

An important structural change that has been noted by others

in the rigor/post-rigor conformational transition [15,16] is the

flattening (partial untwisting) of the 7-stranded b-sheet, which is

part of N and U50 subdomains; the crystal structures show an

untwisting by about 14u (from 107.5u to 93.3u). The NMSM

evolution suggests that the observed untwisting is highly

cooperative and all strands significantly contribute to the

difference in twist. The contributions of pairs of neighboring

strands are small but additive, leading to the overall flattening. In

going from the upper (b7, close to the active site and part of U50)

to the lower (b1, far from the active site and part of N) boundaries

of the b-sheet along its longitudinal axis, the untwisting

corresponds to increasing displacements of the individual strands.

Such an untwisting, or flattening, is caused by the fact that, if the

Figure 12. Molecular mechanism of the rigor-like to post-rigor transition as described by the NMSM pathway. The molecular surface of
the myosin subdomains is shown in tones of grey; the nucleotide is in green. Key residues at the subdomain interfaces that are responsible for the
coupling between the myosin subdomains are depicted in cyan, magenta, orange, and red; they correspond to the P-loop, switch I, loop 76–81, and
the relay helix, respectively. These allosteric connectors couple the local changes due to ATP binding to the more global motions of the myosin
molecule. The ATP-binding signal is transmitted to the U50/L50 cleft through two distinct communication pathways (shown as heavy green lines; the
large dot indicates the approximate origin of the signal). Path a involves the U50 subdomain and is consistent with the interpretation of three-
dimensional electron cryo-microscopy reconstructions by Holmes et al. [60]. Path b involves the N-terminal subdomain, the converter and the L50
subdomain. In the latter, the transmission of the ATP binding signal is the consequence of the coordinated movement of the three subdomains
described by the NMSM path (see Video S1). The allosteric communication results in the opening of the U50/L50 cleft and the uncoupling of the
converter from the motor head.
doi:10.1371/journal.pcbi.1000129.g012
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b-sheet rigidly followed the N and U50 rotation, at least five H-

bonding interactions at the N/U50 interface would be lost. To

retain the hydrogen bonds the b-sheet partly untwists and stores

the energy associated with its untwisting. This analysis is in

agreement with the qualitative description of Yang et al. [36]

based on visual comparison of different myosin II structures. Once

binding to actin has taken place, partial switch II opening results

in phosphate release, which is thought to be required for the

powerstroke, at least in myosin V. If the powerstroke involves both

the P-loop and switch I moving back to their rigor-like position

under the action of actin, the energy stored in the b-sheet could be

released as the latter assumes its low-energy fully twisted

conformation. At this stage of the cycle, a force can be actively

transmitted to the converter, so that the b-sheet now works as a

‘‘transducer’’, as previously suggested [16]. According to this

interpretation, the b-sheet acts primarily as an ‘‘adapter’’ in the

free myosin transitions corresponding to the recovery-stroke

(rigor/post-rigor and post-rigor/pre-powerstroke) and as a

‘‘transducer’’ in the actin-binding states associated with the

powerstroke.

The description of the transition is in accord with the allosteric

concept that the initial (rigor-like) and the NMSM post-rigor-like

structure are in equilibrium [54], with the former lower in free-

energy than the latter in the absence of ATP. Once ATP binds, the

free-energy surface is altered so that the NMSM structure, as well as

the actual post-rigor structure, becomes lower in free energy. It is

possible, in analogy with the suggestion for other allosteric systems

[55–57], that ATP binding occurs to a higher free-energy NMSM-

like conformation, which has only a small population in the absence

of ATP, but in its presence is transformed to the now more stable

post-rigor state. In this scenario, the role of ATP would be to capture

the fluctuations of the nucleotide-free myosin that promote the rigor

to post-rigor conformational transition. It is possible, also, that partial

ATP binding occurs already to the rigor-like conformation

accompanied by local changes in the P-loop. ATP would then be

able to recruit switch I and force its closing movement via long-range

electrostatic interactions. In this alternative scenario, the role of the

interactions between myosin and the nucleotide would be to

optimally select and combine the low-frequency modes naturally

encoded in the protein to promote the conformational transition.

Which of these two possibilities actually occurs could be different for

free myosin and myosin bound to actin since the fluctuations (i.e.,

those leading to the NMSM state) are expected to be more restricted

in the latter than in the former; also, the equilibrium between the

rigor and post-rigor states would be shifted toward the former in the

bound state. Further experiments and simulations are required to

resolve this question.

Supporting Information

Video S1 The NMSM transition pathway. The movie shows the

rigor to post-rigor transition as described by the optimal

superposition of the 40 lowest-frequency rigor modes. The rigor

(thick tube) and the post-rigor (thin tube) structures are shown in

colors and grey, respectively. The color code is as follows: the N,

U50, L50, and C/IQ subdomains are colored in orange, blue, red,

and lime, respectively; the P-loop, switch I, switch II, SH1 helix,

and loop 76–81 connectors are colored in cyan, magenta, yellow,

wheat, and pink. The movie shows a coordinated motion of the

myosin motor subdomains in which the nucleotide-binding

elements (P-loop and switch I) approach the binding site, the

lever-arm is displaced downward, and the U50/L50 cleft opens.

Found at: doi:10.1371/journal.pcbi.1000129.s001 (3.62 MB

MOV)

Video S2 The NMSM rearrangement of the P-loop and switch

I. The movie shows the rigor to post-rigor rearrangement of the P-

loop and switch I nucleotide-binding elements as described by the

optimal superposition of the 40 lowest-frequency rigor modes. The

rigor (thick tube) and the post-rigor (thin tube) structures with the

N-terminal subdomain aligned are shown in colors and grey,

respectively. The ATP molecule in the post-rigor structure is

shown in white as a stick representation. The color code is as

follows: the N and U50 subdomains are colored in orange and

blue; the P-loop, switch I, and switch II linkers are colored in cyan,

magenta and yellow, respectively. The movie shows the way switch

I approaches the P-loop and moves ‘‘over’’ it to coordinate the

nucleotide.

Found at: doi:10.1371/journal.pcbi.1000129.s002 (10.17 MB

MOV)

Text S1 Preparation of the structures.

Found at: doi:10.1371/journal.pcbi.1000129.s003 (0.10 MB PDF)

Text S2 Normal mode calculation and analysis.

Found at: doi:10.1371/journal.pcbi.1000129.s004 (0.10 MB PDF)

Text S3 Normal mode analysis of the rigor to apo post-rigor

transition.

Found at: doi:10.1371/journal.pcbi.1000129.s005 (0.16 MB PDF)

Text S4 Screw axis determination.

Found at: doi:10.1371/journal.pcbi.1000129.s006 (0.72 MB PDF)

Text S5 Flexibility of the subdomain linkers.

Found at: doi:10.1371/journal.pcbi.1000129.s007 (0.07 MB PDF)

Table S1 Myosin V subdomains and linkers.

Found at: doi:10.1371/journal.pcbi.1000129.s008 (0.03 MB PDF)

Table S2 Myosin V secondary-structure elements.

Found at: doi:10.1371/journal.pcbi.1000129.s009 (0.04 MB PDF)

Table S3 Rigor-like and post-rigor normal mode overlaps.

Found at: doi:10.1371/journal.pcbi.1000129.s010 (0.03 MB PDF)

Table S4 Rigor-like and post-rigor normal mode frequencies.

Found at: doi:10.1371/journal.pcbi.1000129.s011 (0.03 MB PDF)

Table S5 Involvement coefficients specialized for the rigor-like/

post-rigor transition of the motor domain and individual

subdomains.

Found at: doi:10.1371/journal.pcbi.1000129.s012 (0.03 MB PDF)

Table S6 Inter-subdomain center of mass distances from the

rigor-like to the post-rigor and NMSM structures.

Found at: doi:10.1371/journal.pcbi.1000129.s013 (0.03 MB PDF)

Table S7 Rigor-like/NMSM Dt values between pairs of

neighboring strands of the central b-sheet.

Found at: doi:10.1371/journal.pcbi.1000129.s014 (0.03 MB PDF)

Table S8 Flexibility of the converter b-sheet.

Found at: doi:10.1371/journal.pcbi.1000129.s015 (0.04 MB

PDF)

Figure S1 Center-of-mass displacement of the motor subdo-

mains along the rigor to NMSM post-rigor transition. The rigor

structure is shown in colors, the NMSM post-rigor conformation

in grey. Black and red spheres indicate the position of the

subdomains centers of mass in the rigor-like and the NMSM post-

rigor conformation, respectively. The downward translation of

converter (C) in the opposite direction to the translational motion

of both N and U50 weakens the coupling between the neck region

and the head domain.

Found at: doi:10.1371/journal.pcbi.1000129.s016 (2.44 MB TIF)
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