
S3 Appendix 
 

C.   Additional support from analysis of public data 
 

As discussed in the main text, in this Appendix we present the details of the analysis of two published data 

sets for additional support of robustness (see also A.8.) and validity of the index IC.   We show how the index 

IC is statistically robust: (1) IC does not fluctuate randomly, making it unlikely that the observed increase of 

IC before the critical transition is due to a chance event; (2) using a small number of genes (e.g., m=20 genes 

instead of the entire transcriptome) to compute IC yields robust results. The first example of lung cell 

differentiation also displays the increase of IC before the fate commitment for an epithelial cell. 

 

 

C.1.   Lung epithelium development (from Treutlein et al. [1]) 
 

In this example from [1] the transition of lung-epithelium progenitor cells into one of two 

differentiated cell types, here AT2, is examined. Four time points (embryonic days, E) with 

sufficient data are available for our analysis: E14.5, 

E16.5 (=around the critical transition into AT2), 18.5 

(transitioned to AT2) and adult (see scheme Fig C-

1a). We re-analyzed their scRNA-Seq data (with the 

caveats explained in Section A.7 of this Supplement) 

in new ways: (i) to confirm that IC predicts the 

impending critical transition (fate commitment to the 

AT2 lineage) after E16.5 and (ii) to demonstrate that 

the number of genes used does not affect the outcome.  

After processing the raw data as described in [1], we 

continued our analysis with ~15.000 genes for 163 

cells (sum across all time points) (see Fig C-1a). First, 

we calculated Ic for each time point using all ~15,079 

genes (not shown). To demonstrate that the number of 

genes does not affect the expected pattern (increase of 

Ic before the bifurcation after E16.5) we used 20, 200 

or 2000 genes selected by random subsampling from 

the total of ~ 15,000 genes to compute IC. In all cases 

the average value of IC significantly increased from 

E14.5 to E16.5 –just before the fate branch point 

which marks the critical transition (** in Fig C-1b, c).  

[Note that the subsequent decrease of IC after the 

transition is not guaranteed by the mathematical 

derivation of IC but plausible because it reflects the 

widely held idea that differentiated cells are in deeper 

attractors]. Thus, in this in vivo example, IC behaves 

as predicted by theory. 

Figure C-1. Increase of critical transition index IC for alveolar cell 
differentiation. a. The bifurcation event takes place around E16.5. 
Scheme from [20]. IC values computed from single-cell RNA-Seq 
measurement of whole transcriptomes, snapshots at the indicated 
4 time points.  IC (y-axis) was computed from 2000 (b), 200 and 20 
(c) randomly selected genes in 10,000 permutations and results 
displayed as box plots (box indicates 25th to 75th percentile, 
whiskers indicate the upper and lower adjacent values, and dots 
are outliers). **indicate p-value < 2E-10 for comparison between 
time points (nonparametric tests, see text). 
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Recall that from how IC is computed it is very difficult for it to produce a change of the 

magnitude observed just by chance, as the elementary p-value calculations in Section A.8. and in 

example C.1. show. Reducing the number of genes from ~15000 to 2000, 200 and 20 for calculating 

index IC preserves the predicted relative change of IC before E18.5 despite random selection of 

genes.  

Note that, as expected, the variance in IC is substantially higher when fewer genes are used to 

compute IC (Fig C-1c) but the change in IC is still statistically significant (Kolmogorov-Smirnov 

test, p<2e-16; Mann-Whitney test, p<2.2E-10). Also, remember that in scRNA-seq the vast 

majority of transcripts of the transcriptome is not detected in any given cell or detected in only a 

subfraction of cells (as discussed in Section A.7). Data were filtered for genes with FPKM>0.5 in 

at least 5% of cells. For this reason, random selection from the entire transcriptome of a small 

subset of genes can produce noise, as seen in this example. Fig. C2 shows the numerator and 

denominator for computing IC in Figs C-1, for all genes, revealing the expected trend. 

 

 

 

 

 

By contrast, in the main text only the genes that are expressed and known to be involved in the 

transition are used. The fact that we used specifically selected genes to demonstrate the increase of 

IC is a strength of the approach, not a weakness: The goal is precisely to examine a predicted 

concerted change of expression levels of the set of genes xi that are known to be members of the 

dynamical system F(x) with x={xi} –the core idea that underlies the derivation of IC.  The fact that 

randomly selected genes also, albeit to a lesser extent, display the predicted behavior in IC suggests 

a possible generalizability. It is however plausible given the well-known overall correlated 

expression behavior of all genes across the gnome, manifesting the fact that the underlying gene 

regulatory network acts as an integrated dynamical system. One thus expects that using genes of 

the core network to compute IC as in the main text will perform much better than randomly chosen 

genes, which in fact was the case: The increase of IC observed for 17 selected genes in the main 

text was far more pronounced (>2-fold, Fig 2B in main text) and significant than the case of 20 

random genes shown here (Fig C-1c). 

 
 

C.2.  Glioblastoma multiforme (GBM) cells (from Patel et al. [2]) 
 

To analyse the dependence of IC from the gene number in more detail, we next used scRNA-Seq 

data from static tumor samples to challenge the robustness of IC by considering a case with very 

heterogeneous cells (inherently low cell-to-cell correlation).  Thus, we computed the IC values for 

four cell populations of samples of primary tumor cells as well and cell lines of glioblastoma 

multiforme (GBM) –a tumor known for its extreme cellular heterogeneity– using the data from 

Patel et al. [2]. The provenience of the sample from such a heterogeneous tumor causes the 

departure from the usual relative homogeneity of cells in non-tumor cell lines that creates a global 

correlation between cells. The data are from a static measurement of patient samples, not from the 

Figure C-2. The average cell-cell and 
gene-gene correlation coefficients R that 
underlie the index IC in Fig C-1. Mean and 
distribution of the average cell-cell 
correlation (LEFT) and of the average 
gene-gene correlation (RIGHT) as in Fig. 
C-1; but for all ~15,000 genes. Boxplots 
calculated as in Fig. 1C.  
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study of a dynamical process, and hence, we do not evaluate the prediction of critical transitions 

by IC.  We computed IC for four subpopulations of GBM cells (columns in Fig C-3), each consisting 

of around N=80 cells on average (total 430 cells), in order to evaluate the robustness of IC as a 

function of number of genes used in the presence of inherently heterogeneous cell populations.  

We used randomly chosen sets of m=20, 100, 500 and 1000 genes from the transcriptome as 

input for computing the cell-cell, gene-gene correlation averages (numerator and denominator of 

IC) and IC; we repeated the calculation 1000 times. Fig C-3 shows the average cell-cell correlation 

(top rows in each subplot), gene-gene correlation (middle rows) and their ratio = IC (bottom row) 

as histograms of distributions of the values obtained for the 1000 runs.   If only 20 genes were used 

to compute IC, the spread of IC was around ~0.25 and it increased to ~0.5 as the gene number used 

increased to m=1000 genes. There was also an increase in the absolute value of IC when more genes 

were included –a trend not seen in the previous example for normal lung cells. Comparison of the 

subplots (see guiding dashed lines in Fig 3-C) show that this increase in IC for larger gene numbers 

is caused by the supra-proportional decrease of cell-cell correlation (blue dashed line). This trend 

is opposite to the standard case explained in A.8. where there is substantial correlation among cells 

and reflects the extreme heterogeneity of the GBM cells such that inclusion of more genes 

accentuates the measure of their diversity.  

Figure C-3.  Dissection of the IC value for static cell populations of gliablastoma multiforme cells. Each column represents 
primary GBM tumor-derived cells or cells from established GBM line. Each subplots row represents the number of genes 
used to compute the gene-gene correlations (top row histogram of each subplot), cell-cell correlations (middle row) and 
their ratio, the index IC (bottom row). The histograms represent the distribution of the results obtained from 1000 runs of 
sampling of genes for each bootstrap analysis. Dashed lines serve as optical guides to show that with increasing number 
of genes used because of the heterogeneity of cells: the cell-cell correlation (blue) (the denominator of IC) decreases more 
drastically than gene-gene correlation (red) –resulting in an increase of the index IC. (green) Note that the spread of IC at 
20 genes, even in these heterogeneous cells, is only 0.5±0.2 and cannot explain a doubling of IC as a chance event 
(p<<0.01). 
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This is an important demonstration of the reliability of the proposed index: when there is no 

strong cell-cell correlation (extreme high heterogeneity of GBM cells), increasing the number of 

genes decreases the apparent average cell-cell correlation because of the increased “sampling 

efficiency” of the system – the opposite of the range effect (as discussed in A.8 and B.2). That is 

to say that the cell-cell correlation cannot be reached by the pure ‘brute force’ of increasing the 

range (using more genes to compute the correlation). Note that the range effect only holds when 

some correlation is already there, in which case increasing the expression range considered will 

permit to overcome noise. Otherwise, as in the case of GBM with dominating biological cell-cell 

variability (no common deep attractor) correlation cannot emerge by chance when increasing gene 

numbers.  

The absolute value of IC which is inflated when here is low baseline cell-cell correlation, 

however, is not relevant for the detection of critical transitions. What matters is its increase of IC 

between time points (not considered in t is static example).  A key result here is that the fluctuation 

of IC due to the random sampling of genes in the bootstrap analysis was minimal: Considering the 

observed distributions, the p-value for a change of IC by 2-fold (the magnitude that we have 

observed in our data in the manuscript) is p < 0.01 for all cases of gene numbers used. (p-value was 

calculated from the Ic density distribution estimated from 1000 random samples). Thus, even a 

highly heterogeneous population of cells and randomly selecting 20 genes gave rise to fluctuations 

in IC that are far too low to explain that the change of IC by 2-fold occurred by chance –as bootstrap 

analysis in our manuscript (error bars in Fig 2B of main text) already suggested. In more general 

terms, the underlying reason for the robustness of IC lies in the averaging of a large number of 

correlation coefficients between high-dimensional vectors in both directions of the same data 

matrix. 

Finally, we note that most data in the past literature, as in the two examples shown here, typically 

contain 50-100 (or less) cells in total which precludes a boot-strap analysis in the dimension of 

cells. By contrast, in the main text IC was computed from 150 cells at each time point. Moreover, 

the gene expression profiles for subpopulations were verified by microarrays.  
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