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Supplementary Notes:  Elementary Feedback Concepts 
John C. Doyle, Marie E. Csete 

Abstract: Convergent evolution in both biology 
and technology produces modular architectures 
with elaborate hierarchies of protocols and layers 
of feedback regulation, driven by demand for 
robustness to uncertain environments, while using 
often-imprecise components. This tutorial reviews 
the most elementary and well-known results from 
control theory of relevance to understanding 
feedback in biological networks.   
 
 A key starting point in developing a conceptual 
and theoretical bridge between engineering and 
biology is robustness, the preservation of particular 
characteristics despite uncertainty in components or 
the environment (1,2).  Biologists and biophysicists 
new to studying complex networks often express 
surprise at a biological network’s apparent robustness 
(3). They find "perfect adaptation" and homeostatic 
regulation are robust properties of networks (4,5), 
despite "exploratory mechanisms" that can seem 
gratuitously uncertain (6,7,8). Some even conclude 
that these mechanisms and their resulting features 
seem absent in engineering (8,9). However, 
ironically, it is in the nature of robustness and 
complexity where biology and advanced engineering 
are most alike (10). Good design in both cases (e.g. 
cells and bodies, cars and planes) means users are 
largely unaware of hidden complexities, except 
through system failures. Furthermore, the robustness 
and fragility features of complex systems are shared 
and necessary. Although the need for universal 
principles of complexity and corresponding 
mathematical tools is widely recognized (11), sharp 
differences arise as to what is fundamental about 
complexity and what mathematics is needed (12). 
This tutorial is based on (2) and presents the most 
elementary aspects of well-known results in control 
theory. 
 Protocols are the most important aspect of 
modularity, and the most complex and critical 
protocols are for feedback control and the sensing, 
computing, communication, and actuation that 
implement it. Feedback control is both a powerful 
and dangerous strategy for creating robustness to 
external disturbances and internal component 
variations. Properly balanced it delivers such a huge 
benefit that both engineers and evolution capitalize 
extensively on feedback to build and support 
complex systems.  Detailed elaboration of the nature 
of regulatory feedback is well beyond the scope of 
this tutorial, but an elementary “toy” model illustrates 
the necessity both of feedback to the function of 
complex systems and its “conservation of fragility” 

law. This is arguably the most critical and rigorously 
established robustness tradeoff in complex systems. 
 In most technologies as well as biochemistry it is 
relatively easy to build either uncertain, high gain 
components, or precise, low gain ones, but the 
precise, high gain systems essential to both biology 
and technology are impossible or prohibitively 
expensive to make, except using feedback strategies 
such as in Fig. 1. The simplest case to analyze is 
steady state gain, where after some transient, r and d 
are held constant, and y too approaches a constant 
y=Rr+Sd (13). Solving y=d+ACy+Ar gives  
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Ideally, perfect control would have |S| =0, since that 
gives y = -r/C (R = -1/C) completely independent of 
arbitrary variations in A and d.  This can be achieved 
asymptotically if A → ∞ and -1/C>>1 then F → -∞,  
|S| → 0, and  y→ r/C. Then R amplifies r and is 
perfectly robust to external disturbance d and to 
variations in A (14). Choosing C small and precise, 
with A sufficiently large and even sloppy, is one 
effective, efficient, and robust way to make y a high 
gain function of r.  |S| measures the deviation from 
perfect control, and feedback can attenuate or greatly 
amplify the effects of uncertainties.  Defining 
fragility as log|S|, note that F < 0 iff |S| < 1 iff log|S| < 
0.  F > 0 makes log|S| > 0, amplifying d and 
uncertainty in A, and F → 1 makes log|S|→∞ (15).  
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Figure 1. Minimal feedback system with 
actuator A and controller/sensor C.  Goal 
is for response y to amplify reference r, 
independent of external disturbance d, 
and variations in A.  
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Dynamics 
 This story is incomplete and even misleading 
without dynamics. The simplest possibility is for A 
and C to be 1st-order differential equations  

  1 2:
(1)

:
C x k y k x y d a
A a gu u r x

′ = − − = +
′ = = +

C is a low pass filter with internal state x and 
parameters k1 and k2. A is a pure integrator with state 
a and gain g (16), and we’ll assume that g > 0.   This 
system can be written in “state space” form as 
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Stability depends on the eigenvalues jλ  of the matrix 
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which are the zeros of the characteristic polynomial 
 2

2 1s k s gk+ +  

having negative real part ( ). It is easily 

checked that this holds and the system is stable iff 
gk

( )Re 0jλ <

1>0 and k2 > 0, or equivalently k1 > 0 and k2 > 0.  
Stability here means the solution in the states x and a 
converges to the origin for all initial conditions, and 
any bounded input in r and/or d gives bounded state. 
For this system these two notions are equivalent, but 
in general there are a variety of notions of stability. 
 Thus given g > 0, stability depends only on the 
signs of k1 and k2, and holds if and only if both are 
positive. Since there are only two constants, this 
means that ¼ of the space of values is stable, but then 
it is stable for all positive values.  Thus stability is 
not robust to sign changes, but with fixed signs is 
very robust to magnitude changes.  This is a typical 
situation and has apparently been a large source of 
confusion regarding the robustness of biological 
networks.  For n constant, the number of different 
sign combinations grows exponentially as 2n and thus 
one (fine-tuned) choice of signs becomes a 
vanishingly small fraction of the total number of 
possibilities in any sufficiently large network.  For 
example, a characteristic polynomial such as 
 1

2 1
n n

ns k s k s k−+ + + +  

has roots with negative real part only if all are 
positive, although additional (polynomial) constraints 
are needed to give if and only if conditions. In other 
words, if signs are important, and they are in control 
systems, the resulting network cannot be structurally 
stable.  It is also true that in both technology and 
biology it is much easier to manufacture components 
with robustly fixed signs than with precise absolute 
values, so this is not necessarily a stringent constraint 
on control systems.  Much more important is that this 

type of stability is not as important as the more 
severe constraint of robust transient response. 

jk

 This type of control is called “integral feedback.” 
The parameters g, k1, and k2 might typically be 
functions of underlying physical quantities such as 
temperature, binding affinities, concentrations etc. 
and thus might vary widely. The response y(t) to 
steps in r and d are shown in Figure 2 over two 
orders of magnitude in g and k1 > 0.   

 
 
 

 

Figure 2. Closed (k1=0, blue) vs. open 
(k1=.01, red) loop response y(t) to step 
changes at t=0 in (A) d(t)  (r=0) and (B) 
r(t) (d=0) for g=.1, 1, 10, k1=.01, k2=10 k1. 
Note the extreme divergence (k1=0) vs. 
convergence (k1=.01) as t→∞.  
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Figure 3. Zoom of Figure 2A with 
k1=.01 (blue), .1 (black), 1 (green), 
and k2=10k1 added for each value of 
g.
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 This simple protocol of integral feedback 
produces extremely robust external behavior even 
from wildly varying components (the blue solid 
versus red dashed lines in Figure 2b) and converges 
to the steady state y=(k2/k1)r independently of 
arbitrarily large variations in gain g and disturbance 
d (17). If k2>>k1, y=(k2/k1)r is a high gain amplifier as 
well (18).  The individual values of g, k1 and k2 
influence the rate of convergence to steady state, but 
only (k2/k1) determines its value. Thus robust high 
steady state gain can be achieved with uncertain and 
small parameters with the right feedback protocol. 
Figure 3 shows that variations in both g and k2 of 
orders of magnitude have modest impact, and only on 
early transient behavior.  
 The protocol here is the structure of the equations, 
including the integral feedback and the signs of the 
parameters. Modules are the implementations of the 
actuator and controller.  As with the Lego example in 
(2), this protocol must be “fine-tuned” (since 
rewiring components or flipping signs typically 
creates exponentially growing instabilities), but this 
allows the modules to vary widely with minimal 
effect (19). Integral feedback is used ubiquitously in 
engineering (20) and is likely to be ubiquitous in 
biology as well, to achieve everything from 
homeostatic regulation to "perfect adaptation," and 
preliminary investigations confirm this impression 
(21,22,23).  One reason is that integral feedback is 
both sufficient and necessary for perfect and robust 
steady state tracking.  Intuitively, necessity follows 
from the fact that in steady state, a=y-d must 
perfectly cancel any constant (step in) d, while the 
input u to A cannot depend on this d, since y does not.  
Thus, A (or C) must contain an internal model of the 
dynamics of d, which for step changes is a pure 
integrator (24), which produces unbounded outputs to 
constant inputs. Thus, open-loop hypersensitivity is 
necessary for closed loop robustness, and the 
behavior in Figures 2 and 3 is not an accident. 

Conservation laws 
 Fragility also enters in the transient response. 
When g is increased, the response is faster but 
oscillatory (Figure 2). Figure 4 plots fragility 
log|S(ω)| versus ω where Y(ω) and D(ω) are Fourier  

 ( )log ( ) log (3)
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transforms of y and d.  For increasing g, low 
frequency robustness (log|S(ω)|<0) is improved but at 
the expense of increased fragility (log|S(ω)|>0) at 
higher frequencies (25). In fact, it can be proven that 
for all g 
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so net fragility is, in this sense, a conserved quantity.   
 

 
 
 Robustness (log|S(ω)|<0) is paid for by an equal 
fragility (log|S(ω)|>0) which amplifies d and 
uncertainty in A (26). This quite general result also 
holds for arbitrary parameters, control systems, and 
disturbances (27).   Thus there are always 
nonconstant (e.g. sinusoidal) d(t) that would be 
amplified in y(t).  Such d could be perfectly rejected 
too, but only by adding internal models as complex as 
the external environment that generates d.  While 
such modeling is only possible for simple idealized 
laboratory environments, even approximate attempts 
can drive an extreme complexity spiral in real 
systems, and any controller is still subject to the 
constraint in eq. (4). The key to good control design 
then is insuring that this fragility is tolerable, and 
occurs where uncertainties are relatively small. 

Even these simple toy examples show the robust 
yet fragile features of complex regulatory networks. 
Their outward signatures are, ironically, extremely 
constant regulated variables yet occasional cryptic 
fluctuations. They have extraordinary robustness to 
component variations yet rare but catastrophic 
cascading failures. These apparently paradoxical 
combinations can easily be a source of confusion to 
experimentalists, clinicians, and theoreticians alike 
(28), but are intrinsic features of highly optimized 
feedback regulation.  Since net robustness and 
fragility are constrained quantities, they must be 
manipulated and controlled with and within complex 
networks, even more than energy and materials.  
Figure 2b shows how extreme open vs. closed loop 
behavior can be, and thus how dangerous loss of 
control is to a system relying on it. The tradeoff in 
equation (4) shows that even when working perfectly, 
net fragility is constrained, and thus some transient 
amplification is unavoidable. 

Figure 4. log|S(ω)| vs. ω for responses in 
2A). The peaks in log|S(ω)| correspond to 
the oscillations in 2A) and  2B). Note the 
equal areas under the curves for 
log|S(ω)|. 
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 The necessity of integral feedback and the fragility 
constraint in equation (4) thus describe laws, not 
protocols, perhaps the two simplest such laws from 
control theory.  Controllers that are more complex, 
with additional dynamics and multiple sensors and 
actuators, offer more refinement in performing 
robustness-fragility tradeoffs. Adding to regulatory 
complexity is also evolutionarily relatively easy. 
Faster components allow for faster closed-loop 
responses.  All are used in both biology and 
engineering but all are still ultimately subject to 
equation (4). Control engineers must contend with 
this tradeoff, and its generalizations to more complex 
structures dominate control system design. It may be 
that such tradeoffs dominate and constrain evolution 
and biology as well. 

The cost of instability 
 The simplest change that introduces plant 
instability is for A to be changed to 

  1 2:
:

C x k y k x y d a
A a a gu u xσ

′ = − − = +
′ = + =

where for simplicity r has been eliminated and C is 
unchanged, and we’ll continue to assume that g > 0 
and also that 0σ ≥ . With  there is no 
feedback, and the system is “open loop” with an 
unstable pole at σ.  The state space form is  

1 2 0k k= =
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Stability again depends on the eigenvalues of the 
matrix 
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or the zeros of the characteristic polynomial 
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so this system is asymptotically stable iff  
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Thus the region of stability shrinks as σ gets larger. 
The more serious limitation is that equation (4) now 
becomes 

0

log ( ) (5)S dω ω πσ
∞

≥∫  

so that the tradeoff in equation (4) is aggravated.  
While unstable plants are common in engineering and 
biology, they are typically used only when efficiency 
or performance demands it, and otherwise are 
avoided since unstable plants are intrinsically harder 
to control. 

Implications for biology and engineering 
 Success of systems biology will certainly require 
modeling and simulation tools from engineering 

(29,30), where experience shows that brute force 
computational approaches are hopeless for complex 
systems involving protocols and feedback. Highly 
fragile features require highly sophisticated 
modeling, whereas robust features often have 
adequate models that are greatly simplified. For 
example, if Fig. 1 was for a module in a larger 
system, the steady-state gain y=(k2/k1)r depends only 
on (k2/k1) and no other parameters, potentially 
simplifying experiments and modeling.  If transient 
dynamics or component failure were of interest, more 
details would be needed, determined more by the rest 
of the system than by the internal components. 
 Many challenges of post-genomic biology are 
converging to those facing engineers building 
complex networks and “systems of systems.” 
Engineering theory and practice are now undergoing 
a revolution as radical as biology’s. The simple ideas 
here only hint at the possibilities. For example, more 
complex control protocols than Figure 1, used in both 
engineering and biology, can ameliorate though not 
eliminate the constraint in (4), but sophisticated 
theory is needed to elucidate the issues. Realistic 
models of biological networks will not be simple, 
with multiple feedback signals, nonlinear component 
dynamics, numerous uncertain parameters, stochastic 
noise models (31), parasitic dynamics, and other 
uncertainty models. Scaling to deal with large 
networks will be a major challenge.  Fortunately, 
researchers in robust control theory, dynamical 
systems, and related areas have been vigorously 
pursuing mathematics and software tools to address 
exactly these issues and apply them to complex 
engineering systems (32,33).  Biological applications 
are new, but progress so far is encouraging. 
 Experiments, modeling and simulation, and theory 
all have fragilities, but they are complementary, and 
through the right protocols, have the potential to 
create a robust “closed-loop” systems biology.  
Biologist’s frustrating experience with theory has 
been primarily in an open-loop mode, where simple 
and attractive ideas can be wrong but receive 
enormous attention.  Biology is the only science 
where feedback control and protocols play a 
dominant role, so it should not be surprising that 
there would be popular theories, coming from within 
science, which did not emphasize these issues.  
Biologists and engineers now have enough examples 
of complex systems that they can close the loop and 
eliminate specious theories (33).  For example, 
Internet technology is rich in protocols and feedback, 
and a deep, rigorous, and practically relevant theory 
has recently been developing.  Even though it is 
poorly understood by nonexperts and has become a 
focus of many specious theories, details and 
enormous data sets are available, and it makes an 
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attractive example to compare with biological 
networks(see additional references). 
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