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An Evolutionary-Network Model Reveals
Stratified Interactions in the V3 Loop
of the HIV-1 Envelope
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The third variable loop (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope is a principal determinant of
antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research,
extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative
methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving
proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies
have relied implicitly on two biologically unrealistic assumptions: (1) that founder effects in the evolutionary history of
the sequences can be ignored, and; (2) that statistical associations between residues occur exclusively in pairs. We
show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high
rate of false positives (20%-40%). Therefore, we propose a new method to detect interactions that relaxes both of
these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting
focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution
of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the
phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a
control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a
sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder
effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a
structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our
model to detect interactions between the V3 and C4 domains of the HIV-1 envelope, and account for the uncertainty in
mapping substitutions to the tree with a parametric bootstrap.

Citation: Poon AFY, Lewis Fl, Kosakovsky Pond SL, Frost SDW (2007) An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLoS
Comput Biol 3(11): €231. doi:10.1371/journal.pcbi.0030231

Introduction

The human immunodeficiency virus type 1 (HIV-1)
possesses a highly variable envelope comprising the glyco-
proteins gpl20 and gp4l, which mediate the binding and
entry of the virus into a host cell. The viral envelope is also a
potent antigen for neutralizing antibodies [1-4] and cytotoxic
and helper T lymphocytes [5-7], which is manifested as
extensive sequence divergence in the env gene [8,9]. Con-
sequently, HIV-1 is required to maintain a functioning
envelope while accumulating a sufficient number of muta-
tions in env to escape the adaptive immune response. This
conflict can be surmounted by the evolving virus populations
through selection for combinations of substitutions that
exploit structural or functional interactions among residues
in the envelope glycoproteins [10]. A structural interaction
occurs between residues that cooperate in the formation and
stabilization of secondary or tertiary protein structures. On
the other hand, a functional interaction is a statistical
association that arises indirectly between residues that
participate in the same protein function, e.g., key residues
in a conformational binding site or glycosylation motif.
Redundancy that arises from such interactions allows
residues to be replaced by other combinations while
conserving the overall phenotype. This phenomenon, known
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as compensatory mutation, features prominently in HIV-1
evolution [11-13] and is pervasive across all levels of
biological diversity [14].

The detection of interactions among residues in rapidly
evolving viral proteins such as the HIV-1 envelope is an
important and unresolved problem. First of all, the failure to
account for such interactions can hamper efforts to map
genetic variation to virus phenotypes, such as coreceptor
usage, neutralization sensitivity, or drug resistance. For
example, a substitution at position 306 in HIV-1 gpl20
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Author Summary

The third variable loop (V3) of the human immunodeficiency virus
type 1 (HIV-1) envelope is a principal determinant of viral growth
characteristics and an important target for the immune system.
Interactions between residues of V3 allow the virus to shift between
combinations of residues to escape the immune system while
retaining its structure and functions. Comparative study of HIV-1 V3
sequences can detect such interactions by the covariation of sites in
the sequence, which can then be used to inform vaccine develop-
ment, but current methods for detecting such associations rely on
biologically unrealistic assumptions. We demonstrate that these
assumptions cause an excessive number of spurious associations,
and present a new approach that couples phylogenetic and
Bayesian network models, and greatly reduces this number while
retaining the ability to detect real associations. Our analysis reveals
that the V3 loop is stratified into discrete layers of interacting
residues, suggesting a partition of functions along this viral structure
with implications for vaccine development.

(relative to the HXB2 reference sequence) is necessary, but
not sufficient, to induce a shift in coreceptor usage in HIV-1;
full expression of this phenotype requires additional sub-
stitutions at positions 320 or 324 [15,16]. Second, the
identification of interacting residues may be applied toward
defining a minimal set of HIV-1 protein sequences to be
incorporated into a broadly reactive vaccine [17,18]. Con-
sequently, a substantial literature has developed around the
goal of defining an accurate map of interactions in the HIV-1
envelope [19-22]. The majority of these studies have focused
on detecting interactions within the third variable domain of
the external envelope glycoprotein gp120.

The third variable domain (V3) of the HIV-1 envelope
typically spans 33 to 35 residues that are bounded by two
invariant cysteines that form a disulfide bond to create a
loop. The V3 loop is characterized by extensive sequence
variation, and is a principal determinant of important HIV-1
phenotypes such as coreceptor usage and cell tropism [23-
25]. Neutralizing antibodies elicited by the HIV-1 envelope
are often directed against epitopes in the V3 loop [1,3], and
exposure to synthetic V3 peptides is sufficient to raise strain-
specific neutralizing antibodies against lab-adapted strains of
HIV-1 [2]. On the other hand, broadly reactive and potent
neutralizing antibodies tend to recognize conformational
rather than linear epitopes on V3 [26]. Because of its
functional and antigenic importance, the three-dimensional
structure of V3 has been studied extensively [27,28], revealing
a flexible, solvent-accessible loop that protrudes outward
from the gp120 core toward the host cell.

To date, comparative studies of HIV-1 env V3 have looked
for evidence of residue-residue interactions by measuring
covariation among positions in a sample of nucleotide (i.e.,
codon) or protein sequences [19-21,29]. Sequence covaria-
tion is most frequently assayed by the application of one or
more pairwise association test statistics, e.g., mutual informa-
tion [19]. The resulting set of statistically significant pairwise
associations is conventionally adjusted for multiple compar-
isons, either using the conservative Bonferroni correction
[20] or the Benjamini-Hochberg false discovery rate (FDR)
method [21,30]. This procedure is straightforward and yields
a set of putative interactions, but implicitly requires a
number of unreasonable assumptions. First, by treating each
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sequence as an independent observation in a random sample,
the procedure ignores their evolutionary history. However, it
is well known that shared ancestry will produce spurious
correlations between jointly inherited character states
[31,32]. This phenomenon has more recently been found to
substantially alter the results of a landmark study into genetic
associations of HIV-1 escape from cytotoxic T lymphocytes in
a human population [33,34]. Secondly, the pairwise associa-
tions that are selected by the test statistic have never been
evaluated in the context of any other residue. For example, an
interaction between two residues may be dependent on the
residue at a third position in the V3 loop. Many of the test
statistics employed by previous studies are inherently unable
to model such higher-order associations, requiring that we
assume such interactions do not exist. Because each associ-
ation is evaluated in complete isolation, we are left with a
“laundry list” of pairwise associations with no apparent
procedure for compiling these into a meaningful overall
picture of interactions in the V3 loop.

In this study, we propose a new method for detecting
interactions from an arbitrary sample of genetic sequences
that relaxes both of these assumptions. We apply our method
to analyzing residue-residue interactions in the V3 loop of
HIV-1 gp120, which has emerged as a model system for the
implementation of association test statistics or classification
algorithms [16,19,20,29,35]. Instead of quantifying covariation
in the observed set of sequences D, we will take their
evolutionary histories as our data [36-38]. Because these data
are almost always unobservable, they must be inferred from D
by assuming that the sequences have evolved according to
some stochastic model M. We will also assume that the
phylogenetic tree 7, which defines the common ancestry of
extant sequences, is known. Using maximum likelihood, we
can infer the ancestral sequences D' at each branching point,
or node, of the tree T as a function of D and M [39,40]. Any
difference between sequences in D U D" occupying adjacent
nodes of T implies that one or more substitution events
occurred at that site in the intervening branch [41]. The end
result is a sample of evolutionary events encoded as a matrix
D'', in which each unit of observation (row) corresponds to a
branch in the phylogenetic tree onto which substitutions are
mapped. Each column of D'’ corresponds to a unique codon
position, containing a “1” for every branch in which one or
more substitutions occur at that position, and “0” otherwise.
In sum, D'’ is a phylogenetically independent sample of
nonsynonymous substitution events that is derived by
augmenting the observed data D with an evolutionary model
and a tree.

To address the second assumption, we will analyze the
phylogenetically augmented data D'’ as a Bayesian network. A
Bayesian network, B, is a graph that encodes a set of
conditional independence assumptions on the joint proba-
bility distribution of random variables [42]. A graph is a visual
depiction of relationships between unique objects that
typically assumes the form of points (nodes) connected by
line segments or arrows (edges). In this case, each node
represents a random variable whose outcome may depend on
other variables. For example, a directed edge originating
from node A and terminating at node B (A — B) represents
the probabilistic assumption P(A N B) = P(A) P(B | A) # P(A)
P(B), i.e., that B is conditionally dependent on A. The set of all
edges in the graph corresponds to the “structure” of the
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Bayesian network, Bs. Bayesian networks hold a considerable
advantage over pairwise association tests. First of all, pairwise
association tests are unable to distinguish between direct and
indirect associations between variables. For instance, consid-
er the case in which two nodes are each dependent on a third
(B < A — (). Association test statistics are susceptible to
attributing significant associations to all three pairs. How-
ever, B is conditionally independent of C, given A;i.e., PBNC
| A)=P(B | A) P(C | A). Because conditional independence is
explicitly encoded by a Bayesian network, we can obtain a
more parsimonious and informative representation of bio-
logical causation [43]. Secondly, Bayesian networks provide
an efficient representation of the joint distribution in an
accessible graphical format. It is therefore not necessary to
assemble an ad hoc summary network from a list of
significant pairwise associations.

We apply this “evolutionary-network” model to detect
interactions among residues in the V3 loop of the HIV-1
envelope. Using maximum likelihood, we infer a phylogeneti-
cally independent set of substitution events. Interactions
among residues are manifested as correlated substitutions
within this inferred set, such that substitutions affecting a
subset of residues tend to be mapped to the same branch of
the tree. Because the phylogenetic inference of substitution
events is susceptible to some uncertainty, we carry out a
parametric bootstrap procedure to quantify the sensitivity of
the results from a maximume-likelihood reconstruction. We
also apply our method to several control cases, including the
better-characterized compensatory interactions in HIV-1
protease, to validate our results for the V3 loop. Our analysis
reveals a large number of interactions among residues that
fall into stratified clusters along the length of the V3 loop.

Materials and Methods

Data

A total of 1,154 full-length sequences of HIV-1 env were
obtained from the Los Alamos National Laboratory (LANL)
HIV sequence database (http:/[www.hiv.lanl.gov), excluding
recombinant sequences and limited to one sequence per
patient. The nucleotide alignment was adjusted using Se-Al
(Andrew Rambaut, http://tree.bio.ed.ac.uk/software/seal). Ac-
cording to the LANL subtype annotation, this alignment
comprised 500 (43.3%) subtype C, 431 (37.3%) subtype B, 109
(9.4%) subtype A, 65 (5.6%) subtype D, 25 (2.2%) subtype G,
17 (1.5%) subtype F, three (0.3%) subtype H, two (0.2%)
subtype K, and two (0.2%) subtype J sequences. Using the “11/
25 rule” [16,44], we predicted that 131 sequences encoded V3
loops binding the CXCR4 coreceptor; this subset comprised
predominantly subtypes B and D (n = 105). We used the
nucleotide alignment to reconstruct a phylogeny by neigh-
bor-joining [45] using Tamura-Nei distances [46] with rate
variation across sites (parameterized by a gamma distribution
with a shape parameter o = 0.5), excluding the indel-rich
variable domains of gp120 to avoid the confounding effects of
uncertainty in alignment. We removed nine sequences that
were identical in the portion of the alignment applied toward
reconstructing the phylogeny.

Mapping Substitutions to the Tree
We fit a codon substitution model [47] combined with the
general time-reversible nucleotide substitution model (GTR)
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[48] to the alignment and tree by maximum likelihood using
HyPhy [49]. The branch lengths of the nucleotide tree were
constrained to be scaled by a constant factor, reducing
considerably the number of parameters to be estimated; this
has been previously demonstrated to be a robust approx-
imation for fitting codon models [50,51]. Maximum-likelihood
reconstructions of ancestral sequences were extracted from
the fitted model for each internal node of the tree. We
inferred that one or more nonsynonymous substitutions had
occurred along a branch if the reconstructed codon states at
the nodes at either end of the branch encoded different amino
acids [41,51]. Each branch of the tree was thereby annotated
with a binary-state vector, according to the presence or
absence of a nonsynonymous substitution in that branch. This
procedure yielded a matrix comprising 2,305 rows and 33
columns. To quantify the uncertainty in the reconstruction of
ancestral sequences, we generated parametric bootstraps in
HyPhy by resampling ancestral sequences in proportion to
their likelihood [41,51] given the parameter estimates of the
evolutionary model (i.e., branch lengths and codon substitu-
tion rates), resulting in 100 replicate matrices that were
analyzed alongside the original matrix using Bayesian net-
works, as described in the next section.

Bayesian Networks

We analyzed the matrix of substitution events mapped to
branches in the phylogeny (D'') as a Bayesian network
comprising 33 discrete nodes, using an algorithm proposed
by Friedman and Koller [52] that we implemented in HyPhy.
The problem of detecting interactions among codon posi-
tions is equivalent to “learning” the structure Bg of a
Bayesian network B from data D'’ [53], in which the structure
refers to a set of directed edges representing conditional
dependencies between nodes. According to Robinson’s [54]
recursive formula, there are approximately 2.67 X 10"
possible network structures on 33 nodes; this number clearly
precludes an exhaustive search for an optimal structure.
Furthermore, more than one network structure may be
supported equivocally by the data, especially when the
number of observations is small relative to the number of
nodes [52]. Friedman and Koller proposed carrying out a
Markov Chain Monte Carlo (MCMC) algorithm over the space
of node orders rather than network structures. A node order
is a permutation of the nodes in a linear sequence such that a
node can only become assigned as a “parent” of nodes that
are positioned to its left (i.e., “precedes,” <). For example, the
node order A < B defines a subset of network structures that
excludes all structures containing the edge A +» B. The node
order space is relatively more compact—for instance, there
are approximately 8.6 X 10%° permutations of 33 nodes—and
yields a smoother posterior probability surface with im-
proved MCMC convergence properties [52].

Following Friedman and Koller [52], our implementation
precomputed the posterior probability, or score, for every
combination of states assigned to the parental nodes of the ith
node, for all i. These node scores were cached into memory
and accessed by direct indexing to make subsequent calcu-
lations more efficient. The posterior probability of a structure
Bs was calculated according to the K2 scoring metric [55],
which integrated over the conditional probabilities at each
node (i.e., the network parameters, Bp) that were distributed
according to an uninformative Dirichlet prior, i.e., a uniform
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distribution over the interval [0, 1] for binary-valued nodes.
The K2 metric tends to favor more parsimonious, and hence
more interpretable, network structures than alternative
scoring metrics such as the Bayesian Dirichlet metric or BDe
[56]. (The BDe metric yielded nearly identical results to the K2
metric when the “imaginary” prior sample size required by
the BDe was set to near zero.) Our use of cached node scores
exploited the fact that the posterior probability of a network
structure decomposes into a product of node “families,”
which blocks the peripheral structure by accounting for the
direct influence of the parents of each node. We ran a single
Markov chain initialized with a random permutation of the
node ordering. At each step, a proposal function swapped two
random nodes in the current node order. The proposed node
order was accepted unconditionally if its posterior probability
exceeded that of the current ordering, or conditionally in
proportion to the ratio of posterior probabilities (i.e.,
Metropolis-Hastings sampling [57]).

We ran the Markov chain for 10° steps with a burn-in
period of 10° steps, which we have found to be more than
sufficient for convergence for networks of this size. We ran a
duplicate Markov chain and found that Gelman and Rubin’s
convergence diagnostic [58] was indistinguishable from one,
which was consistent with convergence. Node order statistics
(e.g., edge posterior probabilities) were sampled at 10* steps
of the chain at equal intervals. We estimated the posterior
probability for each of 528 possible edges as the proportion
of structures in the sample in which the edge was present in
either direction, weighted by P(Bg | D) [52]. A consensus
network structure was assembled from all undirected edges
with a marginal posterior probability exceeding the cutoff
value 0.95. The same analysis was carried out for each
parametric bootstrap sample, except the chain in each case
was run for 10° steps with a burn-in period of 10" steps and
10” samples. The profile of each chain was visually inspected
to evaluate convergence. The frequency of edges with a
posterior probability exceeding 0.95 was summed across
bootstrap samples to quantify the sensitivity of edges in the
maximume-likelihood consensus network to uncertainty in the
reconstruction of ancestral sequences.

Model Validation

We employed three validation procedures to evaluate the
accuracy of our methods. First, we invoked a paired binary-
character model, originally developed to analyze the evolu-
tion of N-linked glycosylation site motifs [22], in order to
simulate the evolution of V3 sequences along the “observed”
phylogeny with a known set of interactions. This model
specifies the substitution rates between the paired states {00,
01, 10, 11}, disallowing simultaneous substitutions affecting
both sites in a pair, ie, 00 <#> 11, 01 <#> 10. We
converted our alignment of V3 sequences into binary-
character sequences based on the presence or absence of
the alignment consensus amino acid at each position of the
sequence. For example, any V3 sequence that encoded a
threonine at position 1 was converted into a binary string
beginning with “1,” and “0” otherwise. We constrained the
substitution rate parameters of the paired binary-character
model such that the expected frequency of “1”s in simulated
alignments would equal the observed frequency of consensus
residues in our V3 alignment. A “pairwise coevolution”
parameter, €, determined the factor by which a “1” at one site
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accelerated the rate of “0” — *“1” substitutions at the second
site, or conversely the odds that a “0” at one site became
replaced by a “1” with respect to the presence or absence of a
“1” at the second site of a pair. In other words, if € =1, then
the paired model was effectively equivalent to a model in
which every site evolved independently. We simulated the
evolution of binary sequences comprising 17 coevolving pairs
of sites (ie, {1, 2}, {3, 4},.., {33, 34}) along the original
neighbor-joining tree. Two hundred replicate alignments
were generated in this fashion for a range of € parameter
values. Each alignment was analyzed by the evolutionary-
network method outlined above, i.e., by fitting a model of
independently evolving binary characters by maximum like-
lihood, assigning substitution events to branches in the tree,
and analyzing the distribution of substitutions as a Bayesian
network using an MCMC analysis. We recorded the frequency
that edges in the network with marginal posterior proba-
bilities exceeding 0.95 recovered our predefined paired
interactions (true positives) or spurious ones (false positives).
These results were contrasted with the rates of true and false
positives obtained from using the Fisher exact test on the
simulated binary sequence alignments (i.e., without correct-
ing for the phylogeny). We chose the Fisher exact test as a
representative example of pairwise association test statistics.

Second, we simulated the evolution of nucleotide sequen-
ces along the tree according to a more realistic codon
substitution model whose parameters were estimated from
the original alignment of V3 sequences. We randomly
generated 100 replicate alignments with the same dimensions
and characteristics (e.g., expected codon frequencies) as our
observed V3 alignment by this method. Because the codon
substitution model assumes that an alignment is a set of
independently evolving codon sites [47], any significant
interactions between sites were false positives caused by
founder effects in the phylogeny. We evaluated the false-
positive rate for our method against the rate for a more
conventional pairwise association test, in which we applied
the Fisher exact test to every pairwise combination of codon
positions in the simulated V3 loop sequences, enumerating
consensus and nonconsensus residues to generate a 2 X 2
contingency table.

Third, we applied the evolutionary-network model to a set
of HIV-1 protease sequences, in which compensatory
interactions are substantially better characterized empirically
or structurally than the V3 loop, particularly in the context of
drug resistance [11,12,59-64]. We obtained an alignment of
2,641 HIV-1 subtype B sequences from the Stanford HIV
resistance database (http://hivdb.stanford.edu) [65] represent-
ing patients on active drug regimens that included at least
one protease inhibitor. This alignment was analyzed using the
evolutionary-network methods, and the results were con-
trasted with known interactions from the empirical and
structural literature.

Structural Visualization

We mapped interactions from the consensus Bayesian
network to a three-dimensional structure of the V3 loop of
HIV-1 gpl20 complexed to the CD4 receptor and X5
antibody (Research Collaboratory for Structural Bioinfor-
matics Protein Data Bank [RCSB PDB]), using the visual-
ization software Chimera (University of California San
Francisco, Computer Graphics Lab [66]).
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Figure 1. True- and False-Positive Rates on Simulated Data

(A) A receiver operating characteristic (ROC)-like curve, in which the y-
axis corresponds to the true-positive rate (TPR), and the x-axis
corresponds to the false-positive rate (FPR). A perfect analytical method
would be located in the upper-left corner (i.e., TPR=1, FPR=0), whereas
methods located near the diagonal (dashed line, TPR = FPR) are
statistically equivalent to a random guess. Each point in the plot
corresponds to the mean outcome from the corresponding model
analysis (orange = the Fisher exact test, black = evolutionary-network) of
ten replicate simulations of binary-state sequences evolving under
various settings of the pairwise coevolution parameter, € (ranging from 1
to 3; see figure labels).

(B) Boxplots corresponding to the false-positive rate (as a fraction of the
total number of pairwise comparisons = 528) from the corresponding
analysis (evolutionary-network [Evol-Net] or Fisher exact test [Fisher]) of
simulated sequences evolving according to a null model of codon
substitutions in which sites evolve independently, using parameter
settings estimated from the original V3 sequence alignment. We
generated 100 replicate simulations of nucleotide sequences evolving
along the original neighbor-joining tree.
doi:10.1371/journal.pcbi.0030231.g001

Results

Reconstruction of Nonsynonymous Substitutions

The maximum-likelihood reconstruction of ancestral se-
quences along the tree resulted in approximately 1.87
nonsynonymous substitutions per branch. The mean number
of inferred nonsynonymous substitutions was significantly
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divergent between internal (0.48 substitutions per branch)
and terminal (3.28) branches of the tree (Wilcoxon rank sum
test, W = 152041, p < 0.001); only 95 out of 1,142 (8.3%)
internal branches had more than one substitution mapped.
We found substantial variation in the total number of
nonsynonymous substitutions among codon positions in V3
(coefficient of variation, C.V. = 1.16). The largest number of
inferred substitutions occurred at residue 24, whereas
residues 2, 16, 27, and 32 were highly conserved (numbered
according to their position within the interval bounded by
cysteines in the consensus sequence, as in [19]). This
distribution was consistent with the pattern of diversifying
selection across sites (unpublished data), implying that the
differences were not simply due to variation among codon
positions in mutation rate or the expected number of
nonsynonymous sites. Adjusting the inferred number of
nonsynonymous substitutions for the expected number of
nonsynonymous sites at each codon position, and normaliz-
ing by the analogous quantity for synonymous substitutions
(i.e., dN — dS), indicated that residues 13 and 29 were even
more strongly conserved than implied by the uncorrected
frequency of nonsynonymous substitutions. The detection of
interactions among codon positions in the number of
nonsynonymous substitutions did not require any such
correction, however.

Model Controls

We validated the accuracy of our evolutionary-network
model using three different controls. First, we simulated the
evolution of HIV-1 V3-like sequences along the original
phylogeny as vectors of binary characters switching between
consensus and nonconsensus residues. Each consecutive pair
of residues was constrained to coevolve according to an
adjustable parameter & where &€ = 1 corresponded to
independently evolving sites. We contrasted the performance
of a binary-state analog of the evolutionary-network model,
reconstructing substitution events by maximum likelihood,
against the results from applying the Fisher exact test to the
extant binary sequences (Figure 1A). After correcting for
multiple comparisons using the Benjamini-Hochberg correc-
tion [30], we found that the Fisher exact test resulted in a very
high number of false positives increasing with the pairwise
interaction parameter € (with means ranging from 42 to 100
false positives out of 544 negative instances over the range of
¢ from 1 to 3). Although the Fisher exact test appeared to
recover more true positives on average than our evolu-
tionary-network model for a given value of € our model
sustained a substantially lower rate of false positives (averag-
ing five out of 544 negative instances). As a result, our model
converged to the most desirable outcome (100% true-positive
rate and 0% false-positive rate) with increasing values of &,
whereas the Fisher exact test diverged closer to the line of no
discrimination (i.e., random guess; Figure 1A). Similar results
were obtained using a more conservative Bonferroni correc-
tion for the Fisher exact tests.

Second, we simulated the evolution of HIV-1 V3 sequences
along the phylogeny using a more realistic codon-based
substitution model. Because this model assumes that each
codon site evolves independently, the number of significant
associations from each replicate simulation provided an
estimate of the false-positive rate. Using the Fisher exact test
on the pairwise combination of amino acids in simulated
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Figure 2. Distribution of the Marginal Posterior Probability of Network
Edges

This histogram indicates the frequency of the marginal posterior
probability of the 528 possible edges, sampled from a Markov chain
over the space of node orders (see Materials and Methods). The prior
probability of each edge was set to the uninformative value of 0.5. Note
that the vertical range of the histogram was truncated to a maximum of
50; the first bin of the histogram contained 485 edges as indicated on
the figure. Individual values are indicated by tick marks along the x-axis.
A red line indicates the arbitrary cutoff value of 0.95.
doi:10.1371/journal.pcbi.0030231.g002

sequences, we found false-positive associations between 160.8
out of 528 pairs on average (10% and 90% quantiles = 115.4
and 217.3, respectively; Figure 1B). This number of significant
pairwise associations corresponded to an expected false-
positive rate of about 30.4% (10% and 90% quantiles =
21.8% and 41.2%, respectively), predominantly due to the
common ancestry of sequences (i.e., founder effect [34]). In
contrast, our evolutionary-network analysis yielded about
four false positives on average (0.8%; Figure 1B), correspond-
ing to a 40-fold improvement in specificity.

Third, we applied our evolutionary-network method to
analyze HIV-1 subtype B protease sequences isolated from
2,461 patients undergoing drug regimens including at least
one protease inhibitor [65]. HIV-1 protease is better
characterized structurally than the relatively flexible V3 loop
of the envelope glycoprotein gp120 [12,63,67]. In addition,
compensatory interactions between several sites in HIV-1
protease are extensively documented from clinical and
experimental studies [11,12,59-64], with greater consistency
among studies than interactions in V3. We obtained a
consensus network comprising 16 edges with marginal
posterior probabilities exceeding a cutoff of 0.95 (Figure
S1). Two nodes representing the codon sites M46 and V82—
prefixed with the alignment consensus residue and numbered
according to their position in the HXB2 reference se-
quence—were highly connected by five (L10, V32, T74, V82,
L90) and four (M46, V48, 154, A71) edges, respectively. Both
M46 and V82 are well-known sites of mutations that interact
with mutations at the other sites identified in this network in
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74 73/
64

Figure 3. The Consensus Network of V3 Residues

Each node corresponds to a residue in the V3 loop, numbered according
to their position in the consensus sequence (identical to Korber et al.
[19]) and labeled with the consensus amino acid. Dark-shaded nodes
indicate residues that are connected by edges with parametric bootstrap
support values exceeding 50%; each edge is labeled with its support
value. Edges with support values below this threshold are indicated by
dashed lines.

doi:10.1371/journal.pcbi.0030231.g003

order to confer resistance to protease inhibitors and cross-
resistance to multiple inhibitors [11,12,62,63]. We also
recovered a highly significant edge between the codon sites
D30 and NB88, at which mutations have been jointly
implicated in clinical data as conferring specific resistance
to the inhibitor nelfinavir [68]. In sum, we found strong
concordance between our network and clinical and exper-
imental studies of compensatory mutations in HIV-1 pro-
tease.

The Consensus Network Stratifies V3

The prior probability of every potential edge was set to 0.5.
Given our augmented dataset, the distribution of the
posterior probabilities of edges was strongly U-shaped, with
a distinct cluster of edges with probabilities exceeding 0.95
(Figure 2). This outcome indicated that our phylogenetically
augmented data matrix D'" was sufficiently informative to
distinguish network edges supported by the data from edges
with little support. The consensus network assembled from
edges above our cutoff comprised five components, including
one large network component connecting 11 nodes (Figure
3). All putative interactions identified by the consensus
network were “positive” (odds ratio [OR] > 1), such that a
substitution at one residue significantly increased the
probability of a substitution at a different residue in V3.
We caution that because nonsynonymous substitutions on
branches were relatively rare events, our analysis may have
been subject to an intrinsic lack of power to detect negative
interactions, i.e., where the occurrence of one substitution
excluded substitutions at other sites. The parametric boot-
strap support values for each edge in the consensus network
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Figure 4. Structural Model of the V3 Loop

A three-dimensional visualization of the structure of the V3 loop, using
structural coordinates from a model comprised of the HIV-1 gp120 core
protein complexed to the CD4 receptor and the X5 antibody [28]. The
structure is oriented such that the host cell membrane would be
positioned at the top of the figure. The cysteine residues forming a
disulfide bridge that closes the loop are labeled in green. The amino acid
sequence depicted here differs from our consensus sequence at five
positions, such that identity would require the following substitutions:
Q5N, H12R, R17Q, T21A, and E24D.
doi:10.1371/journal.pcbi.0030231.g004

are provided in Figure 3 as integer values (between 0 and 100)
adjacent to each edge. These values quantified the sensitivity
of each edge to uncertainty in the reconstruction of ancestral
sequences. Nine of the edges in the network had support
values below a cutoff of 50; these edges were trimmed from
the final consensus network.

The strongest association in the consensus network
occurred between residues 5 and 7 (OR = 155.6), which
jointly defined a conserved N-linked glycosylation site motif
(i.e., NNTR). Upon inspection, we found 28 phylogenetically
independent events in which substitutions occurred along the
branch, affecting both residues and disrupting the motif.
Because a substitution at either residue would have been
sufficient to eliminate the N-linked glycosylation site motif,
this association suggested the presence of additional con-
straints on V3 in the absence of glycosylation. We also found
evidence of an interaction between residues 5 and 30 (OR =
53.4). Although these residues resided on the opposite strands
of the V3 loop, they were roughly equidistant from the base
(Figure 4), which may facilitate an interaction bridging the
loop.

Two of the network components (R12-F19 and 113-Q17)
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represented positive associations that were nested with
respect to the secondary structure (Figure 4), which was
consistent with stratification of the V3 loop. Both putative
interactions were located in the region identified as the “tip,”
which has been implicated in initiating gp41-mediated fusion
with the host cell membrane, in addition to acting as the
binding site for several monoclonal antibodies [28].

A large component comprised associations among the
nodes S10, D24, 125, and 126, which all mapped to residues in
the stem region of the V3 loop [28]. This component included
a strongly supported association (in 86 out of 100 parametric
bootstrap samples) between residues 10 and 24, which has
been detected in previous studies of covariation in V3 loop
sequences [19,20]. These residues have been implicated as
strong determinants of coreceptor usage, i.e., the 11/25 rule
[44], and act synergistically to alter the syncytium-induction
phenotype [15]. Associations between residue 24 and the
adjacent residues 25 and 26 were blocked by residue 10
(Figure 3). Indeed, when we repeated the analysis with a ban
on edges between the nodes S10 and D24, node D24
nonetheless failed to become incorporated into the same
component as 125 and I26. Overall, putative interactions
between adjacent residues were more the exception than the
rule; the majority of the putative interactions tended to
bridge opposite strands of the V3 loop.

We applied the 11/25 rule to classify 131 of the extant
sequences as yielding CXCR4-binding virus, i.e., having an
“X4” phenotype. Thirty-seven of the X4 sequences formed
monophyletic groups, for which each common ancestor may
have been interpreted to be X4 also. On the contrary, each X4
sequence would most likely have been derived from a CCRb5-
binding ancestor over the course of an infection [25].
Parsimonious models of evolution would consequently have
been susceptible to underestimating the number of substitu-
tions at positions 10 and 24. Indeed, the maximum-likelihood
reconstruction at groups comprising X4 sequences predicted
that the majority of ancestors were X4 also; we found only
two cases of an X4 motif being evolved independently in
sequences derived from a CCRb5 ancestor. Despite this
outcome, our reconstruction also assigned substitutions at
positions 10 or 24 to nearly half (15 of 33) of the terminal
branches with an X4 ancestor. Because even one basic residue
at either 10 or 24 is sufficient to fulfill the 11/25 rule, many
substitutions replaced a redundant residue in the motif. In
other cases, one basic residue was simply exchanged for
another basic residue at position 10 or 24.

The final component of the network, comprising associa-
tions among the nodes N4, D28, and Q31, mapped to the base
of the V3 loop. Although the network components {N5, T7,
R30} and {N4, D28, Q31} are nested with respect to the
amino acid sequence, preliminary analyses via molecular
dynamics simulation of the V3 loop suggested that the side
chains of D28 and Q31 occupied a distinct space apart from
R30 (unpublished data). Thus, the consensus network
components defined a stratified V3 loop with respect to its
secondary structure, with clusters of putative interactions
localized to its tip, stem, or base regions (Figure 4).

By mapping the statistical associations identified by edges
in the consensus network to a structural model of the V3 loop
28, we were able to calculate the average distance separating
the residue pairs with respect to the folded protein, or the
number of residues separating the pair in the amino acid
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Figure 5. Combined V3 and C4 Network

Evolutionary-Network Model of HIV-1 V3

A

A consensus network assembled from edges with marginal posterior probabilities exceeding 0.95, in which nodes represent nonsynonymous
substitution events at codon sites in the V3 and C4 domains. Nodes that correspond to residues in the C4 domain are shaded blue (numbered
according to their position in the consensus env gene sequence), and nodes that were connected by strongly supported edges in the V3-specific
network are shaded black. We retain the same numbering scheme for residues in V3 for consistency.

doi:10.1371/journal.pcbi.0030231.g005

sequence (i.e., tertiary and primary distances, respectively).
We also generated null distributions of mean distances by
randomizing the residues occupying nodes of the consensus
network. Although the observed mean primary distance (11
residues) coincided with the mean of the null distribution
(10.8), the observed mean tertiary distance (10.1 /f\) was
significantly lower than expected (16.7 A, p < 0.005; Figure
S2). This discrepancy between the mean primary and tertiary
distances indicated the influence of residue pairs bridging the
V3 loop.

Interactions between V3 and C4

Residue-residue interactions between the V3 and C4
domains of gpl20 have been documented in previous
experimental work [69-72]. We reconstructed the evolu-
tionary history of the C4 domain and merged the resulting
matrix of substitution events with the matrix obtained from
our analysis of V3 by rows (i.e., branches). A majority of the
network components from our previous analysis of V3 were
recovered in the consensus network of the merged V3-C4
dataset (Figure b5). (Residues in the C4 domain were
numbered according to their location within the env gene
of the HXB2 reference sequence. Because the HXB2 sequence
contained several infrequent indels in the V3 domain, we
retained our original numbering scheme of V3 residues for
consistency.) Only the V3 network component {N4, D28,
Q31} became disrupted by the inclusion of residues from the
C4 domain. The residue-residue associations within V3 that
this component comprised were replaced in the V3-C4
consensus network by a strongly supported association
between D28 and the C4 residue R419. This shift also resulted
in stronger evidence for a positive interaction between the
V3 residues Q31 and H33. We found several strongly

supported associations between the V3 and C4 domains of

gp120, indicated by edges connecting residues located in
either domain (e.g., D24-N460, G14-1.453, and D28-R419;
Figure 5). All edges in the V3-C4 consensus network
represented positive associations. Mapping these residues to
a three-dimensional model of the gp120 glycoprotein [28], we
found that the D24 and N460 side chains were separated by a
minimum distance of 3.6 A (8.3 A separating their o-carbons).
Residue N442 was also located in close proximity to the V3
loop (to a minimum distance of 3.2 A, or 4.0 A between the o-
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carbons of N442 and N4), but remained a considerable
distance from its putative interacting residue D24, suggesting
that this putative interaction was more functional than
structural in nature. Similarly, none of the other putative
interactions between the V3 and C4 domains occurred
between spatially clustered residues. We also detected a
putative interaction between C4 residues that comprised a
potential N-linked glycosylation site (N442-T444). This
glycosylation motif was predominantly subtype C specific,
but the majority of substitutions at these positions were
mapped to branches outside the subtype C clade.

Interactions Reflect Evolution within Hosts

Mapping substitutions within the V3 loop to branches in
the tree allowed us to partition the analysis between terminal
and internal branches, focusing on HIV-1 evolution
within or among hosts, respectively. The network obtained
from an analysis of substitutions mapped to terminal
branches was very similar to the original network, recovering
the edges N5-T7, S10-D24, R12-F19, and 113-Q17 (Figure
S$3). This result was consistent with a greater influence of the
adaptation of HIV-1 within hosts on shaping sequence
variation in V3. The network obtained from the map to
internal branches displayed fewer similarities (Figure S3). We
recovered the network component {N5, T7, R30} and the
edge 125-126 in our analysis of internal branches. We also
found several edges that did not appear in the original
network, e.g., 126-A32 and N5-P15. However, the network
inferred from internal branches was sensitive to the low
frequency of substitutions mapped to this portion of the tree
(544 substitutions in total, compared to 3,751 substitutions
mapped to terminal branches), and some edges may be
spurious.

ie.,

Discussion

Our analysis of the covariation among residues comprising
the V3 loop of the HIV-1 envelope glycoprotein gp120 is the
first to model sequence variation as a joint probability
distribution in a phylogenetic context. We refer to this type
of analysis as an evolutionary-network model. By simulating
sequences on the inferred phylogeny under a null model of
independent evolution among sites, we show that analyses
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that do not account for common ancestry are susceptible to a
high false-positive rate, even after applying corrections for
multiple comparisons. Consequently, such analyses tend to
over-report the number of significant associations within the
V3 loop, ranging in one case from 39 to 157, depending on
the association test statistic and method of adjusting for the
false discovery rate [21]. This effect becomes even worse as
one samples more sequences, which tends to increase the
depth of the tree (i.e., time to the most recent common
ancestor). Spurious associations may also result from indirect
correlations between conditionally independent sites. For
example, the V3 residues 10, 12, 19, 23, and 24 tend to be
excessively interconnected by pairwise tests such that edges in
the network form closed loops [19-21]. As a result, the
networks assembled from all statistically significant pairwise
associations tend to be over-connected and difficult to
interpret.

Five out of the nine putative interactions that were
identified by our evolutionary-network model have previ-
ously been reported in comparative studies. Pairing of
residues 10 and 24 is ubiquitous [19-21], indicating that this
interaction is sufficiently strong to overcome confounding
effects of the phylogeny and statistical methodology. Residues
5 and 7 were also found to covary significantly by Bickel et al.
[20], who also remarked on the presence of a glycosylation
site. Finally, significant associations have been reported
between the residue pairs 10-26 and 28-31 under some
statistical tests conducted by Gilbert et al. [21]. These
previous studies may have failed to detect the remaining
putative interactions in our study because their analyses were
susceptible to an elevated rate of false negatives, caused by
raising the threshold of significance to control their
inherently high false-positive rate.

Unfortunately, very few interactions between specific
residues in the V3 loop have been described consistently by
experimental or comparative studies (see Table SI). For
example, de Jong et al. [15] found that substitutions at both
site 10 and either 24 or 28 were necessary to restore the
syncytium-inducing phenotype in chimeric HXB2 viruses
propagated in T cell lines. Similarly, Shioda et al. [87]
determined that substitutions at three to five positions in V3
(residues 12, 20, 21, 24, and 31) were required to modify the
cell tropism phenotype of HIV-1; single amino acid sub-
stitutions were insufficient. Kuhmann et al. [73] used site-
directed mutagenesis of an HIV-1 isolate to determine that
substitutions at four different positions in V3 (residues 9, 12,
18, and 23) were necessary for the virus to become fully
resistant to the CCRb5-binding entry inhibitor ADI101;
however, it remains unclear whether the cumulative effect
of these residues was nonadditive. The lack of concordance
among experiments and comparative studies in identifying
putative interactions between residues in V3 is due in part to
assaying different phenotypes of V3 (e.g., cell tropism and
coreceptor usage) whose genetic determinants may not
overlap, as well as variation in the genetic and environmental
context of V3 [74].

Similarly, there are few documented cases of interactions
between specific residues in V3 and C4. Morrison et al. [70]
found that a loss-of-function mutation (positionally equiv-
alent to residue 434 in HIV-1) in the C4 domain of a simian
immunodeficiency virus (SIVmac239) envelope glycoprotein
gp120 could be compensated by a subsequent mutation in V3
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(at residue 11). Subsequently, Kirchhoff et al. [71] identified
two additional compensatory combinations between residues
in V3 and C4 (including SIVmac239 env positions 334, 428,
and 324). However, the HIV-1 and SIVmac239 env V3 loops
are so divergent that comparisons are unlikely to be
informative. In HIV-1, Carrillo and Ratner [72] found that
substitutions at residues 430 and 441 in C4 restored the
original cell-tropism phenotype in a V3-chimeric mutant.

In light of this, we have performed extensive tests to
validate the accuracy of our model. Our simulations indicate
that mapping substitution events to the phylogeny is very
effective at removing the confounding influence of founder
effects, reducing the high false-positive rate experienced by
other methods by almost two orders of magnitude. In
addition, complex patterns of conditional dependence
among codon sites in V3 were revealed by our use of
Bayesian network models. In sum, we find that the evolu-
tionary-network model can reliably identify true interactions
with a very low rate of false positives. Although our model is a
considerable improvement over previous methods, it still
requires a number of assumptions. First of all, we are
mapping substitution events to branches in a tree that we
assume to be a known quantity. It is possible to quantify this
uncertainty by simultaneously sampling the topology of the
tree and parameters of a nucleotide substitution model from
a posterior probability distribution [75,76]. But sampling the
parameters of a codon substitution model for a very large
tree (over a thousand leaf nodes) is an extremely computa-
tionally demanding task and may be exceedingly slow to
converge. Furthermore, previous studies have demonstrated
that maximum-likelihood estimates of substitution rates or
counts are relatively insensitive to the tree topology [51,77].

Secondly, we implicitly assume that our codon substitution
model is an accurate representation of the true process
underlying the evolution of our sample of HIV-1 env
sequences. Like the vast majority of evolutionary models,
this particular model assumes that the evolutionary process at
one codon position is independent of all others. In other
words, we are using a model that assumes the absence of
interactions among sites in order to map substitutions to
branches, which in turn will be used to detect interactions
among sites. One could argue that this assumption may limit
the sensitivity of our study to detect interactions. However,
previous work suggests that the accuracy in mapping
substitutions to branches in the tree is robust to the failure
to account for such interactions. An interaction between sites
will be manifested as variation in substitution rates over time,
also known as “heterotachy” [78]. Phylogenetic methods
based on ancestral reconstruction have been demonstrated to
be robust to heterotachy [37] and variation in substitution
rates across sites as well [51]. In the absence of prior
knowledge, the independent-sites model is more conservative
because it is not biased toward identifying particular
interactions among sites.

Third, our application of the evolutionary-network model
to V3 loop sequences implicitly assumes that residue-residue
interactions are constant throughout the evolutionary history
of the sequences. This assumption is susceptible to subtype-
specific interactions [21] including other domains of the
gpl20 glycoprotein [69,71,72,79,80], which may become
masked by pooling data from multiple contexts. For example,
substitutions at some sites involved in interactions identified
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in this study (i.e., 5 « 30, 25 < 26, and 4 < 31) tend to map to
branches in the subtype D clade. Upon inspection, however,
none of the statistical associations in the model appear to be
exclusive to any one subtype (unpublished data). In fact, our
model does not preclude the analysis of full-length env
sequences, nor the inclusion of other factors, which would
simply introduce additional variables into the Bayesian
network. Such an analysis would address the possibility of
subtype-specific interactions. Despite our implementation of
a network-learning procedure that is tailored to handle
limited datasets [52], however, our sample of sequences (n =
1,154) is barely sufficient to support such an analysis, which
would potentially involve up to 721 codon positions (omitting
variable loops V1/V2, V4, and Vb5). Instead, we have inten-
tionally restricted our main analysis to residues within the V3
loop in order to contrast our methods against those of
previous comparative studies analyzing the covariation with-
in this domain [19-21]. Moreover, the edges of the V3-specific
network are largely robust to the inclusion of the C4 domain
into our analysis, suggesting that these putative interactions
in V3 are mostly independent of subtype variation in the
remainder of the env gene.

Finally, our analysis of covariation in V3 handles all
nonsynonymous substitutions at a given site equivocally, i.e.,
making no distinction between the specific residues involved.
This approximation greatly reduces the dimensionality of the
model to binary states (presence or absence of any non-
synonymous substitution). As in the case of subtype-specific
interactions, this approximation could potentially mask
residue-specific interactions [64]. However, the presence of
residue-specific interactions does not necessarily prevent our
analysis from detecting a statistical association between the
sites overall. For example, our model identifies a putative
interaction between residues 5 and 7 in V3, even though the
reconstructed substitutions specifically target residues defin-
ing an N-linked glycosylation motif.

The paradigm of a subdivision of function among sections
of the V3 loop originated with experiments identifying the
“tip” region as the principal neutralizing determinant [3].
Sequence variability localized to the strands immediately
flanking the tip further suggested that the V3 loop could be
partitioned into three functional regions: a conserved tip and
base, and a flexible stem [28,81]. Subsequent experimental
work has implicated residues in the conserved base of the V3
loop (residues 2-7 and 25-30) in specific interactions with the
sulfated tyrosines of the N-terminal region of the CCR)
coreceptor [82], spatially distinct from the region bound by
the tip [83]. Our comparative study of covariation in V3
sequences corroborates this empirically motivated model of a
functionally stratified V3 loop. (However, we note that
although comparative studies of sequence covariation can
detect interactions between residues, they cannot distinguish
functional from structural interactions.)

Ultimately, our goal is to map residue-residue interactions
to host factors and clinically relevant virus phenotypes, such
as coreceptor usage or neutralization sensitivity. Because our
unit of observation consists of inferred evolutionary events
rather than observed variation, we will require an evolu-
tionary model for every phenotype to be included in the
analysis, including continuous traits. The task of detecting
interactions among components of genotype or phenotype
has rapidly grown in its significance to HIV-1 research.
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Outside of the ongoing work on associating sequence
variation in the V3 loop with coreceptor usage [16,35],
investigators have applied several types of association tests to
study covariation within the HIV-1 protease [62] and reverse
transcriptase in association with drug resistance [61,84,85],
and the Gag polyprotein [86]. None of these studies place
interactions in an evolutionary context, and have only
recently been able to address higher-order interactions. In
light of our analysis of the V3 loop, we believe that
application of the evolutionary-network model will provide
new insight into diverse aspects of HIV-1 biology.

Supporting Information

Figure S1. Consensus Bayesian Network for HIV-1 Protease

This network was assembled from edges with marginal posterior
probabilities exceeding a cutoff of 0.95, obtained from applying our
evolutionary-network method to an alignment of HIV-1 subtype B
protease sequences. Edges are labeled with their marginal posterior
probability expressed as a percentage. Nodes are labeled with the
alignment consensus residue and position of the codon site
(consistent with the HXB2 reference sequence). Codon sites that
have been previously implicated in resistance to protease inhibitors
or subsequent compensatory mutations are labeled in pink (cross-
resistant) or orange (specific to nelfinavir).

Found at doi:10.1371/journal.pcbi.0030231.sg001 (10 KB PDF).

Figure S2. Null Distribution of Tertiary and Primary Distances

This contour plot was generated from random assignments of V3
residues to nodes of the consensus network. Mean primary distance
(x-axis) was calculated from the number of residues separating the
pairs of residues connected by an edge in the network in the amino
acid sequence. Mean tertiary distance (y-axis) was calculated from the
structural coordinates of residues in the PDB model 2B4C [28]. The
observed means are indicated on the plot as an open circle.

Found at doi:10.1371/journal.pcbi.0030231.sg002 (15 KB PDF).

Figure S3. Terminal and Internal Branch-Specific Networks

(A) A maximum-likelihood network obtained from substitutions
mapped to terminal branches of the tree. Each node corresponds to a
residue in the V3 domain, numbered according to its position in the
consensus sequence and labeled with the consensus amino acid. Edges
connecting nodes indicate an interaction between residues.

(B) A consensus network obtained from substitutions mapped to
internal branches of the tree. Edges are labeled with their
corresponding parametric bootstrap support values.

Found at doi:10.1371/journal.pcbi.0030231.sg003 (189 KB PDF).

Table S1. Contrasting Experimental and Comparative Studies of
Interactions in V3

In this table, we summarize the evidence for various putative
interactions between pairs of residues in the HIV-1 envelope V3
loop. C = evidence from comparative studies of V3 sequences, E =
evidence from experimental mutagenesis of V3 sequences. Entries in
parentheses indicate putative interactions within intervals of the V3
sequence that were not completely resolved to specific residue pairs.
Overall, concordance among studies is poor, with the possible
exception of associations between the residues S10, R12, and D24.
Citations for each study were abbreviated as follows: K93 = Korber et
al. (1993) [19]; B96 =Bickel et al. (1996) [20]; GO5 = Gilbert et al. (2005)
[21]; de]J92 = deJong et al. (1992) [15]; S92 = Shioda et al. (1992) [87];
W92 = Westervelt et al. (1992) [88]; F92 = Fouchier et al. (1992) [44];
C92 = Chesebro et al. (1992) [89]; and C96 = Chesebro et al. (1996)
[74]. We note that concordance between Korber et al. (1993) and
Bickel et al. (1996) may be explained by significant overlap in
sequence data and methodological criteria.

Found at doi:10.1371/journal.pcbi.0030231.5st001 (52 KB PDF).

Accession Number

The Research Collaboratory for Structural Bioinformatics Protein
Data Bank (http://www.rcsb.orgl) accession number for the V3 loop of
HIV-1 gp120 complexed to the CD4 receptor and X5 antibody is
2B4C.
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