
Representing Where along with What Information in a
Model of a Cortical Patch
Yasser Roudi1,2*, Alessandro Treves2,3

1 Gatsby Computational Neuroscience Unit, UCL, United Kingdom, 2 Cognitive Neuroscience Sector, SISSA, Italy, 3 Centre for the Biology of Memory, NTNU, Norway

Abstract

Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete
variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously
represent information about the position and identity of objects, and maintain this combined representation when the
object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In
this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical
network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously
representing their spatial position. Our results show that two factors are important in making this possible: A) a metric
organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric
connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in
the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about
identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by
global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have
long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive
representation of the identity and location of objects.

Citation: Roudi Y, Treves A (2008) Representing Where along with What Information in a Model of a Cortical Patch. PLoS Comput Biol 4(3): e1000012. doi:10.1371/
journal.pcbi.1000012

Editor: Karl J. Friston, University College London, United Kingdom

Received August 24, 2007; Accepted January 29, 2008; Published March 21, 2008

Copyright: � 2008 Roudi Y, Treves A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support by Human Frontier Grant RGP0047/2004-C, National Institute of Mental Health Grant R01MH62447, and Gatsby Charitable
Foundation.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yasser@gatsby.ucl.ac.uk

Introduction

Visual object perception, which is often effortless despite partial

occlusion or changes in view, shading, size, etc., has been

associated to attractor dynamics in local cortical circuits [1–5].

A single pattern of neuronal activity would be associated with an

object, and retrieved when an input cue engages the correspond-

ing basin of attraction. This would lead to a distribution of activity

over a cortical patch that can be read out by other areas and can

persist even after the object is removed. Attractor dynamics can be

realised in neuronal networks by Hebbian modifications of

synaptic weights on the recurrent connections of a local population

of cortical neurons [6]. The experimental observation of persistent

activity in monkey prefrontal cortex (PFC) [7–9] and inferior

temporal cortex (IT) [10–12] during memory related tasks

supports the idea that attractor dynamics is involved in such tasks.

The above-mentioned paradigm is conceptually very successful

in explaining how information about the identity of an object can

be retrieved from noisy input and maintained in working memory,

even when the input is transient. However, in day to day life, the

identity of an object is hardly the only type of information that one

needs to retrieve and maintain about it. If you look at a scene for a

short time and then turn your head away, you will still remember

details about what objects were present in the scene and where

they were located. You can even do this if many of the objects in

the scene were occluded. These abilities allow us to maintain a

coherent representation of our surrounding environment and are

crucial for most real world visually guided behaviours. Visually

guided behaviour often requires extracting information about

identity of objects (what information) from noisy sensory input, and

combining this what information with information about the

position of objects (where information). It also requires maintaining

this combined representation of position and identity of objects in

working memory after the visual input is removed. The underlying

neural mechanisms for these abilities are, however, unknown. In

this paper, we analyse a network model of how this may be

accomplished in the brain.

A great deal of experimental work has been focused on

understanding this issue [13–18]. Single cell recordings from PFC

during the delay period of a delay match to sample task show that

neurons in this area can maintain information about the

conjunction of position and identity [13,14]. Rao and colleagues

[13] also found that some PFC neurons can change their selectivity

from conveying what information to conveying where information

when the type of information that is required by the task is

changed. Selectivity for object-position pairs is further supported

by the presence of retinotopically organised maps in PFC regions

that are involved in identity working memory tasks [16].

Furthermore, a recent neuroimaging study by Sala and Courtney

[17] shows that dorsal and ventral PFC can maintain an integrated

representation of position and identity when it is relevant to the

task, but represent position or identity when only one of them is
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task relevant. Although most studies that address the issue of

combining what and where information have focused on PFC,

similar observations have been reported in IT. While some studies

report a considerable position invariance in the response of IT

neurons [19–21], this view has been challenged by others. More

recent studies show that IT neurons can have small receptive fields

and can convey detailed information about the position as well as

the identity of objects [22,23]. Furthermore, it has been reported

that the receptive fields of IT neurons are much smaller in natural

scenes when compared to plain background and are closer to the

fovea, thus conveying increased spatial information in their

response [24]. Consistent with these properties, Hung et al [25]

have shown how, using a simple linear classifier, spatial position

can effectively be read off the response of IT neurons.

Neuroimaging studies also show that temporal visual areas, just

like V4 [26], can be involved in processing the spatial information

of objects as well as their identity [15]. Although these

neurophysiological studies have not directly assessed the ability

of IT neurons to maintain combined what and where information

after removing the stimulus, the possibility should be considered

that, like PFC, delay activity in IT can also transmit where

information in addition to what information. The degree to which

the neural code in IT and PFC is committed to one versus the

other most likely depends on task requirements, attention or

learning [15,17,22,23,27,28].

In this paper, we study how a recurrent network can retrieve

what information from noisy/transient input, while simultaneously

representing where information. In the model that we present here,

we consider a recurrent network embedded in a two dimensional

tissue, and to each object associate a single discrete pattern of

neuronal activity. These patterns do not have any spatial

preference and are stored in the synaptic weights of the recurrent

connections trough Hebbian learning. We show that, when the

connectivity between neurons is metrically organised (that is,

nearby neurons are more likely to be connected than those far

apart) [29–31], the network can retrieve these patterns in a

spatially focused way by maintaining localised retrieval states (or

‘‘retrieval bumps’’), similar to what has been previously studied in

one dimensional networks [32,33]. A localised retrieval state is a

stable and localised pattern of activity which has a high correlation

with one of the stored patterns, but low correlation with the others.

The idea that we elaborate here is to use the position of the bump

to represent the position of the object, while the distribution of

activity inside the bump represents its identity (In this paper, when

we say that a pattern of neuronal activity ‘‘represents’’ a variable,

we mean that that variable can be decoded from the pattern of

activity). In this way, ideally a continuum of firing patterns would

represent the object in different positions. The difficulty in

implementing this idea, as we show, is that the retrieval bumps

cannot be localised at any target position on the surface of the

network, but rather on a limited number of discrete positions. To

resolve this problem we need to introduce some additional

mechanisms. We show that it takes small modulations of neuronal

gain to stabilise the bump on arbitrary positions on the tissue. The

gain modulation can be provided or at least initiated by the cue

that initiates the retrieval of the pattern, or it can be provided by

other areas, e.g. in the form of attentional signals [34,35].

Importantly, stabilising the bump at a given position through such

gain modulation affects the process of retrieving what information

from stored representations. We quantify this effect and show that

it can be negative, that is a trade-off between the representation of

what information and where information, or it can be positive.

Whether the effect is positive or negative depends on the average

neuronal gain. When neuronal gain is high the effect is negative

but it is positive when the gain is low. Moreover, when the cue is

incomplete (that is when the stimulus is noisy or occluded)

localising the cue in the gain modulated part of the network

further helps identity retrieval. We finally discuss the possibility of

retrieving multiple patterns, in the form of multiple bumps of

activity. The distribution of activity inside each bump again

reflects the identity of the corresponding object, and it can in

principle be maintained in working memory while a serial

attentional mechanism facilitates retrieval of another memory

pattern at a different position.

Model
Firing rate description of the network. In our model of a

cortical patch, we assume that the network responds to stimuli

with attractor dynamics, thus autoassociatively retrieving activity

patterns from memory. At any given time, the response of a

neuron indexed i is represented by its firing rate ni$0, which is

determined by the input hi that it receives. We assume that the

input to a neuron at time t is related to the firing rate of

presynaptic neurons projecting to it through

hi(t)~
X
j=i

Jijnj(t), ð1Þ

where Jij is the weight of the connection from neuron j to neuron i.

Given the input hi(t), the output firing rate at time t+1 is then

determined through a threshold-linear gain function

ni(tz1)~giF(hi(t){Th), ð2Þ

where gi is the linear gain of neuron i, and Th is its threshold, such

that ni = giF(hi–Th) = 0 if hi,Th, and ni = giF(hi–Th) = gi(hi–Th) if

hi$Th. Such rate based description of neurons can be derived from

a more complicated model comprised of spiking neurons with

conductance based synaptic connections, and it captures many

essential features of the behaviour of the spiking model [36,37].

Author Summary

Forming a coherent picture of our surrounding environ-
ment requires combining visual information about the
position of objects (where information) with information
about their identity (what information). It also requires the
ability to maintain this combined information for short
periods of time after the stimulus is removed. Here, we
propose a theoretical model of how this is accomplished in
the brain, particularly when sensory input is incomplete,
and missing what information should be supplied from
what is stored in memory. The main idea is that local
connectivity in cortical networks can allow the formation
of localised states of activity. Where information can then
be represented by the position of such ‘‘bumps’’, and what
information by the fine structure of the neuronal activity
within them. We show that there is a difficulty with
implementing this idea: noise and heterogeneity in
connectivity cause bumps to drift, thereby losing where
information. This problem can be solved by incorporating
a localised increase in neuronal gain; this, however,
interferes with retrieving what information and maintain-
ing it in working memory. We quantify this interference via
theoretical analysis of the model and show that, despite
the interference, the proposed mechanism is an efficient
one in retrieving what information while representing
where information.

Where and What in a Cortical Patch
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In this paper, we do not explicitly model inhibitory neurons.

However, we model their effect on the dynamics of the network by

adjusting the threshold of excitatory neurons, such that the mean

activity of the network remains constant, i.e. at all times we have

1

N

X
i

ni(t)~a, ð3Þ

where a is a constant. The rationale behind having a fixed mean

activity at all times is that cortical networks are believed to operate

in a balanced state [38–41]. In the balanced state, the inhibitory

feedback to excitatory neurons is automatically adjusted such that

the mean activity is roughly constant, regardless of whether the

network is in the background state or engaged in memory retrieval

[42,43]. In our network we achieve this constant mean activity

state by adjusting the threshold: at each time step, we first compute

the input to all neurons via Eq. (1). We then choose the threshold,

Th, such that when these inputs are passed through the gain

function, Eq. (2), the constant mean activity condition, Eq. (3), is

satisfied. In this case, the inhibitory feedback is effectively included

in the threshold.

Stored memory patterns and synaptic weights. We

assume that the network has ‘‘learnt’’, that is, stored, p different

patterns of activity, each representing an object. Each pattern of

activity is represented by a vector

gm~(gm
1, gm

2, . . . , gm
N ), m~1, . . . , p ,

where gi
m = 1 if neuron i is active in pattern m (that is selective for

the corresponding object) and gi
m = 0 if it is not. In our model we

assume that the stored patterns are generated from the binary

distribution

gm
i ~

1 with probability a

0 with probability 1{a,

�
ð4Þ

independently for each unit and each pattern, and we have taken

the mean activity of the patterns to be the same as the mean

activity of the network fixed by the threshold (see Eq. (3)). These

patterns are stored through modification of the synaptic weights Jij

such that the dynamical attractors of the network include these

predefined patterns. One functional form for the synaptic weights

which has been widely used in the literature [44,45] is a sparsely

coded version of the ‘‘covariance Hebbian learning rule’’ [44,46].

This learning rule assumes a linear summation of contributions

from the storage of each pattern

Jij~
$ij

Ca2

Xp

m~1

(gm
i {a)(gm

j {a), ð5Þ

where C is the average number of connections per neuron, vij = 1

if there is a connection between neurons i and j, and vij = 0

otherwise [47]. Based on this learning rule, the weight of the

synapses that originate from a given neuron can be both negative

and positive. This might seem in contradiction with the Dale’s law

and our initial assertion that we would only model excitatory

neurons. However, as elaborated in section ‘‘Synaptic weights that

follow Dale’s law’’ (see Materials and Methods), one can think of

adding a background weight to these values of Jij, such that all

weights become positive. The added background weight can then

be included in the threshold, without further effects on the

dynamics of the network.

Metrically organised versus randomly connected

networks. In the model we present here, the way neurons are

connected to each other plays a major role in determining whether

the network can represent what and where information together. In

general, we can distinguish between two types of neuronal

connectivity. The first one is the case of a randomly connected

network. In this case each vij in Eq. (5) is set to zero or one with a

probability that is independent of i and j, i.e.

Pr ($ij~1)~C=N: ð6Þ

This is the case which has been considered in most previous

analyses of autoassociative networks. The alternative is a network

with metric connectivity in which the probability that a connection

exists between two neurons depends on their distance i.e.

Pr ($ij~1)~ˆ(jri{rj j):ˆij , ð7Þ

where ri and rj are position vectors of neurons i and j in the 2-

dimensional (2D) cortical tissue and ˆ is a smooth function.

Associative networks with metric connectivity have recently

attracted attention [32,33,48–50] and will be used in the model

that we present here.

Local overlap and self-consistent equations. To assess

whether the activity of the network at a given time can reflect

which object was presented to it in the past, we need to quantify the

degree of correlation between the stored patterns and the activity of

the network. We do this by measuring the local overlaps. The local

overlap of pattern m at position i is defined as [32,33]

m
m
i :

1

Ca

X
j

$ij(g
m
j {a)nj : ð8Þ

Intuitively, mi
m is the difference between the level of activity of the

population of neurons selective for pattern m in the neighbourhood

of neuron i, and the average activity of all neurons in the

neighbourhood of neuron i. The sum of mi
m over i, normalised with

the number of neurons, is simply the dot product overlap (minus

the mean activity, a) between the stored pattern m and the activity

of the network, and is denoted by mm,

mm~
1

N

X
i

m
m
i ~

1

Na

X
j

gm
j nj{a: ð9Þ

This implies that if the sum of mi
m over i for one pattern, say m = 1,

is large, while for the others, say m ? 1, it hovers around zero, a

simple dot product decoding can point at it as a retrieved pattern.

In addition to reflecting which pattern is retrieved, the local

overlap reflects, in its distribution over i, any emerging spatial

structure in the distribution of activity in the network. Thus from

the local overlap one can assess the encoding of both what and

where information (see the following section, ‘‘Metric connectivity

can produce localised states in 2D’’, for an example of how we use

this in practice).

The local overlap is also important for a more technical reason:

it turns out to be a natural parameter for which one can easily

write a self-consistent equation whose solutions describe the

attractors of the network, as shown in our previous work [32,33]

and summarised in section ‘‘Self-consistent equations’’ in the

Where and What in a Cortical Patch
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Materials and Methods. By analysing such self-consistent equation

one can determine whether pattern selective bumps of activity

exist or not. In section ‘‘Self-consistent equations’’ (Materials and

Methods) we show that, for our network, the self-consistent

equations take the following form

mi~
1

C

X
j

ˆijgj7 g

a
{1

� �
Fj

g

a
{1

� �
mj{Th

� �
8
g
, ð10Þ

in which mi is the local overlap with the retrieved pattern, Ææg

represents an average over the distribution of {g} (see Eq. (4)) and

F̄j is defined in Eq. (24). Intuitively, F̄j is the gain function in Eq.

(2), smoothed out with a Gaussian kernel whose variance is

proportional to the storage load, defined as

a~
p

C
; ð11Þ

see Eq. (29).

By solving Eq. (10) for mi, one can find the steady-state

distribution of activity in the network, when e.g. pattern m is

retrieved, through the following equation

ni~giF
gm

i

a
{1

� �
mizzi{Th

� �
, ð12Þ

where zi is a zero mean Gaussian random variable whose variance

is given in Eq. (29). The possibility of having retrieval bumps can

be analysed through Eqs. (10) and (12) [32,33]. The upshot of such

analysis is that when the probability of connection, ˆij in Eq. (7), is

such that a significant number of connections to each neuron

comes from nearby neurons, the solution of Eq. (10) can depend

on i and therefore the local average of ni can be higher in some

areas and lower in others. We will show examples of such localised

retrieval states in the next section.

Results

Metric connectivity can produce localised states in 2D
In what follows, we show an example of a retrieval bump in a

2D recurrent network with metrically organised connectivity. We

consider a two dimensional network containing N = 4900 neurons

in total. The neurons are arranged on a regular lattice with 70

neurons on each side and distance l between neighbouring sites.

The connections between neurons have a metric structure: a

neuron in position ri is connected to a neuron in position rj with

probability

Pr ($ij~1)~
0:05Nl2

2ps2
exp ({

jri{rjj2

2s2
): ð13Þ

In the simulations reported here the width of the connectivity, s, is

set to 7.5l. Since l is the distance between two adjacent neurons,

this means that the probability that two adjacent neurons are

connected to each other is ,0.7. Experimental data estimate this

probability to be 0.5–0.8 [30]. The gain of all neurons in the

simulations reported in this section is set to a background level

g = 0.5.

At the beginning of the simulation a 15615 square centred on

the neuron in position (58,58) is chosen. The activity of neurons

inside this square are initialised to their activity in the first stored

pattern while the activity of other neurons are set to zero, that is in

the beginning of simulation ni~g1
i if ri is in the square and ni = 0 if

ri is outside it. In this way at the beginning of the simulation the

dot product overlap with the first pattern and the others have the

following values

m1(t~0)~
1

Na

X
i

g1
i ni{a&0:037

mm=1(t~0)~
1

Na

X
i

gm=1
i ni{a&0:

Fig. 1A shows the local overlap with the cued pattern (m = 1) at

the beginning of a simulation. The local overlap (Eq. (8)) with the

cued pattern after 200 synchronous updates is shown in Fig. 1B

and the distribution of activity {ni}, also after 200 time steps, is

shown in Fig. 1C. We see that the activity of the network is

concentrated on a part of the 2D network, and so is the local

overlap. The important point is that this final pattern of activity

has a high dot product overlap with the cued pattern but not with

other stored patterns, i.e.

m1(t~200)~
1

Na

X
i

g1
i ni{a&0:8

mm=1(t~200)~
1

Na

X
i

gm=1
i ni{a&0:

Thus by calculating these dot products, or equivalently calculating

the sum of the local overlaps mi
m over i, in the end of the simulation

we can say which pattern was presented, i.e. in this example the

first pattern.

The spatial distribution of activity would have been different

(Fig. 1D), if instead of the probability distribution in Eq. (13), we

had used a uniform distribution

Pr ($ij~1)~C=N~0:05:

In this case, too, by cueing one of the patterns, as we did for the

metrically organised network, after 200 time steps, we have

m1(t = 200)<0.8 and mm?1(t = 200)<0, thus indicating retrieval of

the pattern. The difference between the two connectivity models

emerges, however, in the final distribution of activity. Whereas in

Fig. 1D the activity is distributed uniformly across the network (at a

gross spatial scale, since at a fine scale individual units are activated

in relation to their selectivity for the cued pattern), in Fig. 1C the

activity is localised over a portion of the 2D network. So, metric

recurrent connections, as predicted by the mathematical analyses of

attractor states and as confirmed by many other simulations, allow

activity to stabilise in spatially modulated distributions.

Even though Fig. 1 shows the possibility of localised retrieval in

the network with the Gaussian connectivity in Eq. (13), a critical

observation is that in Fig. 1B the final local overlap is in a different

position than the initial cue (Fig. 1A). The trajectory that the peak

of the local overlap follows during the retrieval process is shown in

Fig. 2. The green square shows the peak at the beginning of the

simulation, before any updates take place (Fig. 1A), and the red

circle shows the peak after 200 time steps (Fig. 1B). It is clear that,

during retrieval, the ‘‘bump’’ of activity drifts away from its initial

position. This raises the question addressed in this paper, of

whether where information in the cue can be preserved by spatially

modulated attractor states.

Where and What in a Cortical Patch
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Metric connectivity alone is not sufficient to preserve
where information

Can we code the position of an object by the position of the

peak of the retrieval bump? The answer to this question depends

on whether the retrieval process can end with the peak of the

bump on the intended position. We first examine whether the

position of the cue (which can be thought of as the position of an

object in the retina) determines the positions of the retrieval bump.

If the retrieval bump appears at the same position as (or is

uniquely determined by) the centre of the cue, it is possible to read

the activity of the network and simply decode both what

information, that is, which cue has been presented (the pattern

with the highest overlap with final activity), and, in addition, where

it has been presented: object position is simply coded by the

position of the centre of the bump.

Continuous attractors are fragmented by superimposed
memories

To examine the relation between the position of the initial cue

and the final position of the retrieval bump, we ran simulations in

which the position of the initial cue was systematically changed

across the network and the distance between the position of the

retrieval bump and the position of the initial cue was measured. In

Fig. 3, we summarise the results from simulating a network of

70670 neurons with the Gaussian connectivity pattern Eq. (13)

with s = 7.5l, as used in Fig. 1. At the beginning of each trial, the

Figure 1. Short-range connectivity allows localised attractor states, but activity drifts away from the position of the cue. The network
is comprised of N = 70670 = 4900 neurons, each connected to C = 0.05N other neurons, chosen using the Gaussian distribution in Eq. (13). The gain of
all neurons is fixed to a uniform background value g = 0.5 and we have p = 5 and a = 0.2. (A) The local overlap with the cued memory pattern at the
beginning of a simulation. In the beginning of the simulation a 15615 square centred on the neuron in position (58,58) is chosen. The activity of
neurons inside this square is set to their corresponding activities in the first pattern, and the rest of the neurons are silent. (B) The local overlap after
200 synchronous time steps. (C) The activity distribution across the network after 200 synchronous time steps. (D) The distribution of the activity of
the neurons in an identical network operating with identical cue and parameters, except that recurrent connectivity is random, i.e. each neuron is
connected to other neurons with probability C/N = 0.05. Whereas the distribution in (C) is localised in space, in (D) the activity is distributed across the
network. Note that in both cases (the network with metric connectivity and the one with random connectivity), the cued pattern has been
successfully retrieved. This can be seen by measuring the overlap between the network activity and the cued pattern and comparing it with its
overlap with non-cued ones (see the text): after 200 time steps, the overlaps, mm (that is the sum of the local overlap mi

m over i; see Eq. (9)), are
m1(t = 200)<0.8 and and mm?1(t = 200)<0, indicating the retrieval of the cued pattern. Periodic boundary conditions are assumed here and elsewhere
in this paper.
doi:10.1371/journal.pcbi.1000012.g001

Where and What in a Cortical Patch
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first pattern was cued by initialising the activity of neurons in the

following way: ni~g1
i , if neuron i was within a 15615 square,

whose centre was varied, across trials, over the entire network;

while ni = 0, if neuron i was outside the square. The activity of all

neurons was then synchronously updated for 200 time steps and

the local overlap with each pattern was monitored. Fig. 3A shows

that the position of the bump at the end of each trial (red circles)

does not match the peak of the local overlap with pattern 1 at the

beginning of the trial (green squares). The bump drifts away from

its initial positions, and stabilises on one of, in this particular case,

4 final positions. This small number of final stable positions

indicates that one cannot decode from the final position of the

retrieval bump where the cue was located, at least not with high

accuracy. In fact, by looking at the final position of the bump, one

might say whether the initial position of the cue was among the 23

initial positions that converge to the upper left red circle or among

the 10 initial positions that converge to the lower right red circle,

but nothing more.

Relation to continuous attractors without stored memory
The small number of final stable positions of the bump

resembles what has been noticed before in recurrent networks

with distance dependent weights between neurons but without

stored memory patterns. In such models the synaptic weight

between two neurons is generally taken to be excitatory at short

distances while inhibitory at long distances [51–58]. The distance

between two neurons in these models can be anatomical distance,

or distance, in the feature space, between the features that the

neurons are selective for. Models of this type have been used to

conceptualise how local networks of orientation selective neurons

in visual cortex [52], head-direction neurons [53], location

selective neurons in prefrontal cortex [54] and hippocampal

neurons [57,58] can maintain selectivity after the external input

has been removed. Studies on rate based models [51–53] as well as

networks with spiking neurons [54–56] show that, under very mild

conditions, the stable activity profile of these networks is of the

form of a localised ‘‘bump’’. If the network is strictly homoge-

neous, the bump can potentially exist anywhere on the network,

and it can be smoothly moved from one position to the other. Any

small inhomogeneity in the network, however, fractures the

continuum of solutions, which therefore represents an ideal limit

case, and stable bumps are allowed only at a number of discrete

positions [53,57,59–61]. Coming back to the associative memory

network with metric connectivity, it is clear that inhomogeneity is

an unavoidable part of its overlaid memory structure. Synaptic

Figure 2. During retrieval, the peak of the local overlap drifts
away from its initial position. This figure shows the trajectory that
the peak of the local overlap follows during the simulation reported in
Fig 1. The green square represented the position of the peak of the
local overlap at the beginning of the simulation (Fig. 1A) and the red
circle represents the position of the peak after 200 time steps (Fig. 1B).
Over the first ,40 time steps the local overlaps drifts until it settles into
an equilibrium state.
doi:10.1371/journal.pcbi.1000012.g002

Figure 3. Steady-state activity bumps are only weakly correlated with cue position, in the constant gain model. This graph illustrates
how the position of the cue affects the position of the bump after retrieval is completed. Cue position (the centre of a 15615 square window) was
chosen on a 767 grid with grid spacing 10, whose vertices are shown in (A) as green squares. The red circles show the position of the peak of the
local overlap, as it drifted away from the linked green square, over 200 time iterations of the simulated retrieval process. All runs in this example
resulted in successful retrieval, i.e. the overlap between the final activity of the network and the cued pattern was higher than with other patterns. (B)
The distribution of the distances between the centre of the cue and the centre of the local overlap after 200 time steps. In the legend, d is the
distance averaged across all trials. The neuronal gain in this network is g = 0.5 and the number of stored patterns is p = 5.
doi:10.1371/journal.pcbi.1000012.g003
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weights are required to be different from each other in such a

network, to support the retrieval of memory patterns, a situation

where a neuron can be active while its nearest neighbour is

inactive. As a result, a retrieval bump in our model cannot be

maintained at any arbitrary position on the network.

Scaling of the number of stable positions
Even though the final position of the bump cannot accurately

tell where the cue was initiated, it may still be able to code for a

large number of positions in a network with realistic size. This

happens if the number of final stable positions increases with the

size of the network. To examine this relation, we scaled up the

simulated network. The result of such scaling analysis is reported

in Fig. 4, which shows the number of final positions resulting with

different network sizes, while keeping the number of connections

and the width of connectivity constant. One sees a roughly linear

increase in the number of stable bump positions.

The approximately linear scaling of the number of final

positions with network size indicates that a large number of

positions can be represented in realistically large networks, but not

any arbitrary position: with our regular 2D lattices and our

parameters, the number of stable bump positions is about one

thousand times smaller than the number of lattice nodes.

Furthermore, the few stable positions of the retrieval bump are

different for different patterns (data not shown). This makes the

representation of position dependent on object identity and thus

hard to decode. We ask, therefore, whether it is indeed possible to

stabilise bumps at any arbitrary position. This is discussed in the

following sections.

Gain modulation and bump localisation
In this section we show that the bump of activity can be

stabilised on an arbitrary position on the network if neurons

around that position have a slightly higher linear gain than the rest

of the neurons. This increase in the linear gain applies to all

neurons in that area in the same manner, whether they are

selective for the cued pattern or not; that is, it is not pattern

selective and solely reflects object position. This local gain modulation

can be triggered by an attentional mechanism that modulates the

responsiveness of neurons in the part of the network which

corresponds to the position of the object. It could also be produced

by the pattern itself: when the cue to initialise retrieval is given to

the network, the mean activity of the part of the network that

receives the cue would be higher than the rest of network. This

could trigger changes in the gain of the neurons that may last for

several seconds [62–64]. We leave discussing the sources of the

gain modulation to the Discussion section and first answer the

following questions. Can such localised gain modulation stabilise

the bump at any desired position and, if so, how strong should it

be? How does localised gain modulation affect pattern retrieval?

Modulating single neuron gain can stabilise the bump
Suppose that a non-pattern-selective signal changes the gain of

those neurons which correspond to the position of the object in the

visual scene. The effect of such gain modulation is shown in Fig. 5.

In the simulations of Fig. 5, the activity of <4.6% of the

neurons, randomly distributed across the network, are initially set

to their activity in the first pattern, while the rest are silent (note

that the quality of the cue is then the same as what we used in the

simulations of Fig. 3, but now the cue is not localised). The

localised gain modulation is incorporated into the simulations by

first choosing, at each trial, a square box at a different position

over the network. The linear gain of neurons inside the square is

then increased by a factor of b relative to that of the other neurons

in the network. The position of the centre of the high gain square

box is in fact chosen in exactly the same way as we chose the

centre of the cue in Fig. 3, i.e. at the nodes of a regular lattice,

shown as green squares in Fig. 5A and Fig. 5C.

The result of such change in the spatial distribution of the gain

is evident for b = 1.5 (Fig. 5A, 5B) and even more for b = 3

(Fig. 5C, 5D). Even though the pattern-selective cue does not

contain spatial information, a spatially selective increase in the

linear gain of the neurons in a restricted region of the network

helps localising the bump in that region. Notably, as shown in

Fig. 5D, the distance that the peak in the local overlap drifts from

the initial focus is minimal, particularly for successful trials (red

circles) (d), whereas averaging across unsuccessful runs (black

circles) (d*) substantially increases the drift, as if jumping to the

wrong basin of attraction in the space of patterns facilitates similar

jumps in physical space.

It should be noted that while in Fig. 3 the localised cue had been

removed after initialising the activity, in the results shown in Fig. 5

the change in gain is maintained throughout the simulation. It is

true that keeping the localised cue would have helped localising

the bump at the right position, without gain modulation, but the

essential difference between the two mechanisms should be

appreciated: the change in gain is independent of the memory

pattern to be retrieved and could thus be produced by a mere

spatial signal, with little specific information content besides spatial
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Figure 4. Scaling of the number of stable positions of the bump
with the size of the network. The scaling is done for p = 1 (black line)
and p = 20 (red and blue lines). For p = 20, the blue line represents the
number of stable positions when both successful and unsuccessful runs
are averaged and the red line represents this number when only the
successful ones are counted. For each network, of size N, one of the
hundred positions on a 10610 regular lattice was chosen in each trial.
The activity of neurons inside a square that covers 0.046N neurons and
whose centre was on the chosen position, was set to their activity in the
stored pattern. For p = 1 the activity of neurons outside this square were
set to zero. For p = 20, a fraction of 10% of neurons outside the square
also had their activity set to their activity in the first pattern, while the
rest has zero activity level. The difference between the ways we
initialised the retrieval for p = 1 and p = 20 was introduced to ensure a
higher quality of initial cue for p = 20; this would be needed for having a
reasonable number of successful runs. The width of the connectivity
was set to 7.5 and the average number of connections per neuron was
always 245. The number of final positions of the bump of activity after
200 time steps was then counted. We then plotted the average and
standard error of this number over the hundred positions of the initial
cue and 10 realizations of the network and of the stored pattern, versus
N.
doi:10.1371/journal.pcbi.1000012.g004
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position itself. The pattern-selective cue, instead, can be thought to

commit the informational resources (e.g., the channel capacity

[65]) of the ventral visual form processing stream, and it makes

sense to hypothesise that it should be removed as soon as possible,

to make room for the analysis of other objects by the same

pathway.

Even though increasing the gain in a spatially restricted part of

the network stabilised the final bump there, there is a disadvantage

with this strategy: by using such non-uniform gain, the number of

successful runs decreases. Remember that the quality of the cue

used in Fig. 5 is the same as the one in Fig. 3, however, there were

no unsuccessful runs in Fig. 3 and Fig. 5A, whereas there are 12

unsuccessful runs in Fig. 5C (shown by black circles): better

preservation of spatial information (higher gain modulation) is

accompanied by, in this example, a higher number of unsuccessful

runs. This suggests that preservation of spatial information

through gain modulation affects the retrieval of the pattern. In

Fig. 5 the effect is negative, an interference, but as we show below

it can also be a positive effect. In the following sections, we

quantify this interaction using information theory and demonstrate

efficient ways to minimise the negative interaction.

The relation between Iwhat and Iwhere: An information
theoretic analysis

In order to quantify the interaction between what and where

information, we use Shannon information theory. We estimate the

Figure 5. Local gain modulation largely fixes the position of the bump. The panels summarise the results of simulations conducted as for
Fig. 3 except for two factors. First, the pattern-selective cue is not localised, i.e. the local overlap at the beginning of each simulation is a uniform
function across the network; hence, the distribution of the peak of the local overlap in the beginning of the simulation is not shown: there are no
significant peaks. Second, neurons inside the 15615 square centred around each green square in (A) have a gain factor g which is 1.5 times larger
than the rest of the network, and in (C), 3 times larger. (B) and (D) report the distributions of distances between the centre of the gain modulated
square and the peak of the final local overlap corresponding to simulations in (A) and (C), respectively. Red circles in (A) and (C), and red portions of
the bars in (B) and (D) correspond to successful runs (defined as runs in which the overlap with the cued pattern, after 200 time steps, is higher than
the overlap with any other pattern) and black circles and black portions of the bars represent unsuccessful ones. mean(d) and std(d) are the mean and
the standard deviation of the distances averaged over successful runs and mean(d*) and std(d*) averaged over unsuccessful runs.
doi:10.1371/journal.pcbi.1000012.g005
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amount of information that the activity of the network, after

retrieval, represents about what and where. We do this for different

degrees of gain modulation, levels of the average gain, number of

stored patterns and also different ways of presenting the cue. This

provides us with a quantitative picture of the relation between what

and where information.

We denote by Iwhat and Iwhere, the amount of information about

what and where, respectively. To compute Iwhat, we look at network

activity after 200 times steps and compute its overlap with all

stored pattens (Eq. (9)). The pattern with the highest overlap is

considered as retrieved and Iwhat measures how much information

knowing this retrieved pattern gives us about which pattern was

presented. Iwhere, on the other hand, is the information between the

position of the bump of activity after retrieval and the centre of the

gain modulated area (we put Iwhere = 0 when there is no gain

modulation; see section ‘‘Continuous attractors are fragmented

by superimposed memories’’). For exact definitions and details

about how we compute Iwhat and Iwhere from the simulations see

section ‘‘Mutual information measures’’ in the Materials and

Methods.

To start with, we consider a network (with the architecture used

before) that has stored p patterns and assume that in the beginning

of the simulations a cue similar to one of the patterns is presented

(the exact cue presentation is described in the three Conditions

below). All neurons have a background gain of g. During recall,

either the gain of all neurons is kept equal to g, which is the case of

uniform gain, or the localised gain modulation mechanism is

turned on. In the latter case the gain of the neurons inside a 15615

square whose centre is on one of 49 preassigned positions on the

network is boosted to bg. Different values of b are chosen in

different simulations. In each run, one of the patterns is chosen as

a cue and one of the 49 positions is chosen as the centre of the high

gain region. As in the previous sections, the centre of the squares

surrounding the high gain region is chosen from one of the 49

nodes of a 767 regular lattice covering the entire 2D network.

Each pattern and each of the 49 positions for the high gain region

is used exactly once.

High gain regime
We first calculate Iwhat and Iwhere for a network with the global

gain chosen to be g = 0.5. We do this for the case of uniform gain

(all neurons have the same gain, thus equal to the background gain

g ), three degrees of gain modulation, with b = 1.5,2 and 3 , and

three values of p = 5,10 and 15. We consider three alternative ways

in which the cue can be presented to the network. These cueing

conditions and the resulting Iwhat2Iwhere relation are described

below.

Condition 1: Complete cue. In this condition, in the

beginning of the simulation, the activity of all neurons in the

network is set to their activity in the pattern to be retrieved. Fig. 6A

shows how Iwhere covaries with Iwhat for three values of p = 5 (full

line), p = 10 (dashed line) and p = 15 (dashed-dotted line) when the

initial cue was complete. On each curve different points

correspond to different degrees of gain modulation. There is a

clear trade-off between Iwhat and Iwhere. The maximum amount of

what information and the minimum amount of where information

occurs when there is no gain modulation. As we increase the

degree of localised gain modulation, Iwhat decreases while Iwhere

increases. Moreover, the value of p for which maximum Iwhat can

be retrieved depends on the degree of gain modulation and thus

on Iwhere. In other words, for any given Iwhere, there is a critical p for

which Iwhat is maximised. In the absence of gain modulation,

Iwhere = 0 and the maximum of Iwhat is obtained for a certain storage

load 10#p#15, whereas, as the degree of gain modulation

increases, the number of patterns resulting in maximal identity

information decreases.

In this condition, we had provided the network with a perfect

cue. It is important to see whether a similar trade-off occurs in the

more interesting condition in which the cue is incomplete, so that

the network has not merely to maintain but also to actually

retrieve identity information.

Condition 2: Non-localised incomplete cue. In the second

cueing condition, the cue that is given to the network in the

beginning of the simulation is incomplete, and it does not have any

spatial information. In this case, at the beginning of the simulation,

the activity of 4.6% of randomly chosen neurons are set to their

activity in the pattern to be retrieved, and the rest at zero. Using

such imperfect cue serves to assess the degree to which the network

is able to maintain Iwhere and retrieve Iwhat, from a degraded version

of the stimulus. Results are shown in Fig. 6B. The same pattern of

trade-off between Iwhat and Iwhere seen with full cues is also evident

here. The main difference is that now the maximum value of Iwhat

is decreased relative to the first condition, which is a direct

consequence of the cue being incomplete. Again, as in the previous

condition, increasing the degree of gain modulation, which favours

Iwhere at the expense of Iwhat, also favours networks with low storage

load p.

Condition 3: Incomplete and localised cue. In the first

two conditions the cue did not have any spatial information by

itself and the spatial information was provided entirely through

gain modulation. In the third cueing condition, the quality of the

cue is the same as condition 2, but now the cue is itself localised.

On each run, a 15615 square is considered whose centre is on one

of the 49 pre-assigned positions on the network. In this condition,

the square with higher gain coincides with the localisation of the

cue. The activity of neurons in the square is set to their activity in

the pattern to be retrieved, and the rest to zero. Note that the

quality of the cue is the same as condition 2, but now these

neurons are not randomly chosen, but are rather localised in a

certain region of space.

The analysis of simulations in this Condition 3 is shown in

Fig. 6C. A result evident by comparing Fig. 6C with Fig. 6B is that

both the degree of preservation of spatial information and the

number of successful runs have increased in Condition 3

compared to Condition 2. For instance when p = 10 and b = 2

both Iwhere and Iwhat are near their maximum values. By its

effectiveness in retrieving Iwhat while maintaining Iwhere, condition 3

suggests the advantage of modulating neuronal gain through the

change of single neuron properties triggered by the cue itself. As

the activity level around neurons which are receiving the cue is

increased, this may induce an increase in the excitability of these

neurons, which lasts for some time (see section ‘‘Possible sources of

gain modulation’’ in the Discussion).

The dependence of the Iwhat2Iwhere curve in all three panels of

Fig. 6C on p indicates that the optimal storage load depends on the

conditions prevailing at retrieval, and in particular on the degree

of gain modulation.

Low gain regime
In the previous section, the background gain was g = 0.5.

Without gain modulation, the network could reach high Iwhat

values, sometimes retrieving all stored patterns, even from a very

small initial cue. With gain modulation, Iwhere increased but Iwhat

decreased. Here, we show that when the background gain is low,

the interaction can be reversed, that is, gain modulation can

actually increase both Iwhat and Iwhere. We set the background gain

to g = 0.25. As shown in Fig. 7, for the case of complete cue (as in

Condition 1 above) even without gain modulation Iwhat is very
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small. When incorporating a gain modulation mechanism,

however, the amount of what information maintained by the

network increases, together with the amount of where information.

In section ‘‘Low gain regime versus high gain regime’’ (see

Materials and Methods), we discuss why the relation between Iwhat

and Iwhere is different in the low gain and high gain regimes.

Intuitively, the reason is as follows. Successful retrieval occurs only

when the gain of the neurons that support the retrieved pattern is

between a minimum gmin and a maximum gmax. In the low gain

regime, the level of background gain is below gmin and the network

cannot retrieve the patterns. When the gain is increased in part of

the network, then it may enter the range [gmin, gmax], allowing for

retrieval to occur. At the same time, since that region has a higher

gain, the retrieval bump does not drift away. When the

background gain is high, instead, gain modulation stabilises the

bump in the gain modulated area. This is accompanied, however,

by a decrease in the size of the bump. The reason is that the higher

neuronal gain increases the firing rate of neurons inside the bump

(the peak of the bump is higher) and, to comply with the constant

mean activity condition (Eq. (3)), this increase in the peak activity is

accompanied by a decrease in the spatial extent of the bump.

Therefore, fewer connections are involved in retrieving the pattern

and Iwhat decreases. As expected from this argument, increasing b

too much even in the low gain regime should decrease Iwhat. This

can be seen in Fig. 7 for b = 5 and p = 10.

Multiple bumps
When a retrieval bump is localised on a particular position, one

can in principle use the rest of the network to retrieve other

patterns, in the form of additional bumps of activity. If they can

coexist with the first bump, the network would then be able to

represent the position and identity of multiple objects simulta-

neously, without encountering the problem of binding. In random

networks with no metric connectivity nor localised retrieval,

retrieving multiple patterns is indeed possible, at very low storage

loads [1,45,66]; in these networks, however, it is not possible to

represent the position of the objects, which has to be represented

elsewhere. If the what and where of multiple objects are represented

in different networks, a binding problem arises. The localised

retrieval process described here does not suffer from this problem.

It is then important to assess the conditions which make it possible

to stabilise (at least) two retrieval bumps simultaneously.

Assume that a pattern is retrieved and, using localised gain

modulation, the bump of activity is stabilised on a desired position.

A second cue may then be presented to the network at another

position. Even though most of the connections to each neuron in

Figure 6. The trade-off between what and where information for different cueing conditions, different numbers of stored patterns
and different levels of gain modulation, as discussed in the text. (A) Condition 1: complete cue. (B) Condition 2: 4.6% of the neurons are
randomly chosen and their activity is initialised to their activity in the cued pattern, while the rest has zero activity. (C) Condition 3: similar to
Condition 2 but the neurons that receive the cue are spatially co-localised with gain modulation. For each cueing condition, the trade-off is shown for
p = 5 (full line), p = 10 (dashed line) and p = 0.5 (dashed-dotted line). For each value of p, three different degrees of localised gain modulation, b = 1.5
(square), b = 2 (circle) and b = 3 (diamond), were tested in addition to the uniform gain of g = 0.5 (star).
doi:10.1371/journal.pcbi.1000012.g006
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the network come from nearby neurons, the second pattern would

still affect the first retrieval bump, because of the global inhibition

in the simplest version of our model, as inhibition is taken to

regulate a common threshold, such that the mean activity of the

network is constant (Eq. (3)). This introduces interactions between

distal neurons, which are not directly connected by excitatory

synapses, and such interactions are generally disruptive. A simple

way to reduce such interaction is to assume that when the local

mean activity in part of the network exceeds some limit value, the

threshold is raised but only locally, regardless of the activity of

neurons outside that region. The local threshold may also be

regulated downward, to facilitate the emergence of a retrieved

pattern in a region which would otherwise be kept at too low a

mean activity level. With such additional provisions, multiple

bumps can be formed and stabilised, as shown in the example in

Fig. 8.

Discussion

Behaviour requires processing and integrating different types of

information, from various sources and modalities, into a coherent

picture of the world. Within the visual domain, a specific question

is how the brain can analyse the identity of objects, which has to be

extracted from raw visual input, while maintaining information

about their position, directly present in the input.

Previous theoretical work on the representation of objects in

neural circuits has been mainly focused on two issues [2,5,67–69]:

how the hierarchy of visual cortical areas builds representations

that are invariant with respect to changes in position, view, etc. of

objects, and how this may be accomplished while still preserving

information about the relative position of features within objects,

to enable object recognition. Among these studies, Olshausen et al

[2] and Parga and Rolls [3] also considered how attractor

dynamics can be used to retrieve what information from stored

invariant representations. However, this body of work did not

address how an activity pattern that carries information about

both what and where can be produced when what information is

retrieved from memory. They also did not consider how this

combined what and where representation can be maintained in

working memory, after the visual stimulation has subsided.

Retrieving information about object identity from memory, as

well as maintaining this information in working memory, has been

associated to attractor dynamics in local cortical networks. The

most straightforward extension of the attractor idea, to store

attractors associated to what-where pairs is, however, infeasible due

to the extremely large storage capacity that it would require (see

the following section ‘‘Comparision with storing attractors

associated to object-position pairs’’).

Our model sheds light onto this issue of how to combine the

representation of what and where, by showing that a recurrent

network can retrieve stored memories about objects from

incomplete transient cues, while maintaining information about

their positions. It can account for the what-where delay activity

observed in monkey electrophysiology [13,14] and it can combine

what and where information in a flexible manner as has been

reported in experimental studies [13,17,28]. In our model this

flexibility is expressed in the fact that by changing the level of

background gain and localised gain modulation, one can control

the levels of what and where information that the network retains.

When the network is operating in the low gain regime, turning on

the localised gain modulation increases both what and where

information, whereas in the high gain regime what information

decreases and where information increases. Behavioural experi-

ments show a pattern of interaction between what and where

information similar to this latter case [70,71]. It is interesting to

note that it has been recently reported [72] that single IT neurons,

when they show high selectivity (i.e. they respond vigorously to

only a few images in a large sample) also tend to show less position

tolerance, suggestive of their ability to convey more where

information. This could be interpreted either as the more selective

neurons contributing less what information to the population

response, or even as implying a different trade-off at the single

neuron level from the one we propose to prevail at the population

level.

The localised retrieval process described here also offers the

possibility of retrieving multiple objects while maintaining their

position, without facing a binding problem [73]. The metric

excitatory connectivity avoids interference effects mediated by

excitatory connections, while inhibitory mechanisms should be

such that two activity patterns retrieved at different locations do

not destroy each other once they are formed. One such

mechanism was briefly described in section ‘‘Multiple bumps’’.

The crucial questions about the coexistence of multiple bumps are

of course still open: how does it depend on the parameters of the

model, and in particular on its detailed dynamics? how many

bumps can simultaneously coexist in a network of a given size?

how does the ability to support multiple bumps changes the

storage capacity? These questions require further investigations. In

the context of networks with spatially dependent weights without

stored memory, it has been shown that oscillatory weights can

support multiple bumps of activity [74,75]. The possibility of

supporting multiple retrieval bumps using more complicated

connectivity schemes remains open in our model.

Comparison with storing attractors associated to object-
position pairs

In our model, independent attractors are set up in a local

cortical network only for object identity, as position invariant

representations; but they can be accessed in a spatially focused

mode, leading to position dependent activity. Associating a single

representation to an object, which is then modulated by position, is

Figure 7. The relation between Iwhere and Iwhat in the network
with low gain (g = 0.25), with p = 5 and p = 10. When there is no
gain modulation, the network fails to retrieve any of the stored patterns
(star). When localised gain modulation is incorporated, both Iwhat and
Iwhere increase. b = 1.5 (square), b = 2 (circle), b = 3 (diamond) and b = 5
(right pointing triangle). The corresponding relation between Iwhere and
Iwhat for g = 0.5 is replotted here from Fig. 5A for comparison.
doi:10.1371/journal.pcbi.1000012.g007
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Figure 8. Formation of multiple bumps. In the beginning of the simulation, pattern 1 is presented to all units in a 15615 square whose lower left
corner is at node (1,1); that is, for each neuron i inside the square the activity is set to gi

1, and for those outside to zero. While simulating the network,
background threshold values are set to regulate the mean network activity to a fixed level equal to 0.2. If mean activity inside a 30630 square centred on
the cue centre exceeds 1.0, the threshold of neurons inside this square will be regulated to keep its mean activity equal to 1.08, and neurons outside it
will be assigned a high threshold. In the second phase of the simulation, in the right column, a second pattern is also presented to all units in a 15615
square whose lower left corner is at node (36,36), accompanied by a local threshold decrease to facilitate the pattern ‘‘holding on’’. The threshold is then
regulated in the same way as the first pattern. (A) The distribution of activity, (B) the local overlap with the first pattern (cued in the beginning of the first
phase) and (C) the local overlap with the second pattern (cued in the beginning of the second phase), all 100 time steps after the presentation of the first
pattern. (D), (E), and (F) are the same quantities as (A), (B) and (C) but 100 time steps after the presentation of the second pattern.
doi:10.1371/journal.pcbi.1000012.g008
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a particular case of what in cognitive neuroscience parlance is

sometimes referred to as type (e.g. table) and token (particular

instance of a type: e.g. a table in a particular position) [76,77]. In

the language of our model, the type is the original pattern of

activity associated to an object and the token is the bumpy pattern

that is localised in a particular position. An alternative mechanism

is to store attractors associated to object-position pairs, that is

storing a neural activity pattern for each token [78]. In this way,

when a particular object is presented in a particular position, the

attractor corresponding to the object-position pair would be

activated, and could remain activated even after the object has

been removed from the scene. The problem is that models which

hypothesise distinct, discrete attractors for each possible object-

position combination would certainly violate any conceivable

storage capacity limit, because of the infinitely large number of

possible positions of an object [79]. Furthermore, there is a major

difference between the nature of what and where information, which

makes attractors associated to object-position pairs unlikely: as

opposed to what information, to which the brain can contribute

from the information that it has previously stored, the brain does

not usually retrieve positional information from memory, but rather

has to maintain it as well as it can. Thus, it would seem rather

implausible that the brain uses its storage capacity, arguably its

most precious resource [29], to store something that it does not

have to retrieve.

The difference between these two mechanisms is directly

reflected in the storage capacity required for object-position

attractors, in order to represent the same amount of information as

the mechanisms studied here does through spatial modulation.

Representing 6 bits of Iwhere and 2 bits of Iwhat (corresponding to the

black diamonds in Fig. 7) would require the storage of 2(6+2) = 256

distinct object-position attractors. This is ca. 2.5 times beyond the

number of attractors that a randomly connected network, with the

same number of connections per neuron and the same mean

activity level as what we used, could store [32]. This exorbitant

requirement is due to effectively committing storage space

separately to each pair, instead of using the physical arrangement

of neurons in the tissue to represent Iwhere. Analytical results valid in

the limit of large networks and optimal storage further support this

conclusion, as we show in section ‘‘Comparision with other

models’’ in the Materials and Methods. There, we also show that

the difference in the efficiency of the two models will be even more

pronounced for larger networks. There is, of course, a price to pay:

the addition of a gain modulation mechanism to stabilise the

position of the bump. In what follows, we discuss the possible

physiological substrates of this gain modulation.

Possible sources of gain modulation
In our model, localised gain modulation is crucial for

maintaining where information as what information is being

retrieved, and for maintaining both what and where information

after the retrieval process is completed. When an object is

presented as a stimulus, a signal should trigger an increase in the

gain of neurons in an appropriate part of the network. Such higher

gain should then be maintained by the same or a distinct

mechanism during retrieval and thereafter, when the object is not

present anymore but information about it has to be used (e.g.

during the delay period of a delay-match-to-sample task).

What mechanisms can trigger the neuronal gain? In vivo studies

show that increasing the activity of a local cortical network

increases the gain of its neurons [80-82]. Therefore, any

mechanism that increases the mean activity of a part of the

network could be used for triggering the gain modulation. One

such source of increase in the activity is the cue itself. This requires

that the pattern selective cue retains some spatial information; a

scenario which we have shown to be particularly effective in

minimising the trade-off between what and where information (see

Fig. 6C). Although this mechanism would be effective in this sense,

it is doubtful whether it could be the only source of gain

modulation in high level visual cortices. This is because

experimental studies show that the position of the peak of the

activity in visual cortical areas during visual stimulation is strongly

correlated with the categorical properties of the stimulus and

exhibits a weaker level of retinotopy [83–85] (see also the following

section ‘‘Storing patterns with spatial prefrence’’). The situation

may be different in more advanced cortical areas, such as PFC, in

which such categorical maps have not been reported.

Another possible source for increasing the gain is attentional

signals. In this case the increase in the activity level required for

gain modulation is induced by the attentional signal and the

position of the bump corresponds to the position of the attentional

spotlight. There are several reasons that make attention a likely

source of activity localisation through gain modulation. fMRI

studies on human subjects show that the retinotopic representation

of the position of an attended object in visual cortices show

increased activity [86–94]. Evidence from monkey neurophysiol-

ogy also supports the idea that the attentional spotlight increases

the gain of neurons inside the spotlight [95–100]. Furthermore,

many studies in cognitive neuropsychology suggest that spatial,

focal attention is critical to allow the binding of what and where

information [77,101], referred to as type and token information

respectively [76]. Finally, a recent neuroimaging study shows that

attention strongly enhances retinotopic representation in object

selective visual areas, thus supporting the idea that attentional gain

modulation is important for combined representation of what and

where [102]. Although, these studies point to attentional signals as a

strong candidate for initiating the gain modulation, a contribution

may still be given by a weakly retinotopic initial cue. Further

experimental work is required to disentangle the relative effect of

the initial cue and attention on triggering the gain modulation.

Once the increase in the gain of neurons in the right part of the

network is triggered, it should be maintained during retrieval.

Although the same mechanisms that initiated gain modulation can

keep the gain high during retrieval, a promising mechanism for

maintaining high level of gain, particularly after the stimulus is

removed, is single neuron memory. Several studies show that the

recent history of spiking increases the responsiveness of neurons,

and that this increase can last for several seconds, thus exhibiting a

form of single neuron short-term memory [62–64]. Assuming that

such single neuron short-term memory mechanisms are respon-

sible for the higher gain of neurons inside the bump, global signals

that turn them on or off can strongly affect the level of what and

where information that the network represents in its activity.

As discussed above, the attentional signal may trigger the

increase in neuronal gain and maintain it elevated for some time.

After the attentional signal is removed, the increase in neuronal

gain can be maintained by single neuron short term memory

mechanisms. Attention can then be directed to another object,

while what and where information about the first object is still

decodable from neuronal activity. How long this information

survives depends on how long the short term increase of the gain

can be maintained by single neuron mechanisms. Understanding

such mechanisms and comparing their time scale with behavioural

times for maintaining combined what and where information, as

well as pharmacologically interfering with them, one can test

whether our model is relevant to real visual perception.

One of the roles of attention is to bias the competition for

limited processing resources in favour of the object that it is acting
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on [103,104]. Therefore, if the localised gain modulation that is

needed in our model for combining what and where is induced by

attention, it should be able to do the same. This is verified by

computer simulations as shown in Fig. 9. Two localised partial

cues, corresponding to two different objects, are simultaneously

given to a network. When the neuronal gain is uniform, the object

with the larger cue will be retrieved, while the other one will be

suppressed. However, if the neuronal gain in the area that receives

the smaller cue is sufficiently large, the competition will be biased

in favour of it. Interestingly, the level of gain modulation that is

required to bias the competition towards the object with the small

cue depends on the width of the connectivity, s. Increasing the

width of the neuronal connectivity increases the minimum level of

gain modulation that is required for biasing the competition. This

emphasises the role of local connectivity.

Storing patterns with spatial preference
In the model presented here, the units are taken to be arranged

on a retinotopic patch of cortex, corresponding to at least a

portion of visual field, but we assumed patterns of activity to be

generated from a spatially uniform distribution (see Eq. (4)). A

more realistic model, however, should allow for the storage of

spatially organised patterns [105]. This is important since, in the

case of high level visual cortical areas, the overall position of

intense neural activity during visual stimulation is strongly

correlated with object identity or category. Regions in the visual

cortex have been located that are preferentially selective for faces

[106–109], pictures of scenes [110,111] and buildings [112], and

complex object features [113]. This strong categorical map may

coexist with a retinotopic map. The details of this combined

organisation are far from clear, however, particularly insofar as it

is expressed in the putative attractor states, after the stimulus is

removed (e.g. during delay periods), which is the situation relevant

to our study. During visual stimulation, and when attention is not

a main factor, some studies suggest that there is a weak retinotopy,

with only a peripheral versus central bias and no angular

representation [83–85]. Others, on the other hand, report the

existence of multiple precise retinotopic maps in the same regions

[114–116], although still much weaker than the level of retinotopy

in primary visual areas [117]. As mentioned in the previous

section, such retinotopic maps could be enhanced by attention

[102].

To include the coexistence of categorical and retinotopic maps

in the model presented here, one might consider two limit cases,

which roughly correspond to these two views. In the first case,

category specificity and weak retinotopy coexist at the same spatial

scale; one should then assume, in a refined model, that patterns

are generated from multiple distributions, each of them corre-

sponding to one category of objects, and patterns drawn from each

have higher activity at a preferred position on the network. In this

case, when there is no gain modulation the peaks of the retrieved

patterns cluster depending on which distribution they came from.

The peaks will also be more weakly correlated with the position of

the cue compared to the case of spatially uniform patterns that we

have discussed. With attentional gain modulation, one expects to

see a clearer retinotopic map. This is in fact consistent with the

abovementioned finding that attentional gain modulation enhanc-

es the retinotopic representation in advanced visual areas [102]. In

the second limit case, retinotopy is expressed in object selective

visual areas at a finer scale than category specificity, in which case

one should allow for the present model to be simply multiplexed,

to include one array on a distinct cortical patch for each object

category.

Further work is required, especially in view of many

intermediate possibilities, to assess, for example, how much more

gain modulation would be needed in order to stabilise a bump of

activity away from its preferred position, and how this would affect

retrieval.

Laminated networks
The ability to represent what and where information in the same

network has also been proposed to be crucial to understand the

functional significance of the differentiation among cortical layers

[118]. Whereas most network models used to study attractor

dynamics in associative memory do not consider cortical

lamination, the core hypothesis of the proposal is that layer IV

units, by virtue of their distinct connectivity, may privilege the

representation of position information. Furthermore, through less

adaptive spiking activity they may influence the dynamics of

pyramidal units in the superficial layers only after these have

engaged the attractor basin that leads to retrieve object identity.

The differentiation was shown to be advantageous, in the model,

through computer simulations, conducted with external inputs

maintained active. In this regime no assessment was possible of

Figure 9. Two patterns, pattern one and two, are cued at two
different positions at the beginning of the simulation. The cue
corresponding to pattern one is given by setting the activity of neurons
inside a 15615 square box whose lower left corner is on neuron (1,1) to
their activity in pattern one. The cue corresponding to pattern two is
given by setting the activity of neurons inside a 20620 square box
whose lower left corner is on neuron (33,35) to their activity in pattern
two. Plotted are the final dot product overlap (minus the mean activity;
Eq. (9)) with the first stored pattern (full line) and the second stored
pattern (dashed line) for two values of the connectivity width (A) s = 7.5
and (B) s = 10. Since the initial overlap with the second pattern is larger,
without gain modulation it wins the competition, and it will be
retrieved, as shown by the final dot product overlap with the two
patterns. However, localised gain modulation biases the competition in
favour of the first pattern.
doi:10.1371/journal.pcbi.1000012.g009
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whether genuine dynamical attractors had indeed been formed

during memory storage, that will drive network dynamics in the

absence of the cue. While the present work clarifies the conditions

allowing a single layer network to represent what and where

information, how they could be realized in a network with

differentiated cortical layers remains to be explored.

Combining other variables
In discussing what and where information, we have made explicit

reference, here, to object identity and position in the visual field.

Where information could however be any feature that is mapped in

the gross topography of the cortical sheet, such as frequency in the

auditory system [119], and in relation to which there is no

meaning to using attractor dynamics in order to refine the afferent

signal with what is stored in memory. In fact, this mapping need

not even be topographically organised: the crucial factor is the

existence of a map (topographic or not) [120], that is produced as a

result of the dependence of vij in Eq. (5) on i and j, and that is

independent of the stored patterns. Where information would

ideally be expressed by a continuous attractor and thus maintained

e.g. as delay activity, except that continuity at a fine scale is

disrupted by the storage of what memories. What information could

instead be any feature that could benefit from attractor dynamics,

because of its uneven statistical distribution, which makes some

interpretation of the afferent signal more likely than others.

Materials and Methods

Synaptic weights that follow Dale’s law
If synaptic weights are produced by Eq. (5), the weights of the

connections that originate from a given neuron can be both

negative and positive. This is against Dale’s law and against our

assertion that all neurons in the model network are excitatory. In

this section, we show how the model described in sections ‘‘Firing

rate description of the network’’ and ‘‘Stored memory patterns

and synaptic weights’’ (see Model) can be conceptually derived

from a more realistic formulation, in which all synaptic weights are

positive. Let us first consider a network in which the firing rate of

neuron i at time t+1 is determined by

ni(tz1)~giF(Hi(t){Thi{Ii), ð14Þ

in which Thi is the threshold of neuron i, Ii is its inhibitory input,

and

Hi(t)~
X
j=i

Wijnj(t): ð15Þ

The synaptic weights, Wij, in this network take the following

form

Wij~
$ij

Ca2
Jbackz

Xp

m~1

(gm
i {a)(gm

j {a)

 !
, ð16Þ

where Jback is the background weight, vij = 1 if there is a

connection from neuron j to neuron i and vij = 0 otherwise, and C

is the average number of connections per neurons. For sufficiently

large Jback, the resulting synaptic weights in Eq. (16) will be all

positive. We can now show that a network with uniform threshold,

as assumed in Eq. (2), and synaptic weights of the form Eq. (5), has

equivalent dynamics as described by Eqs. (14) and (16), when an

additional condition is satisfied.

Combining Eq. (14) with Eqs. (15) and (16), the firing rate of

neuron i can be written in terms of the firing rate of the other

neurons as

ni(tz1)~giF
X

j

Jijnj(t)z
Jback

Ca2

X
j

$ijnj(t){Thi{Ii

 !
, ð17Þ

in which Jij is the weight of the connection from neuron j to

neuron i according to the prescription Eq. (5). The assumption we

now make is that the inhibitory feedback reacts in such a way that

for each neuron, the last three terms in the parenthesis in Eq. (17)

together become equal to a uniform effective threshold, Th. This

effective threshold is simply chosen such that Eq. (3) holds. In this

way, Eq. (17) reduces to

ni(tz1)~giF
X

j

Jijnj(t){Th

 !
, ð18Þ

which is the same as Eq. (2).

Self-consistent equations
In this section we briefly describe how the self-consistent

equation for the local overlap with the retrieved pattern (Eq. (10))

can be derived. We refer the reader to [32,33] for more details.

To start with, we assume, without loss of generality, that the first

pattern (m = 1) is retrieved and therefore m1
i &m

g
i for v?1. Using

Eqs. (1), (5) and (8), we then write the input to neuron i as

hi~
g1

i

a
{1

� �
m1

i z
X

m=1, j

$ij

C

gm
i

a
{1

� �
gm

j

a
{1

� �
nj : ð19Þ

Denfining zi as

zi~
X

m=1, j

$ij

C

gm
i

a
{1

� �
gm

j

a
{1

� �
nj , ð20Þ

and combining Eq. (19) and Eq. (2), the activity of neuron i can be

written as

ni~giF
g1

i

a
{1

� �
m1

i zzi{Th

� �
: ð21Þ

Inserting Denfining vi from Eq. (21) into Eq. (8) we arrive at the

following self-consistent equation for mi~m1
i

mi~
1

C

X
j

$ijgj

g1
j

a
{1

 !
F

g1
j

a
{1

 !
mjzzj{Th

 !
: ð22Þ

Averaging the right hand side of Eq. (22) over the distribution of

zj, g, and the connectivity pattern, yields the following equation

(which is the same as Eq. (10))

mi~
1

C

X
j

ˆijgj7 g

a
{1

� �
�FFj

g

a
{1

� �
mj{Th

� �
8
g
, ð23Þ

where Ææg, stands for averaging over the distribution of g, ˆij is the

probability of connection (Eq. (7)), and F̄j is the gain function, F,
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averaged over the distribution of zj

�FF
k

j (h):
ð

dzPrj(zj)F
k(hzzj): ð24Þ

We now find the distribution of zj, which we denote by zj Pri(zi).

To do this we note that if the first pattern is retrieved, vjs, on the

right hand side of Eq. (20) will be independent from each other

and from gm for m?1. The assumption of independence is strictly

correct when the network is highly diluted, that is when the

number of presynaptic neurons shared by any two postsynaptic

neurons is small [121,122]. When the network is not highly diluted,

the calculation will be more involved, but yields qualitatively the

same results [32,123]. Thus, for the sake of simplicity, we assume

that the assumption of independence holds; for a complete

derivation we refer the reader to the aforementioned references.

With this independence assumption, the right hand side of Eq. (20)

will be a sum of independent random variables, and therefore,

Pri(zi) will be a Gaussian distribution. In the following we show

that the mean of this Gaussian distribution is zero and also find a

self-consistent equation for its variance.

Noting that

7 gm
j

a
{1

� �
8
g
~0,

7 gm
j

a
{1

� �2

8
g
~

1

a
{1:T0, ð26Þ

and using Eq. (21), we get the following equations

SziTg,$ij
~0,

d2
i :Sz2

i Tg,$ij
~

aT2
0

C

X
j

ˆijg
2
j 7F2 g

a
{1

� �
mjzzj{Th

� �
8
g
,

where STg,$ij
indicates averaging over the distribution of g and

vij, and Ææg indicates averaging over g. From Eq. (27), we see that

the mean of Pri(zi) is zero. In order to find the variance of Pri(zi),

we should average both sides of Eq. (28) over the distribution of zj.

This is because, in the limit of large N and large C, this variance is

expected not to depend on the exact realisation of any zj in the

right hand side of Eq. (28), but only on its statistical distribution.

Performing this average yields the following equation for the

variance that we denote by ri
2

r2
i :7d2

i 8fzjg
~

aT2
0

C

X
j

ˆijg
2
j 7F2

j

g

a
{1

� �
mj{Th

� �
8
g
: ð29Þ

Equations (23) and (29) form a closed set of equations whose

solutions determine the steady states of the system. Finding mi and

ri that satisfy these equations, we can find the activity of neurons

in the steady states by plugging them in Eq. (21). In the case of a

randomly connected network, that is when ˆij is independent of i

and j, and gi are also the same for all neurons, the solution of

Eqs. (23) and (29) will be of the form mi = m and ri = r. In this case

the only spatial dependence of the steady state activities, Eq. (21),

will come from the dependence of gi
1 on i and since they are

generated identically for each i, the probability that a neuron is

active in the steady state will be uniform over the network.

Spatially localised retrieval can be observed when ˆij depends on

the distance between i and j.

Mutual information measures
In this section we show how we compute what and where

information, Iwhat and Iwhere, from simulations. We estimate the

amount of what information, Iwhat, from the frequency of successful

retrieval runs. To see how, let us assume that we cue pattern mc. Then

after some time we look at the pattern of activity of the network,

compute its dot product overlap with all stored patterns (Eq. (9)) and

find that pattern mr, say, has been ‘‘retrieved’’ in that particular run,

i.e., it has the highest overlap with the activity of the network. We

denote the probability of retrieving pattern mr given that we have

cued pattern mc by Pr(mr|mc). Estimating this probability from the

simulations, we can compute the information that the pattern of

activity gives us about which pattern was presented as

Iwhat~
X
mc, mr

Pr (mrjmc) Pr (mc) log
Pr (mrjmc)

Pr (mr)

� �
, ð30Þ

where Pr(mc) is the probability of cueing pattern mc and

Pr (mr)~
X

mc

Pr (mrjmc) Pr (mc): ð31Þ

In the simulations all patterns are presented an equal number of

times, therefore,

Pr (mc)~p{1: ð32Þ

We denote the fraction of successful runs (when mc = mr) that we

measure from the simulations by f, that is

Pr (mcjmc)~f : ð33Þ

Since in unsuccessful runs (when mc?mr), all patterns, except for

mc are a priori equally likely to be retrieved, we have

Pr (mrjmc)~
(1{f )

p{1
mc=mr: ð34Þ

Using Eqs. (32)–(34) in Eq. (30), we can thus write for fixed degree

of gain modulation, fixed background gain, and fixed number of

patterns,

Iwhat~ log2 (p)zf log2 (f )z(1{f ) log2

1{f

p{1

� �
: ð35Þ

Note that the above is, strictly speaking, only a measure of the

information implicit in the selection among the p patterns operated

by attractor dynamics; under certain conditions, however, it can

also serve as an indicator of the total information available in the

firing pattern itself [124].

ð28Þ

ð25Þ

ð27Þ

ð29Þ
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Iwhere is the mutual information between the peak of the local

overlap after 200 time steps and the centre of the gain modulated

area (or the centre of the cue when there is no gain modulation).

To estimate where information, Iwhere, we first measure the distance

between the peak of the final overlap of the successful runs and the

centre of the gain modulation, for each cued pattern. Then we

make a histogram of these distances and calculate the fraction of

runs which fall in any of the 10 distance bins chosen to be

b1 = [0,5],b2 = [5,10],…,b10 = [45,50]. In this way we have the

conditional probability, Pr(k | x), of having the peak of the activity

in the kth distance bin, given that the peak was initially at position

x on the lattice. With N neurons on each side of the lattice, we

have Pr(x) = 1/N2, and we can write Iwhere as

Iwhere~
X
x, k

Pr (kjx) Pr (x) log2

Pr (kjx)

Pr (k)

� �

~
X10

k~1

Prk log2

PrkN2

(2k{1)(5|5)p

� �

~ log
N2

25p

� �
z
X10

k~1

Prk log2

Prk

2k{1

� �
,

ð36Þ

in which we have used the fact that Pr(k | x) does not explicitely

depend on x and we can simply denote it by Prk. Similarly to what

we do for Iwhat, we have also assumed that for any such ring between

the circles of radius 5k and 5(k21), centred on the gain modulation

square, the final bump can be anywhere, with equal probability, on

the ring. In this expression the factor 2k21 accounts for the fact that

the area covered by the kth bin is 2k21 times the area of the first bin,

and hence its a priori probability is 2k21 times higher. The first term

in Eq. (36), is the maximum information value, Iwhere.6 bits, in this

approximation, i.e., the logarithm (in base 2) of the ratio between

the ‘‘area’’ of the network (4900) and that of the smallest bin

(5656p), and is achieved when all successful runs end up with a

bump at d#5 from its intended position.

Low gain regime versus high gain regime
In this section we discuss why in the low gain regime, gain

modulation aids retrieval of the patterns whereas in the high gain

regime it has a negative effect. We start from the self-consistent

equations, Eqs. (23) and (29).

Assume that the steady state of the network is a bump of activity

over a part of the network with single neuron gain bg, whereas the

rest of the network is silent with gain g. Furthermore, assume that

mi and ri that satisfy Eqs. (23) and (29) are nonzero inside the

bump and zero elsewhere. Consider that inside the bump mi = m

and ri = r, where m and r can be regarded, just for simplicity, to

be roughly constant. Then from Eqs. (23) and (29) we have:

m~bg

ð
Dx7 g

a
{1

� �
F

g

a
{1

� �
mzrx{Th

� �
8
g

ð37aÞ

r2~aT2
0 b2g2

ð
Dx7F2 g

a
{1

� �
mzrx{Th

� �
8
g
, ð37bÞ

where a = p/C is the storage load and

Dx:
1ffiffiffiffiffiffi
2p
p exp (

{x2

2p
): ð38Þ

Eqs. (37) are of the form of mean-field equations of a recurrent

network with non-metric connections [79,125] (assuming uniform

values for mi and ri inside the bump and zero outside is equivalent

to assuming that the part of the network, over which the bump is

formed, is behaving as an independent network). For each value of

a, Eqs. (37) have non-zero solution for m, and thus the network can

retrieve the stored patterns, if and only if gmin(a),bg,gmax(a),

where gmax(a) and gmin(a) are functions of a. The effect of

background gain g can now be readily seen. When g,gmin(a)

retrieval does not happen without gain modulation. With gain

modulation, however, the neuronal gain of the part of the network

that is gain modulated will be boosted by a factor of b and for

large enough b, the neuronal gain will be in the regime that

supports retrieval i.e. gmin(a),bg,gmax(a). When the background

gain g is high, bg can exceed gmax(a) , thus retrieval will not be

successful.

Comparison with other models
In this section, we discuss why it is more efficient to spatially

modulate attractor states associated to objects, than to store

distinct attractors for different positions of each object.

Under optimal conditions, the number of attractors that an

associative memory with C connections per neuron, but without

metric connectivity, can retrieve is

pmax~kC, ð39Þ

where k is a constant that is primarily determined by the sparsity of

the stored patterns [79]. Metric connectivity, which enables

localised retrieval, decreases k by a moderate factor c1.324 [32].

Localised gain modulation, that stabilises the bump at an arbitrary

position, decreases k again by another factor, c2, that for the

parameters and network size we used turns out to be c2.4. This is

actually an overestimation of the decrease in storage capacity due

to localised gain modulation, for realistic size networks. This is

because when we calculate the mean of the right hand side of

Eq. (22) over the distribution of connectivity patterns and g to get

Eq. (23), we ignore the fluctuations around this mean, that behave

as O(1=
ffiffiffiffi
C
p

). These fluctuations are what break the translational

symmetry of the self-consistent equation, Eq. (23), and make the

bump favour a few positions over the others, and are compensated

for by the localised gain modulation. As a result, less gain

modulation is required for stabilising the bump when there are

more connections per neuron. However, even with this estimate

for c2, the process described here results in a moderate reduction

in storage capacity

pmax~
k

c1c2

C: ð40Þ

The spatial modulation described here can represent positional

information with a resolution ‘~l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=Np

q
, where l is the lattice

spacing and Np is the number of distinct position that can be

resolved-in a large network, Np,O(N) (see Fig. 5).

On the other hand, the naive storage of distinct, unrelated

attractors for each object position pair decreases the number of

objects, whose identity could be retrieved, to

pmax~kC=NP, ð41Þ

illustrating the wasteful use of memory resources for positional

information, which in itself requires no memory.
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An alternative arrangement might be to associate attractors to

objects, but allow each attractor to be a continuous 2D manifold,

different for each object, so that position can be represented by

the position of a bump of activity on such attractor manifold,

unrelated to the position of the active neurons in the tissue.

This arrangement corresponds to the multiple spatial charts

model of Samsonovich and McNaughton [58], introduced to

account for the ability of rodents to track their own position

in multiple spatial environments, by coding it as a group of

coactive hippocampal place cells, which comprise a bump on a

chart corresponding to each environment. Instead of assigning

distinct charts to distinct spatial contexts, such as a square

recording box rather than a circular one, one could well

assign distinct charts to distinct objects, each of which would

then have its own ‘‘private’’ continuous or quasi-continuous

attractor, unrelated to the 2D arrangement of neurons in the

tissue. The mathematical analysis of the multiple charts

model [126] reveals that a network can store a number of

charts equivalent to the number of attractors in a standard

associative network of the same connectivity, reduced by a

factorNb, which is the number of place cell ensembles,

uncorrelated with each other, required to ‘‘tile’’ a chart. In the

simplest version of the model, each neuron shows a single place

field in each environment (at a different spatial position in each

chart) covering a fraction a of the total area of the environment.

Then Nb<(1/a) and, although the number of positions that can

be represented accurately can be larger than Nb, still a%1

for the network to be able to resolve position in space.

Therefore, adapting the hippocampal model would also yield a

lower capacity

pmax^kaC, ð42Þ

because of the cost of creating a separate ‘‘virtual’’ space for each

object. Simply utilising the position of neurons in the tissue to

represent physical position for all objects, and reserving memory

resources for object identity, provides the most efficient solution to

combine what and where information. Note instead that in the

hippocampus, to the extent that it utilises coactivity patterns to

discriminate between different spatial contexts [127], the position of

neurons in the tissue cannot be used to code for position in real space,

and in fact place field position in the chart is found to be unrelated to

cell position in the tissue [128]. It is also worth mentioning that the

same problem that we encountered for stabilising the bump at an

arbitrary position will also appear in models that associate a distinct

chart to each object [57]. Therefore, an extra mechanism will be

required in this case, too, and the real pmax will be smaller than pmax in

Eq. (42) by a factor similar to c2 in our model.
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