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DNA sequences from retroviruses, retrotransposons, DNA transposons, and parvoviruses can all become integrated
into the human genome. Accumulation of such sequences accounts for at least 40% of our genome today. These
integrating elements are also of interest as gene-delivery vectors for human gene therapy. Here we present a
comprehensive bioinformatic analysis of integration targeting by HIV, MLV, ASLV, SFV, L1, SB, and AAV. We used a
mathematical method which allowed annotation of each base pair in the human genome for its likelihood of hosting
an integration event by each type of element, taking advantage of more than 200 types of genomic annotation. This
bioinformatic resource documents a wealth of new associations between genomic features and integration targeting.
The study also revealed that the length of genomic intervals analyzed strongly affected the conclusions drawn—thus,
answering the question ‘‘What genomic features affect integration?’’ requires carefully specifying the length scale of
interest.
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Introduction

The exons of human genes comprise only about 1.5% of
the total genome sequence [1,2]. Fragments of genomic
parasites—integrating viruses and transposons—comprise a
much larger fraction, at least 40%. These elements are also
highly dynamic—new elements insert and occasionally excise,
and repeated sequences provide portable regions of sequence
homology that act as substrates for homologous recombina-
tion. Integration of new DNA can result in changes in gene
activity or formation of new genes [3,4].

Integrating DNA elements are also important in human
gene therapy as delivery vehicles for new sequences. Recent
setbacks in gene therapy, however, emphasize the importance
of integration target site selection. In an otherwise quite
successful gene therapy trial treating human X-SCID, the
gene therapy vector used integrated near a proto-oncogene
and caused leukemia in three of the patients treated [5,6].

Here we present a detailed bioinformatic analysis of
integration targeting in the human genome by seven types
of integrating elements, taking advantage of the extensive
sequence data available on de novo sites of integration [7].
For the retroviruses, published genome-wide surveys of
integration target sites have shown that human immunode-
ficiency virus (HIV), murine leukemia virus (MLV), avian
sarcoma–leukosis virus (ASLV), and simian foamy virus (SFV)
all show different patterns of favored integration sites. HIV
favors integration in active transcription units (TUs) [8–16],
while MLV favored integration near gene 59 ends [9,16]. ASLV
shows the most random target site distribution, favoring TUs
only slightly [10,17]. SFV integration sites are also relatively
randomly distributed, though a favoring of integration near
CpG islands could be detected [18].

Long interspersed nuclear elements (LINEs) are non-LTR
retrotransposons that replicate via transcription, then re-
verse transcription primed by a nick in the genomic target

DNA [3,4,19,20]. LINE-related sequences comprise fully 20%
of the human DNA [1,2]. LINEs are the only known class of
human transposons that are active for transposition, the
others being inactive molecular fossils. Two previous surveys
of integration targeting by engineered human L1 LINEs
emphasized that the integration reaction often rearranges the
target site DNA as a consequence of the coupled reverse
transcription–integration mechanism [21,22]. The published
studies reached different conclusions on whether or not TUs
were favored integration targets.
Another class of transposons is exemplified by Sleeping

Beauty (SB). This element transposes via a ‘‘cut-and-paste’’
mechanism, involving excision of the SB DNA from the
genome and reintegration at a new site [3,4]. SB integration
site selection in vivo has been studied by two groups,
revealing that integration sites were nearly randomly dis-
tributed in the genome, showing only a weak favoring of TUs
[23,24].
The last integrating element studied is the parvovirus

adeno-associated virus (AAV). AAV does not integrate as a
normal step in its life cycle, but under certain growth
conditions a portion of the viral DNA can become integrated
in the host cell chromosome. In infections with wild-type
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AAV, integration can take place preferentially at a specific
locus on human Chromosome 19. However, in infections with
AAV-based vectors that do not express the viral Rep protein,
integration is not site-specific [25]. In the AAV-vector dataset
studied here, integration was reported to take place with a
modest preference for regions near transcription start sites
[26,27]. Integration under these conditions is not carried out
by an AAV-encoded integrase/transposase enzyme, but
apparently by host enzymes involved in repair of DNA
double-strand breaks. During the repair process, AAV
sequences are proposed to become incorporated so as to
bridge between the broken DNA ends [28].

Though integration takes place at many genomic locations,
favored specific nucleotide sequences can be detected in the
target DNA at the point of integration for most of these
elements. For LINEs and SB, this nucleotide sequence is
strongly conserved among sites [23,24,26,27,29,30]. For retro-
viruses, conservation is weaker but still significant [31–34]. In
some cases, studies in vitro have shown that the favored target
sequence is a property of the element-encoded integration
enzymes. For example, a synthetic version of the favored HIV
integration sequence 59GT(A/T)AC39 was shown to be a
preferential integration target for HIV integration complexes
in vitro [32]. Similar studies are available for MLV, ASLV, L1,
and DNA transposons [3,35–38], but not for SFV and AAV.
How much these favored sequences influence integration-site
selection genome-wide has not been fully clarified.

Here we present a comprehensive statistical comparison of
the factors influencing integration frequency by annotating
each base pair in the human genome for its relative likelihood
of hosting integration events. Combined effects of genomic
features were then assessed, involving analysis of more than
200 variables over 17 integration-site datasets. These varia-
bles consist of recognizable genomic features such as gene
density, CpG islands, DNase I cleavage sites, etc., analyzed
over intervals of varying lengths, thereby resulting in .200
measures. To construct the combined model, Bayes model
averaging and the machine learning algorithm RandomForest
were used to sample the ‘‘model space’’ efficiently and
thereby clarify effects due to correlation among variables
(i.e., ‘‘confounding effects,’’ in statistical terminology).

The effects of interval sizes used for comparison were also
assessed. For example, in trying to evaluate the potential
hazards of gene therapy, one might want to know whether the
promoter regions for certain oncogenes were particularly

favorable integration targets compared with other pro-
moters. We found that conclusions may be different and
even opposite depending on the interval size studied.
In the Results section, the analysis is organized around each

type of genomic annotation. The data are summarized as
color-coded ‘‘heat maps,’’ allowing use of these findings as an
encyclopedia for assessing the effects of genomic features on
integration targeting by each element. In the Discussion
section, new findings are presented in turn for each class of
integrating element.

Results

Datasets Studied
The integration site collections studied are listed in Table

1, together with the original references. To generate each
dataset, engineered elements were induced to carry out
integration in cultured human cells. After allowing time for
integration, genomic DNA was harvested, and human DNA
flanking the integrated element was cloned and sequenced.
For all of the elements except AAV it was possible to obtain
integration site datasets from multiple cell types. Comparison
among these datasets provides information on the influence
of the cell type.
Another variable was the treatment of cells after infection.

In some cases, recovery of the integration sites involved use of
a selectable marker carried on the integrating element. As a
result, the integrated element was only recovered if it
supported gene expression. Previous work has suggested that
selection for expression biased the recovery of integration
sites [15,16], and this analysis is extended below.
For statistical analysis, the integration site datasets were

compared with randomly selected control sites in the human
genome. Many of the sites were cloned by methods involving
use of restriction enzymes to cleave genomic DNA flanking
integrated elements. Thus there arises a concern that the
placement of restriction enzyme cleavage sites in the human
genome could bias the recovery of integration sites. For many
of the datasets studied, it was possible to correct for possible
biases by using a matched random control, in which each
experimentally generated integration site was paired with ten
random sites in the human genome that were constrained to
lie the same number of base pairs from an appropriate
restriction site. In the statistical analysis, each experimental
integration site was compared with its matched random
controls, thereby controlling for possible bias from restric-
tion enzyme cleavage. For a few integration site datasets, it
was not practical to generate matched random controls, so
unmatched random sites were used (Table 1).
For comparison of integration frequency to transcriptional

activity, microarray data was used to annotate genes for their
relative activity. In most cases it was possible to use array data
from the cell types used in the integration study (Table S1).

Associations of Genomic Features with Integration
Our statistical approach is summarized in the following

sections. A more comprehensive treatment can be found in
Text S1–S3.
The variables used describe characteristics of the genomic

sequence surrounding the integration sites or controls (a
detailed catalog of genomic features is in Text S2, pp. 3–4).
To analyze effects of genomic features on integration, we
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Synopsis

Many types of genomic parasites insert their DNA sequences into
the human genome. Among these are retroviruses such as HIV,
transposons, and adeno-associated virus. These integrating ele-
ments are important for the changes they cause in the human
genome upon insertion of new DNA, and as gene-delivery vehicles
for use in gene therapy. Previous studies have generated sequences
of genomic targets of integration by these elements. Here Berry,
Hannenhalli, Leipzig, and Bushman present a comprehensive
bioinformatic analysis that allows them to annotate each base pair
in the human genome for its likelihood of hosting an integration
event by each type of element. This resource should prove useful in
understanding genomic evolution and optimizing gene delivery
vectors for use in human gene therapy.
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used a common measure of a predictor variable’s ability to
discriminate between two classes of events, which is the area
under the receiver operator characteristic (ROC) curve (for
background on ROC curves, see [39]). An example of an ROC
curve is presented in Figure 1A, and a detailed explanation is
presented in Text S1. For the analysis, experimental and
control integration sites were pooled, then the score for a
genomic feature used to sort the sites into true (experimen-
tal) and false (control) integration sites. The ROC curve plots
the true positive rate on the vertical axis versus the false
positive rate on the horizontal axis. Conceptually, the curve
can be constructed by beginning with a cutpoint (the value of
a predictor—for example, gene density) that is higher than
the highest value for any site. The ROC curve is started at
(0,0). The cutpoint (gene-density value) is then moved down
in stages. The curve is extended from lower left to upper
right, taking a step in the vertical direction for each correct
call (integration site), and taking a step in the horizontal
direction for each false call (random control; Figure 1A).

Thus the area under the curve is 1.0 when all integration
events have higher values for the feature than any control
event, and 0.0 for the opposite case. When the area is 0.5, it is
equally likely that either has a higher value—thus ROC values
near 0.5 are consistent with having no predictive value. As is
described in detail in the Text S2, in a few cases additional
techniques were used to analyze some parts of the data. A
major advantage of the ROC approach is that the effects of
different variables can all be scored using a single measure,
and then potential interactions or redundancy among
variables can be evaluated.

Since there are 17 datasets and several hundred descrip-
tions of genomic features in the analysis, a compact
representation of these associations is needed. An overview
is provided by the boxplots of the improvement over chance
performance as measured by the area under the ROC curves
in Figure 1B. This improvement is presented as the absolute
value of the difference between the area under the ROC

curve and 0.50. Values around 0.0 indicate no useful
predictive information for this feature; values near 0.5
indicate that the feature is nearly perfect in separating
integration sites from random controls.
As can be seen by comparison of the means (Figure 1B,

heavy bars), most of the genomic features exerted a
detectable influence on integration targeting. The biases
detected here and discussed below were generally highly
statistically significant. Exceptions are noted in the text. The
scatter, as shown by the whiskers and individually plotted
extreme points, emphasizes the differences among datasets.
Somewhat unexpectedly, the score.20 ROC value, which
reports the effects of the sequence at the 20 bp surrounding
the point of integration, shows the strongest effect of any
variable.
The influences of each of these variables on integration are

considered individually in the next several sections, then
combined effects are assessed.

Effects of Nucleotide Sequence at the 20 bp Surrounding
the Point of Integration (score.20)
Figure 2A shows the ROC areas based on the score.20

sequences illustrated as a heat map. In this and later displays,
red indicates favored integration for the feature tested and
green disfavored integration. Intensity of color indicates the
magnitude. Figure 2B shows the favored sequences plotted to
illustrate the weights on the score.20 positional weight matrix
(PWM), which describes the log ratio of the frequency of each
of the four bases at each position to the frequency in matched
random controls. The standard errors for the ROC curve
areas in Figure 2A are all smaller than 0.05 (and most are
smaller than 0.015); perceptible differences are usually highly
statistically significant. As an example, the p-values for the
score.20 ROC curve areas (Figure 2A, top row) are all less
than 10�14, and this holds for ROC curves in Figures 3–4 as
well.
Datasets for each type of integrating element show closely

Table 1. Integration Site Datasets Used in This Study

Element Element Type Cell Type Number

of Sites

Control Type Selection for Expression? Reference

HIV Lentivirus Primary macrophage 786 Matched Integrants were not selected [14]

HIV Lentivirus SupT1 587 Matched Integrants were not selected [8]

HIV Lentivirus 293T 1,185 Matched Integrants were not selected [12]

HIV Lentivirus Jurkat 914 Matched Integrants were selected for expression of gfp [15]

HIV Lentivirus Primary IMR90 lung

fibroblasts

482 Matched Integrants were not selected [12]

HIV Lentivirus Primary PBMC 542 Matched Integrants were not selected [10]

MLV Gamma retrovirus Hela-S 544 Matched Integrants were selected with puromycin [16]

MLV Gamma retrovirus Hela-NS 917 Matched Integrants were not selected [9]

ASLV Alpha retrovirus Hela 194 Matched Integrants were not selected [17]

ASLV Alpha retrovirus 293T-Tva 640 Matched Integrants were not selected [10]

SFV Spumaretrovirus CD34þ stem cells 1,751 Matched Integrants were not selected [18]

SFV Spumaretrovirus Fibroblasts 962 Matched Integrants were not selected [18]

L1 Non-LTR retrotransposon Hela 92 Random Integrants were selected with neomycin [21]

L1 Non-LTR retrotransposon Hela/HCT116 127 Random Integrants were selected with neomycin [22]

AAV Parvovirus Fibroblasts 434 Random Integrants were not selected [26]

Sleeping Beauty DNA transposon Hela 99 Random Integrants were selected with zeocin [24]

Sleeping Beauty DNA transposon Huh-7 hepatoma 282 Random Integrants were selected with neomycin [23]

doi:10.1371/journal.pcbi.0020157.t001
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similar favored bases, despite the differences in cell types and
experimental conditions. This fits with the expectation that
the score.20 PWMs mostly represent favored sites of binding
or catalysis for the element-encoded recombination enzymes,
as suggested in previous work. For L1, the endonuclease that
initially cleaves the target site DNA strongly favors 59-
AAATTT-39 sites [35], which explains the strong correlation
between integration and the L1 score.20 PWM [21,22]. For the
SB DNA transposon, integration is strongly favored at 59-
TA939 base pairs [23,24], and this is similarly reflected in the
activities of purified transposases related to SB [37,38].
Weaker but still quite significant effects are seen for the
retroviruses [31–34]. AAV integration shows the weakest
effects of score.20, potentially a consequence of integration at
spontaneous DNA double strand breaks [28].
Many of the questions surrounding integration frequency

involve genomic segments such as promoter regions, where
one is interested in knowing how likely integration is in such
a region, and how important different features are in
directing integration towards that region. Such questions
can be answered directly by calculating the expected number
of integration events at each bp in a region and adding them
together to obtain the expected number of integration events
for the region. For some annotations, this can be computa-
tionally burdensome. However, a less computationally bur-
densome approximation can be used when integration events
are sparse in the genome. To determine whether the score.20
PWM helps identify longer intervals that host integration
events, intervals from 50 bp to 2 kb containing integration
sites or controls were scored. Each base in the interval was
treated as the edge of an integration site; then all such
windows were scored over the interval, and the interval scores
summed. The summed values were then tested for their
ability to sort experimental integration sites from controls
and the results were presented as areas under ROC curves
(Figure 2C). Thus, this procedure tests whether favored
primary sites are clustered in the genome.
Comparison of the top row of Figure 2A (ROC areas

describing the effects of the full score.20 motif) to the rows in
Figure 2C shows that the score.20 PWM distinguished
integration sites from controls much less efficiently when
larger intervals were tested for all of the integrating elements.
This may seem an obvious result given the specific motifs
favored for integration (Figure 2B), in which a single base
shift can change a highly favorable motif to an unfavorable
one. However, if particular regions are rich with favorable
motifs, the average score over an interval may well predict
integration. For eleven of the seventeen datasets, a graded
reduction in ROC area is seen with increasing length of the
interval considered. This is as expected if high-scoring
matches to the score.20 PWMs are relatively common, so
that substantial numbers of high scores are encountered
almost as often in a randomly selected interval as in an

Figure 1. ROC Curves as a Measure of the Association of DNA Integration

with Genomic Features

(A) Diagram of the ROC analysis. The graph plots the true positive rate
against the false positive rate for every possible cutpoint; vertical steps
result when only the true positive rate increases as the cutpoint (i.e.,
cutoff value for the genomic feature) moves down; horizontal steps
result when only the false positive rate increases, and when both rates
increase as the cutpoint moves down the graph ‘‘steps’’ diagonally. The
example shows the effects of score.20 on SB integration (though the
method of construction is general). The area between the curve and the
‘‘no discrimination’’ line indicates discrimination between integration
sites and random controls by the predictor tested. The curve will lie
beneath the line of ‘‘no discrimination’’—leading to an area of less than
0—if integration sites tend to have lower values of the variable under
study than random controls. For details see the text and Text S1.
(B) Box plots summarizing ROC results. Each box in Figure 1B indicates
the first and third quartiles of the values, while the heavy line in the
middle gives the median value. The ‘‘whiskers’’ extend to the most

extreme observation within 1.53 the interquartile range of the median.
Points that lie beyond the whiskers are plotted individually. For each box
plot, the number of points is 17 (the number of datasets) times the
number of rows in the relevant heat map for that feature (in Text S2;
selected examples of heat maps are shown in Figures 2–4). Specifically,
the numbers of points were 170 for gene.exon, 1173 for gene.density,
153 for dnase, 306 for cpg, 340 for juxtapos, 1870 for transfac, 17 for
score.20.all, and 340 for score.20.1.bp.
doi:10.1371/journal.pcbi.0020157.g001
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interval containing an integration site. Surprisingly, the MLV
values increase with longer interval sizes, though not back up
to the original score.20 values in Figure 2A, indicating some
degree of clustering of favored motifs. Thus, the influence of
score.20 is mostly reduced at longer lengths scales, though
even with 2-kb intervals for many of the integrating elements
the effect was still discernable.

Integration in Transcription Units and the Effect of Gene

Activity
Figure 3A shows a heat map for the area under the ROC

curves, summarizing the increase in integration frequency
within TUs and exons. Several human gene catalogs are
available, so we repeated the analysis for five of them. The
‘‘exon’’ ROC areas showed no discernable effect and will not

be considered further. However, ROC areas for TUs showed
strong effects that differed among the datasets. All the HIV
datasets showed favored integration in most of the TU calls,
which is consistent with previous reports [8–16]. Of the other
retroviruses, the two MLV datasets and ASLV-293T showed
weak favoring for several of the TU calls [9,16], indicating
weak association, while SFV showed no association, or in one
case negative association [18]. For SB, one dataset showed a
weak association with refGenes, but all other measures were
negative. In previous literature there was disagreement on
whether L1 favored integration in TUs [21,22]. By the ROC
approach used here, TUs were either unfavorable or had no
influence. Similarly AAV integration targeting was not
affected by TUs.
Figure 3B shows a similar heat map based on ROC areas,

Figure 2. ROC Areas Describing the Effects of DNA Sequences at the 20 bp Surrounding the Point of Integration (Named ‘‘score.20’’)

(A) Heat map of ROC areas describing the influence of sequences at the point of integration. The key at the bottom indicates the color code for ROC
values in this and subsequent figures. The top row indicates the summed effect over all the bases in the score.20 motif, and the individual bars below
show the area for each individual base in the motif. The site of integration in each case was between base �1 and 1.
(B) PWMs for sequences at the point of integration. Bases shown above the line were favorable for integration; those below were unfavorable. The
integrating elements differ in the symmetry of the score.20 PWM at the site of integration. The points of joining on the top and bottom DNA strands
have been determined experimentally for some cases, and where available are shown by the arrows in Figure 2B. For most of the elements, the
sequences are approximately 2-fold rotationally symmetric through an axis between the points of joining on the two strands—this is because, in these
cases at the two ends of the element DNA, the DNA breaking and joining steps mediating integration are identical. The exceptions are L1 and AAV, for
which the points in the target DNA for joining of the two ends of the element do not have a consistent relationship. Note that the values given for Mij

are the logarithms of the relative frequency of nucleotide i at position j among the integration sites compared with its value among the random
controls. Thus, if nucleotide i almost always appears in position j in integration sites, Mij will approximate log(2)� log(1/4) ’ 1.4, while if it appears only
once in 128 integration sites Mij will approximate log(1/128)� log(1/4) ’�3.5.
(C) ROC values for score.20 considered over longer genomic intervals. The number after score.20 on the vertical axis indicates the length in bp, then in
kb (the later indicated by k).
doi:10.1371/journal.pcbi.0020157.g002
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this time summarizing the effects of gene density in genomic
intervals of different sizes and a related measure that adds
transcriptional activity to yield ‘‘expression density.’’ As
before, the five sets of gene calls are compared. The effects
of each feature were tested over intervals from 100 kb to 4
Mb. All of the datasets were at least weakly positive for at least
a few of the measures. Particularly strong effects were seen
for the HIV datasets in lymphoid cells or cell lines, and for
the MLV dataset that was selected for expression after
infection (MLV–Hela-S). Also favored, though less strongly,
were the HIV datasets in other cell types and the remaining
MLV dataset. Of the HIV datasets, the one showing the
weakest response was from nondividing macrophages—
together with other measures, this is consistent with a model
in which the nondividing state of these cells diminished
integration in active TUs [14]. There was no clear pattern of
interval size, type of gene call, or expression level. This
suggests that features broadly associated with high gene
density were most significant.
The two ASLV datasets showed weak favoring of gene-

dense and intensely expressed regions. AAV, SFV, and SB
showed the weakest responses—for AAV, it was unclear that
there was any significant favoring of integration near or
within these features.
Note that each integration site dataset was analyzed versus

transcriptional profiling data for the cell type hosting the
integration events (Table S1). This was important, because
previous work has shown that, for HIV, tissue-specific
transcription is associated with tissue-specific patterns of
integration, though the strength of the bias is modest [10].

G/C Content and CpG Islands
We next investigated the effects of G/C content and

proximity to CpG islands (Figure 4A). Regions of high G/C
on average are gene-rich and have short introns, high
frequencies of Alu repeats, low frequencies of LINEs, high
frequencies of CpG islands, and replicate early. Regions of
low G/C content are typically opposite in these features [1].
CpG islands are defined by clusters of the rare dinucleotide
CpG that are undermethylated and are commonly associated
with gene regulatory regions. The top row in Figure 4A shows
the ROC areas describing the response to G/C content for the
seven integrating elements. The two MLV datasets show a
strong favoring of regions of high G/C for integration. In
contrast, three of the HIV datasets show a favoring of low G/
C, which is paradoxical—HIV favors integration in gene-rich
regions, which are typically rich in G/C, but instead A/T is
favored. As is discussed below, this may reflect the action of
the cellular HIV integrase-binding protein PSIP1/LEDGF/p75
[12]. The other datasets showed weaker and less consistent
responses to G/C content.
The remaining rows indicate the response to CpG island

density over increasing length genomic intervals (from 1kb to
32 Mb). For short intervals, proximity to CpG islands
correlates with proximity to regulatory regions, while for
intervals long enough to span many genes, the CpG island
density correlates with gene density (e.g., [40]). Inspection of
the ROC areas for short intervals (1–10 kb) shows that

Figure 3. ROC Areas Describing the Effects of Gene-Associated Features

on Integration Frequency

(A) ROC areas describing the effects of integration within a gene or exon.
The databases studied were as indicated. The geneScan database is
solely computational, possibly explaining the divergence of ROC areas
from the other gene calls.
(B) ROC areas describing the effects of gene density or expression
density on integration frequency. To calculate the expression density,
each gene in an interval was assigned three scores of zero or one
according to whether it was 1) in the upper half, 2) in the upper quarter,
or 3) in the upper 12.5% of all genes scored in a transcriptional profiling
analysis. Transcriptional profiling was carried out using Affymetrix arrays
for each of the cell types studied (accession numbers for array data are in
Table S1). For each of the three cutoffs, the expression scores for all the
genes in each genomic interval were then added together and divided

by the interval width to generate the expression-density measure
counting the number of expressed genes for that interval.
doi:10.1371/journal.pcbi.0020157.g003
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integration is enriched near CpG islands most notably for
MLV, which is consistent with favored integration near
regulatory regions as reported previously [9,10,16]. One of
the two SVF datasets and one of the two L1 datasets show
weaker but detectable enrichment. The other elements were

not responsive to nearby CpG islands, either favorably or
unfavorably. For the longer genomic intervals, HIV and MLV
showed the highest ROC areas, as expected from their known
preferences for TUs (HIV) and gene 59 ends (MLV). ASLV
showed weaker positive ROC areas. AAV and SB showed no
consistent favoring of CpG islands at long segment lengths,
while L1 showed negative correlations. Thus integration
scores for CpG islands analyzed over long intervals paralleled
the responses to gene density and transcriptional intensity.

DNase I Cleavage Sites
The response of the seven integrating elements to mapped

points of DNase I cleavage are summarized in Figure 4B.
DNase I hypersensitive sites in chromatin have previously
been associated with transcription factor binding sites, CpG
islands, and gene control regions [41]. Older literature from
the retroviral field suggested an association of MLV integra-
tion with DNase I hypersensitive sites [42]. However, a more
recent study suggested that MLV, and not HIV or L1,
integration was more frequent in 2-kb intervals enriched
for DNase I cleavage sties [16]. ASLV showed a weak but
positive correlation [16]. This indicated that association with
DNase I sites is mostly an MLV-specific feature at this length
scale, paralleling the preference of MLV for integration near
gene 59 ends and CpG islands.
Figure 4B presents a study of all seven integrating elements

analyzed over intervals ranging from 1 kb to 20 Mb. For short
segment lengths (1–2 kb), only the MLV datasets showed ROC
areas indicating favored integration near DNase I cleavage
sites. As the segment lengths become longer, the density of
DNase I cleavage sites increasingly parallel the density of TUs
and gene regulatory regions. Thus, both HIV and MLV are
strongly positive when analyzed over longer intervals, and
most of the other datasets are weakly so. AAVand one of the SB
datasets show the lowest ROC values relative to this measure.

Integration Near Transcription Factor Binding Motifs
The effects of proximity to transcription factor binding

sites on integration are summarized in Text S2 (p. 18). This is
of interest since it is possible that direct binding of
integration complexes to transcription factors might pro-
mote integration via a tethering interaction [7,12]. We
analyzed the TRANSFAC database, which contains 546 PWMs
describing DNA binding sites for transcription factors. To
assess effects of each on integration, the 2-kb interval
centered on each integration site or random control was
given a score based on the best single match to the PWM, and
this score was used to generate an ROC area describing
effects of that PWM. Many PWMs showed detectable positive
or negative associations with integration. The most notable
was for the two MLV datasets, where a substantial fraction of
all PWMs showed positive association. As is discussed below,
the TRANSFAC PWM results did not have strong predictive
value when analyzed together with other genomic features
such as gene density and proximity to gene boundaries.
However, future studies using more sophisticated scoring
functions may yet reveal informative associations between
TRANSFAC PWMs and integration frequency.

Proximity to Transcription Start and Stop Features
Several measures were used to compare integration

frequency for the experimental and matched random control

Figure 4. ROC Areas Describing the Effects of Genomic Features on

Integration Frequency

(A) ROC areas describing the effects of G/C content and CpG islands on
integration frequency. CpG islands are on average 764 bp in length.
(B) ROC areas describing the relationship between DNase I site density
and integration frequency over intervals of different sizes. Each DNase I
cleavage site is measured as a single point of cleavage on the human
genome.
(C) ROC areas describing the effects of proximity to gene boundaries on
integration.
doi:10.1371/journal.pcbi.0020157.g004
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sites near transcription start and stop features as ROC areas
(Figure 4C). The measure ‘‘boundary.dx’’ measures the
distance to the nearest gene 59 or 39 end. The green coloring
seen for several datasets indicates an ROC curve area of less
than 0.50, which is the result of integration sites tending to
have shorter distances to the nearest gene 59 or 39 end than a
matched random control site. However, most of the cells are
black or nearly so, which reflects ROC curve areas near 0.50
and implies that there is little correlation with integration.
‘‘Start.dx’’ indicates the distance to the nearest gene start
sites. Again, integration sites tend to be closer to start sites
than their matched random controls, and so is sometimes
shown as more intense green. ‘‘Signed.dx’’ scores sites by a
function reflecting higher probability of integration near
start sites, so increased integration near start sites results in a
positive correlation and more intensely red coloring, as is
seen for several datasets. ‘‘General.width’’ is a measure of the
length of the interval, defined by the nearest transcriptional
start and stop features, that also contains the integration site.
Large values thus reflect gene-sparse regions, and are
inversely correlated with gene density. Each of the measures
was tested over the five collections of human gene calls.

For the two MLV datasets, measures reflecting proximity to
gene 59 ends (start.dx, boundary.dx, and signed.dx) showed
significant ROC values, as expected from previous work. The
analysis presented here establishes that these results were
mostly independent of the gene calls used. For HIV, start.dx
and boundary.dx showed little predictive value, consistent
with gene 59 ends not being particularly favorable for HIV
integration. The signed.dx value reflects integration in the 59

regions of TUs, and so is positive for the HIV datasets.
Similarly, the general.width measure, which is inversely
related to gene density, was negatively correlated with HIV
integration. ASLV and SFV showed weak responses to
signed.dx and general.wd, reflecting favoring of integration
in gene-rich regions, but no consistent favoring of gene 59

ends. However, SFV did show some favoring of gene 59 ends
for the CD34þ dataset but not for the fibroblast dataset,
indicating a possible cell type–specific difference. L1 showed
few consistent responses, though several of the general.dx and
boundary.dx calls had predictive value, reflecting potential
weak favoring of integration in gene-dense regions. AAV and
SB integration showed no consistent responses to any of these
measures, indicating that gene boundaries do not strongly
affect integration in these datasets.

Improved Models Incorporating Score.20 Together with
Other Genomic Features

We next investigated how combinations of genomic
features affect integration. As discussed above, the score.20
PWM was most effective for distinguishing authentic inte-
gration sites from the random controls (Figure 2). Thus we
began by asking whether the other genomic features were
merely redundant with score.20 by analyzing the correlation
of the other features with score.20 (Figure 5A). Little
correlation was detected, suggesting that a predictor of
integration targeting constructed based on score.20 together
with other features could substantially improve prediction
based on either alone.

As a first step to assess the effects of combining features, we
used a regression method that fit both the score.20 data and a
second genomic feature (see Text S2, pp. 24–52). The fitted

value for the integration intensity was then used to calculate
the area under the ROC curve describing the joint prediction,
and this was subtracted from the curve based on score.20
alone (Figure 5B). Note that the fitting process leads to fitted
values that tend to rank the integration sites more highly than
the matched random controls, so the ROC curve areas based
on these fitted values are all greater than 0.50. The difference
between the two curves thus describes the improvement in
prediction due to inclusion of the additional genomic
feature. The standard errors for the ROC curve area
differences in Figure 5C and 5D are all smaller than 0.02
(and most are smaller than 0.01); perceptible differences are
usually highly statistically significant.
A box plot summary of the improvements in ROC areas is

shown in Figure 5C. Evidently many features can improve
prediction for at least some of the datasets, with measures of
gene density and expression intensity showing the greatest
effects. To obtain a more detailed view, these ‘‘improvement’’
values can themselves be plotted as heat maps. The
incremental improvements over score.20 by inclusion of
gene-density measures are shown in Figure 5D. This map
generally resembles the original heat map of ROC areas for
gene density without consideration of the score.20 contribu-
tion, reinforcing the idea that the two are independent
predictors of integration frequency. A complete set of heat
maps, which allows the incremental contribution of each
genomic feature to be assessed, is included in the Text S2.

Comprehensive Models Incorporating All Types of
Genomic Features and Their Combined Effects
We next sought to combine all the genomic features

together into a single model. Regression methods can be used
to fit multiple features at once, but given the number of
features and datasets to be explored here there are more than
1070 possible combinations of variables to form models. For
this reason, we investigated combined effects using an
approach based on Bayes model averaging (BMA) [43]. Models
with high posterior probability were collected and used to
evaluate the importance of the various features; the posterior
mean of the regression coefficient for a genomic feature
summarizes the effect of that feature when in combination
with other features in the dataset. More detailed methods can
be found in Text S2 (pp. 24–52).
The contributions of each class of features to each of the

integration models are summarized in Text S2 (p. 40).
Consideration of the genomic features in the context of the
full BMA model reinforces that the score.20 indicator and the
other types of genomic features make independent contri-
butions. However, now several of the genomic features show
lower relative contributions (e.g., TRANSFAC PWM scores
and juxtaposition with transcription start and stop features),
suggesting that these are largely redundant with other
measures. Heat maps of the effects of genomic features as
reported by the BMA model are shown in Text S2, pp. 42–50.
Further modeling using the machine learning program
RandomForest can be found in Text S2, pp. 51–53, which
yielded a generally similar picture. We return to selected
combination effects below.
We then used the full BMA model to specify the relation-

ships among the models for the different integrating
elements (Figure 6). To generate values to allow comparison,
a sample of random genomic sites was scored for the
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logarithm of the odds of integration using each of the BMA
models. The correlations among scores are displayed in false
color in Figure 6. Green corresponds to negative correlations
and red corresponds to positive. The results were subjected to
hierarchical clustering to highlight the similarities among
datasets. Inspection of the branching pattern shows that the

first major division is between the retroviruses and other
groups. Within each of these branches the different element
types were well-resolved, with slight resemblance among the
retroviruses, but little between the retroviruses and SB, L1,
and AAV. Thus the BMA models (Figure 6) grouped the 17
datasets tightly by element type, supporting the conclusion

Figure 5. Improved Prediction due to Adding Additional Genomic Features to the score.20 ROC Values

(A) Lack of correlation between score.20 and other measures.
(B) Diagram of the analytical method, illustrating the improvement of an ROC score by addition of a second predictor to the score.20 value.
(C) Box plots describing the improvements in ROC area resulting from combining other genomic features with the score.20 measure. The ROC area
increments are modest, because the ROC curve based on the combination of score.20 and another feature can only vary between the value for the
score.20 prediction and 1.0.
(D) Heat map of increases in ROC areas resulting from adding the gene density measures to the score.20 values for each integrating element. The color
code for improvements in ROC areas is indicated at the bottom.
doi:10.1371/journal.pcbi.0020157.g005
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that integration site selection is dominated by the element-
encoded recombination enzymes that carry out the integra-
tion reaction. Factors such as cell type, selection for
expression after integration, and cell division have detectable
but much weaker effects.

Discussion

The genomic features that had the strongest effects on each
type of integrating elements are summarized below, with an
emphasis on new findings in this study. Subsequently, general
conclusions and uses of the quantitative model are consid-
ered.

L1
For the non-LTR retrotransposon L1, the score.20 PWM

allowed near-perfect sorting of integration sites from control
sites. When longer genomic intervals were considered, the
effect of score.20 was still detectable, though diminished.
Addition of other genomic features to a model based on
score.20 alone using BMA showed little or no further
improvement in ROC areas. Thus L1 integration site
selection is dominated by the sequence at the point of

integration, and otherwise is mostly nonspecific. Previous
studies had noted the strong conservation of the nucleotide
sequence at L1 integration sites [21,22]; this study establishes
that the local sequence had strong effects on integration
genome-wide.

Sleeping Beauty
For SB as well, the score.20 PWM was the predominant

determinant, though the effect was reduced when longer
intervals were used for comparison. The dropoff with interval
size was steeper than for L1, in part because the main
determinant of the favored site is relatively short (the
dinucleotide 59-TA-39). Addition of other genomic features
to a model based on score.20 alone resulted in only slight
improvements. Unexpectedly, the genomic features impor-
tant beyond score.20 identified in the BMA model diverged
for the two SB datasets. Proximity to CpG islands, particularly
analyzed over relatively long genomic intervals, was anti-
correlated with integration in the Hela-cell dataset, whereas it
was weakly positive in the Huh-7 dataset. Gene density was
positively correlated with integration in the Huh-7 dataset
only. This suggests possible cell-type–specific differences in
SB integration. However, more data would be helpful to
strengthen this idea, because the two SB datasets came from
different laboratories and integration sites were cloned using
different methods [23,24].

HIV
Previous studies of HIV integration revealed that active

TUs were favored integration targets, and that trend was
recapitulated by a variety of measures in this data. Previously,
proximity to DNase I cleavage sites was reported not to be
associated with HIV integration over short (2-kb) genomic
intervals [16]. Analysis presented here shows that DNase I
sites correlate positively over longer intervals, probably
because of the correlation of both HIV integration sites and
DNase I cleavage sites with gene-dense regions. Other
measures, such as CpG islands and transcription start/stop
features, also correlate positively with HIV integration at long
interval sizes for the same reason. A substantial effect of
score.20 could be detected in the initial phase of the analysis
based on scoring individual base pairs, but this was consid-
erably diminished, and for three datasets eliminated, when
effects of score.20 were considered over longer genomic
intervals.
The BMA model unexpectedly revealed a strong correla-

tion between HIV integration and A/T-rich sequences (Text
S2, p. 47). This is opposite to simple predictions based on
favoring of integration in gene-rich regions, because gene-
rich regions are G/C-rich. However, gene density is accounted
for in the BMA models, so the effect of base composition is in
addition to gene-density effects. The cellular PSIP1/LEDGF/
p75 protein, which binds tightly to HIV IN, has an A/T hook
DNA binding motif, which would be expected to cause
accumulation of PSIP1/LEDGF/p75 on A/T-rich DNA. Deple-
tion of cells for PSIP1/LEDGF/p75 results in increased HIV
integration in G/C rich regions [12]. The finding of high A/T
density at HIV integration sites (when controlling for other
effects) across all six HIV datasets suggests that PSIP1/LEDGF/
p75 likely influences HIV integration in all of the cell types
tested.

Figure 6. Clustering the Comprehensive BMA Integration Site Models

Red indicates positive correlation and green indicates negative, as
illustrated by the key at the bottom of the figure. The models were
clustered in both the x- and y- directions, so the graph is symmetrical
along a line from lower left to upper right. See Text S2 for more details.
doi:10.1371/journal.pcbi.0020157.g006
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MLV
MLV integration showed an association with gene 59 ends,

CpG islands, and DNase I hypersensitive sites in previous
studies where short window sizes were used for comparison
[9,16]. Analysis presented here shows that this effect often
becomes even more pronounced when larger window sizes are
analyzed (25 kb to 2Mb). The comparisons over longer intervals
likely capture effects due to both nearby gene 59 ends andmore
global gene density. Analysis of the effects of these features in
the BMA model showed considerable redundancy with tran-
scription factor binding sites (TRANSFAC PWMs), consistent
with a model in which these features are at least partially
redundant. Score.20 had a clear-cut effect onMLV integration,
and this was reduced when score.20 values were summed over
longer intervals, though for unknown reasons the summed
effects of score.20 were actually greater with longer intervals
sizes, suggesting autocorrelation of favored sites.

The effects of selection were prominent in the comparison
of the two MLV datasets, as described previously [16] and
analyzed in more detail here. Measures of association with
gene density, expression density, DNase I cleavage, and CpG
islands were all more pronounced in the selected dataset
(MLV–Hela-S). This is consistent with the idea that integra-
tion near these features results in more efficient proviral gene
expression, so that after selection for gene expression,
proviruses near these features become enriched in the
population. A similar trend has been reported for HIV [15,16].

ASLV
ASLV integration showed weaker (though still detectable)

favoring of genomic features associated with genes and gene
density, as suggested previously. For example, in the analysis
of ASLV integration near DNase I sites over longer genomic
intervals, which is newly reported here, a consistent positive
correlation was seen in both ASLV datasets. The score.20
PWM analysis showed significant effects on integration site
selection over short intervals, but this was mostly eliminated
in analysis over longer genomic intervals.

SFV
Similarly with SFV, comparatively weak association was

seen with genes, gene density, and associated features. Some
weak association was seen with DNase I sites and CpG islands
over longer genomic intervals. Score.20 scored relatively
weakly compared with other elements, and effects of score.20
were reduced or absent in the comparison over long windows.

For SFV, this analysis emphasized the cell-type–specific
differences between the two datasets. The association with
gene-related features was noticeably greater for sites from
CD34þ stem cells than for sites from fibroblasts. In the
previous analysis of these datasets, pooled SFV sites from
both cell types were reported to be enriched near gene 59

ends and CpG islands. The analysis here discloses that this is
almost entirely due to the contribution of the sites from the
CD34þ cells, while those from fibroblasts showed no such bias.
Similarly, with proximity to DNase I cleavage sites, analyzed
here for SFV for the first time, there is a positive correlation
but the effect is much stronger in CD34þ cells.

AAV
AAV vectors are unique among the integrating elements

studied here because AAV DNA is believed to be integrated

by host DNA repair enzymes acting at spontaneous DNA
double-strand breaks. The AAV score.20 PWM showed
enrichment for G/C at positions �1 to �3, and this was the
most prominent bias detected. Possible weak favoring of
integration near gene-rich regions was also seen. An intrigu-
ing possibility is that these biases reflect a nearly random
distribution of spontaneous chromosomal double-strand
breaks. However, it is also possible that these biases reflect
a greater likelihood of these sites participating in the repair
reactions mediating AAV integration. Of all the datasets
studied, the AAV vector data showed the least favored
integration in TUs or gene 59 ends. Potentially this increases
the attractiveness of AAV as a gene therapy vector. However,
a study of AAV integration in mouse liver [27] suggested a
strong association with gene 59 ends and CpG islands, quite
different from the dataset studied here. Thus, further data on
AAV integration in different cell types would be useful.

General Conclusions and Uses of the Models
As discussed above, the analysis particularly emphasized

the importance of the sizes of genomic segments used for
comparing genomic features and integration intensity. At 3.5
billion bp, the human genome is so large that the effects of
different genomic features on integration may change or
even be opposite depending on the length scale in question.
This was evident in several ways. Changing the size of
intervals used to collect values for genomic features typically
changed the ROC scores. For example, the effects of CpG
island density on L1 elements (Figure 4A) scored as weakly
positive over shorter genomic segments (25 kb to 1 Mb), but
was negatively correlated over long intervals (4 Mb to 32 Mb).
Conversely, for several retroviruses, some effects of gene
density, expression intensity, DNase I site density, and CpG
island density became more significant with increasing
interval length. In another example, summing integration
scores for each base across longer intervals also resulted in
different ROC values. Figure 2C shows that the score.20 index
had much less influence on ROC scores when 2-kb regions
were compared instead of 20-bp segments. Thus, to answer
the question ‘‘What genomic features influence integration of
new DNA?’’, the length scale of interest must be carefully
specified.
Going forward, the ability to predict integration intensity

for each base in the human genome will be useful as a tool for
detecting new influences on target site selection. For any new
genomic feature that is found to influence integration when
analyzed in isolation, it is now possible to assess whether the
feature contributes information independent of previously
studied features. Integration intensity can be predicted by
either the standard model described here or by the standard
model plus the new feature, and the predictions of the two
models compared with experimental integration data. Im-
proved prediction by addition of a new feature establishes the
importance of that feature. Conversely, lack of improvement
indicates that the new feature is redundant with previously
known features. This method should be quite useful in
evaluating the influence of newly annotated genomic features
on integration. For example, a large number of new types of
annotation are now available for the 1% of the human
genome in the ENCODE regions [44], and it will be
interesting to use the integration models to evaluate their
effects.
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Materials and Methods

Data Analysis Strategy The data analysis is based on a ‘‘nested case
control’’ strategy (for a review, see [45]) that uses a collection of
integration sites (in the role of ‘‘cases’’) along with control sites (the
‘‘nested controls’’) sampled from the genome (the ‘‘cohort’’) to make
inferences about the probability of integration at a particular
location based on the genomic features that characterize that
location. This strategy depends on the relationship of a log-linear
model of location-specific counts of integration to logistic or
conditional logit models that discriminate between actual integration
events and control sites, viz. the same parameters that govern the
effect of a genomic feature on integration govern discrimination
between actual and control sites. The logistic model is appropriate
for random genomic controls, while the conditional logit model is
appropriate when a set of controls is matched to each integration site
(the matching of which is done to control for possible biases in the
recovery of integration events). A more detailed description of the
statistical basis for this analysis can be found in Texts S1–S3.

Software Used The data were analyzed using the R language and
environment for statistical computing and graphics version 2.3.0 (R
Development Core Team, 2006) and several contributed packages.
Bayes model averaging used the package BMA, and Random Forest
computations used the randomForest package. Parallel processing
was implemented using the snow package.

ROC Curve Areas Empirical ROC curve areas [46] were calculated
for datasets that used random genomic controls. When matched
controls were used, each integration site was compared only with its
matched controls to determine the proportions of controls whose
values equaled or exceeded that of the integration site.

Annotation of Genomic Features Integration site datasets were
obtained from the US National Center for Biotechnology Informa-
tion. For the dataset of [17], information on the location of the
integration site relative to the deposited genomic sequences was
obtained from the authors. Locations of genes and exons and G/C
percent were based on the May 2004 tables (hg17) from the
Annotation database of the GoldenPath Web site (http://
hgdownload.cse.ucsc.edu/goldenPath/hg17/database/). Computations
of gene density, and of juxtaposition of transcription start/stop

features, were based on those same tables. The computation of DNase
I site density was based on a table of DNase I sites obtained from [16].
The expression density measurements used transcriptional profiling
data matched to each cell type. Accession numbers for these datasets
are specified in Table S1.

Data Sharing Software and processed data are available upon
request.

Supporting Information

Table S1. Sources of Gene Expression Data Used in the Analysis

Found at doi:10.1371/journal.pcbi.0020157.st001 (55 KB XLS).

Text S1. ROC Curve Construction Explained

Found at doi:10.1371/journal.pcbi.0020157.sd001 (230 KB PDF).

Text S2. Screening Effects on Retroviral Integration

Found at doi:10.1371/journal.pcbi.0020157.sd002 (332 KB PDF).

Text S3. Clustering Transcription Factor PWMs

Found at doi:10.1371/journal.pcbi.0020157.sd003 (43 KB DOC).
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