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S1 Genetic confounding in population and family-based GWAS de-
signs

S1.1 The model

Under the general additive model we have studied, an individual’s value for trait Y is

Y = Y ∗ +
∑
l∈L

αd
l gl +

∑
l∈L

αi,m
l gml +

∑
l∈L

αi,f
l gfl + ϵ, (S.1)

where gl is the number of focal alleles at locus l carried by the individual, αd
l is the direct genetic effect

on the trait value of the focal allele at l (which we assume to be positive, without loss of generality),
gml and gfl are the numbers of copies of the focal allele at locus l carried by the individual’s mother and

father respectively, and αi,m
l and αi,f

l are the indirect genetic effects of the focal allele at l via the mother’s
and father’s genotype respectively. ϵ is the environmental disturbance, with mean zero, and Y ∗ is the
expected trait value of the offspring of parents who carry only trait-decreasing alleles.

It will be useful to expand Eq. (S.1) in terms of the individual’s and the individual’s parents’ maternally
and paternally inherited genotypes:

Y = Y ∗ +
∑
l∈L

αd
l

(
gmat
l + gpatl

)
+
∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

)
+ ϵ, (S.2)

where gmat
l is the number of focal alleles at locus l that the individual inherited maternally, gm,mat

l is the
number of focal alleles at l that the individual’s mother inherited maternally, etc.

S1.2 Population GWAS

If we perform a standard population GWAS at a genotyped locus λ, the estimated effect of the focal allele
at λ on the trait Y is

α̂pop
λ =

Cov(gλ, Y )

Var(gλ)
. (S.3)

Here, Var(gλ) is the genotypic variance at λ among sampled individuals, equal to 2pλ(1 − pλ)(1 + Fλ),
where pλ is the frequency of the focal allele at λ and Fλ is the coefficient of inbreeding at λ. For example,
if λ is at Hardy-Weinberg equilibrium, then Var(gλ) = 2pλ(1− pλ); if, instead, the population is divided
into several populations, in each of which Hardy-Weinberg equilibrium obtains at λ but between which
the frequency of the focal variant differs, then Var(gλ) = 2pλ(1− pλ)(1+FST,λ), where FST,λ is the value
of FST at locus λ.

Note that, here and throughout, we use hat notation (α̂) to denote estimates produced by regression,
rather than to denote estimators (as is more usual); in all cases, the estimates are to be interpreted
asymptotically or as expectations.
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The covariance term in Eq. (S.3) expands out to

Cov(gλ, Y ) = Cov

(
gmat
λ + gpatλ , Y ∗ +

∑
l∈L

αd
l

(
gmat
l + gpatl

)
+
∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

)
+ ϵ

)

= Cov

(
gmat
λ + gpatλ ,

∑
l∈L

αd
l

(
gmat
l + gpatl

))

+Cov

(
gmat
λ ,

∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

))

+Cov

(
gpatλ ,

∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

))
+Cov(gλ, ϵ)

=
∑
l∈L

([
Cov

(
gmat
λ , gmat

l

)
+Cov

(
gmat
λ , gpatl

)
+Cov

(
gpatλ , gmat

l

)
+Cov

(
gpatλ , gpatl

)]
αd
l

+
[
Cov

(
gmat
λ , gm,mat

l + gm,pat
l

)]
αi,m
l +

[
Cov

(
gpatλ , gf,mat

l + gf,patl

)]
αi,f
l

+
[
Cov

(
gmat
λ , gfl

)]
αi,f
l +

[
Cov

(
gpatλ , gml

)]
αi,m
l

)
+Cov(gλ, ϵ)

=
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l

+
[
Cov

(
gmat
λ , gm,mat

l + gm,pat
l

)]
αi,m
l +

[
Cov

(
gpatλ , gf,mat

l + gf,patl

)]
αi,f
l

+
[
Cov

(
gmat
λ , gfl

)]
αi,f
l +

[
Cov

(
gpatλ , gml

)]
αi,m
l

)
+Cov(gλ, ϵ), (S.4)

where Dλl and D̃λl are the degrees of cis- and trans-linkage disequilibrium between the focal alle-
les at loci λ and l in the GWAS sample. Since gmat

λ equals gm,mat
λ or gm,pat

λ with equal probability,

Cov
(
gmat
λ , gm,mat

l + gm,pat
l

)
= D′

λl + D̃′
λl, and similarly, Cov

(
gpatλ , gf,mat

l + gf,patl

)
= D′

λl + D̃′
λl (here,

D′
λl and D̃′

λl are the LDs in the parents of the sample, assumed to be equal across mothers and fa-
thers). Since maternal transmission is independent of paternal genotype, and vice versa, Cov

(
gmat
λ , gfl

)
=

Cov
(
gmλ , gfl

)
/2 and Cov

(
gpatλ , gml

)
= Cov

(
gfλ, g

m
l

)
/2. So

Cov(gλ, Y ) =
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl

)(
αi,m
l + αi,f

l

)
+

1

2

[
Cov

(
gmλ , gfl

)]
αi,f
l +

1

2

[
Cov

(
gfλ, g

m
l

)]
αi,m
l

)
+Cov(gλ, ϵ). (S.5)
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If αi,m
l = αi,f

l = αi
l, then

Cov(gλ, Y ) =
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
2
(
D′

λl + D̃′
λl

)
+

1

2

[
Cov

(
gmλ , gfl

)
+Cov

(
gfλ, g

m
l

)])
αi
l

)
+Cov(gλ, ϵ)

=
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
2
(
D′

λl + D̃′
λl

)
+

1

2

[
8D̃λl

])
αi
l

)
+Cov(gλ, ϵ)

= 2
∑
l∈L

((
Dλl + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l

)
+Cov(gλ, ϵ). (S.6)

In the second line of Eq. (S.6), we have used the fact that covariances across parents translate to co-
variances across maternal and paternal genomes in the offspring. Note, however, that Cov

(
gmλ , gfl

)
and

Cov
(
gfλ, g

m
l

)
need not, in general be equal—e.g., they will not be so under sex-based cross-trait assortative

mating—which is why we could not apply a similar simplification to Eq. (S.5).
Dividing Eq. (S.6) by Var(gλ), and recognizing that, for l ∈ Llocal, cλl ≈ 0, we recover Eq. (3) in the

Main Text.

S1.3 Sibling GWAS

Consider two full siblings. Let gmat,1
l and gmat,2

l indicate whether sib 1 and sib 2 respectively inherited the

focal (trait-increasing) allele from their mother at locus l. Let gpat,1l and gpat,2l be analogous indicators

for paternal transmission. Write ∆gmat
l = gmat,1

l − gmat,2
l and ∆gpatl = gpat,1l − gpat,2l . Since maternal

and paternal transmission are independent, ∆gmat
l and ∆gpatl′ are independent for all pairs of loci l and l′

(including l = l′). The difference in the two siblings’ genotypic values at locus l is ∆gl = ∆gmat
l +∆gpatl .

From Eq. (S.1), the difference in their trait values is

∆Y =
∑
l∈L

∆glα
d
l +∆ϵ, (S.7)

where ∆ϵ is the difference in the environmental disturbances experienced by the two siblings. Notice that
the indirect effects cancel out of Eq. (S.7), since the parental genotypes are the same for the two siblings.
So, in a sib-GWAS for trait Y, the estimated effect size at λ is

α̂sib
λ =

Cov (∆gλ,∆Y )

Var (∆gλ)
=

Cov
(
∆gλ,

∑
l∈L∆glα

d
l +∆ϵ

)
Var (∆gλ)

=
Cov

(
∆gmat

λ +∆gpatλ ,
∑

l∈L

(
∆gmat

l +∆gpatl

)
αd
l

)
+Cov(∆gλ,∆ϵ)

Var
(
∆gmat

λ +∆gpatλ

)
=

∑
l∈L

[
Cov

(
∆gmat

λ ,∆gmat
l

)
+Cov

(
∆gpatλ ,∆gpatl

)]
αd
l

Var
(
∆gmat

λ

)
+Var

(
∆gpatλ

)
=

∑
l∈L

(
E
[
∆gmat

λ ∆gmat
l

]
+ E

[
∆gpatλ ∆gpatl

])
αd
l

E
[(
∆gmat

λ

)2]
+ E

[(
∆gpatλ

)2] ,
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since Cov(∆gλ,∆ϵ) = 0 (line 3), Cov
(
∆gmat

λ ,∆gpatl

)
= Cov

(
∆gmat

l ,∆gpatλ

)
= 0 (line 3) and E

[
∆gmat

k

]
=

E
[
∆gpatk

]
= 0 for all loci k (line 4). The denominator E

[(
∆gmat

λ

)2]
+ E

[(
∆gpatλ

)2]
= Hλ, the fraction

of parents in the family GWAS sample who are heterozygous at locus λ. The only non-zero contributions

to E
[
∆gmat

λ ∆gmat
l

]
and E

[
∆gpatλ ∆gpatl

]
come from parents who are heterozygous at both λ and l. Such

parents are either ‘coupling’ double-heterozygotes carrying the focal alleles at λ and l in coupling phase
(i.e., inherited from the same parent), or ‘repulsion’ double-heterozygotes carrying the focal alleles at λ
and l in repulsion phase (inherited from different parents). Among parents, let the fractions of coupling
and repulsion double-hets for loci λ and l be Hcoup

λl and Hrep
λl respectively. If the recombination rate

between the loci is c
♀
λl in females and c♂λl in males, then

E
[
∆gmat

λ ∆gmat
l

]
= E

[
∆gmat

λ ∆gmat
l |mother is coupling double-het

]
Hcoup

λl

+ E
[
∆gmat

λ ∆gmat
l |mother is repulsion double-het

]
Hrep

λl .

If the mother is a coupling double-heterozygote, then, for ∆gmat
λ ∆gmat

l to be non-zero, either (i) both

gametes must be non-recombinant [probability (1−c
♀
λl)

2], in which case ∆gmat
λ ∆gmat

l = +1 with probability

1/2 and = 0 with probability 1/2, or (ii) both gametes must be recombinant [probability (c
♀
λl)

2], in which
case ∆gmat

λ ∆gmat
l = −1 with probability 1/2 and = 0 with probability 1/2. Similarly, if the mother

is a repulsion double-heterozygote, for ∆gmat
λ ∆gmat

l to be non-zero, either (i) both gametes must be

non-recombinant [probability (1 − c
♀
λl)

2], in which case ∆gmat
λ ∆gmat

l = −1 with probability 1/2 and

= 0 with probability 1/2, or (ii) both gametes must be recombinant [probability (c
♀
λl)

2], in which case
∆gmat

λ ∆gmat
l = +1 with probability 1/2 and = 0 with probability 1/2. Therefore,

E
[
∆gmat

λ ∆gmat
l

]
=
(
(1− c

♀
λl)

2 × (+1/2) + (c
♀
λl)

2 × (−1/2)
)
Hcoup

λl

+
(
(1− c

♀
λl)

2 × (−1/2) + (c
♀
λl)

2 × (+1/2)
)
Hrep

λl

=
1

2

(
1− 2c

♀
λl

)
Hcoup

λl − 1

2

(
1− 2c

♀
λl

)
Hrep

λl

=

(
1

2
− c

♀
λl

)
(Hcoup

λl −Hrep
λl )

=
(
1− 2c

♀
λl

)
(D′

λl − D̃′
λl),

since Hcoup
λl −Hrep

λl = 2(D′
λl − D̃′

λl), where D
′
λl and D̃′

λl are the cis- and trans-LD between the focal/trait-
increasing alleles at λ and l among parents. Similarly,

E
[
∆gpatλ ∆gpatl

]
=
(
1− 2c♂λl

)
(D′

λl − D̃′
λl),

So

α̂d,sib
λ =

2
∑

l∈L (1− 2cλl) (D
′
λl − D̃′

λl)α
d
l

Hλ
, (S.8)

where cλl is the sex-averaged recombination fraction between λ and l. Recognizing that, for l ∈ Llocal,
cλl ≈ 0 and |D̃λl| ≪ |Dλl| in expectation, we recover Eq. (7) in the Main Text:

α̂d,sib
λ ≈ 2

Hλ

 ∑
l∈Llocal

D′
λlα

d
l +

∑
l∈L\Llocal

(1− 2cλl)
(
D′

λl − D̃′
λl

)
αd
l

 . (S.9)
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S1.4 Transmitted–untransmitted GWAS

In Eq. (S.2), gmat
l represents the allele that was transmitted maternally from among the set of maternal

alleles
{
gm,mat
l , gm,pat

l

}
. Thus, if the maternally transmitted allele was the grandmaternal allele (with

probability 1/2, and in which case gmat
l = gm,mat

l ), then the untransmitted allele at locus l is the grandpa-

ternal allele, with genotypic value gm,pat
l . To make this distinction clear, we write gmatT

l for the genotypic
value of the maternally transmitted allele at locus l, and gmatU

l for the maternally untransmitted allele

at locus l. Similarly, gpatTl and gpatUl represent the paternally transmitted and untransmitted alleles at l.

The transmitted and untransmitted genotypes are gTl = gmatT
l +gpatTl and gUl = gmatU

l +gpatUl respectively.

Estimating direct effects

We are interested in the coefficients produced by the joint regression of the trait value on the transmitted

and untransmitted genotype at locus λ, α̂
(T)
λ and α̂

(U)
λ .

It is straightforward to show that the difference between these coefficients—the estimate of the direct
effect at λ in the transmitted-untransmitted study design—is the same in expectation as the sibling-based
estimate of the direct effect calculated above (e.g., [1]). Noting that gTλ = gλ, the offspring’s genotype at

λ, and gTλ + gUλ = gmλ + gfλ, the sum of the maternal and paternal genotypes, the regression that we wish
to estimate,

Y = k + α
(T)
λ gTλ + α

(U)
λ gUλ + ε, (S.10)

can be rewritten

Y = k + α
(T)
λ gTλ + α

(U)
λ gUλ + ε

= k + α
(T)
λ gTλ + α

(U)
λ

(
gmλ + gfλ − gTλ

)
+ ε

= k +
(
α
(T)
λ − α

(U)
λ

)
gTλ + α

(U)
λ

(
gmλ + gfλ

)
+ ε

= k +
(
α
(T)
λ − α

(U)
λ

)
gλ + 2α

(U)
λ

gmλ + gfλ
2

+ ε, (S.11)

i.e., the regression of offspring trait value on offspring genotype at λ, controlling for the midparent

genotype. Therefore, the estimate of the direct effect α̂
(T)
λ −α̂

(U)
λ obtained by OLS estimation of Eq. (S.10)

is the same as the coefficient on gλ obtained by OLS estimation of Eq. (S.11).
By the Frisch–Waugh–Lovell theorem, the OLS estimate of the coefficient on gλ in Eq. (S.11) is the

same as would be obtained if we regress gλ on the midparent genotype
(
gmλ + gfλ

)
/2, obtain the residuals,

and regress the offspring trait values Y on these residuals. But the first regression is just

gλ =
gmλ + gfλ

2
+ ςλ,

where ςλ is the deviation of the offspring’s genotype from the midparent value due to the randomness of
segregation at λ. Therefore, the residuals in the first-stage regression are the ςλ in expectation, and so the
coefficient on gλ obtained by OLS estimation of (S.11)—and therefore the estimate of the direct effect in
the transmitted-untransmitted association study at λ—is the same as that obtained by OLS estimation
of the regression of offspring trait value on the genotypic deviation ςλ, i.e.,

α̂T-U
λ =

Cov(ςλ, Y )

Var(ςλ)
. (S.12)
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To see that this is the same, in expectation, as the estimate of the direct effect produced by the sibling
association study, note that the difference between the genotypes of two siblings 1 and 2 at locus λ is
∆gλ = ς1λ − ς2λ, and, also, that the segregation deviations ς1λ and ς2λ are uncorrelated. The estimate of the
direct effect in the sibling-based regression can therefore be written

α̂sib
λ =

Cov(∆gλ,∆Y )

Var(∆gλ)
=

Cov(ς1λ − ς2λ, Y
1 − Y 2)

Var(ς1λ − ς2λ)

=
Cov(ς1λ − ς2λ, Y

1 − Y 2)

2Var(ςλ)
(linear independence of ς1λ, ς

2
λ)

=
Cov(ς1λ, Y

1) + Cov(ς2λ, Y
2)− Cov(ς1λ, Y

2)− Cov(ς2λ, Y
1)

2Var(ςλ)

=
Cov(ς1λ, Y

1) + Cov(ς2λ, Y
2)

2Var(ςλ)
(no sibling indirect effects)

=
2Cov(ςλ, Y )

2Var(ςλ)
=

Cov(ςλ, Y )

Var(ςλ)
, (S.13)

which is the same as Eq. (S.12).
Therefore, under the assumption of no sibling indirect effects (line 4 in Eq. S.13 above), the sibling

and the transmitted-untransmitted estimates of the direct effect of the focal variant at λ are equal in
expectation, and so

α̂d,T-U
λ = α̂sib

λ =
2
∑

l∈L(1− 2cλl)
(
D′

λl − D̃′
λl

)
αd
l

Hλ

≈ 2

Hλ

 ∑
l∈Llocal

D′
λlα

d
l +

∑
l∈L\Llocal

(1− 2cλl)
(
D′

λl − D̃′
λl

)
αd
l

 . (S.14)

Estimating indirect effects

The estimated coefficient on the untransmitted genotype gUλ in the regression (S.10) has sometimes been
interpreted as an estimate of the indirect ‘family’ effect of the focal variant at λ: α̂i

λ = α̂U
λ . Here, we

calculate the value of this estimate under the phenotypic model (S.1).
Let Yi, g

T
λ,i, and gUλ,i be the trait value, transmitted genotype, and untransmitted genotype of offspring

i, and let Y , gT
λ , and gU

λ be the corresponding n× 1 vectors of these values across all n offspring. Define
the n × 3 matrix X = [1, gT

λ , g
U
λ ] where 1 is an n × 1 vectors of 1s. Then the coefficients produced by

OLS estimation of Eq. (S.10) are

α̂ =

 k̂
α̂T
λ

α̂U
λ

 = (X ′X)−1X ′Y , (S.15)
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where X ′ is the transpose of X. To calculate Eq. (S.15), we first calculate that

X ′X = n

 1 1
n

∑n
i=1 g

T
λ,i

1
n

∑n
i=1 g

U
λ,i

1
n

∑n
i=1 g

T
λ,i

1
n

∑n
i=1(g

T
λ,i)

2 1
n

∑n
i=1 g

T
λ,ig

U
λ,i

1
n

∑n
i=1 g

U
λ,i

1
n

∑n
i=1 g

T
λ,ig

U
λ,i

1
n

∑n
i=1(g

U
λ,i)

2


= n

 1 E[gTλ ] E[gUλ ]
E[gTλ ] Var(gTλ ) + (E[gTλ ])2 Cov(gTλ , g

U
λ ) + E[gTλ ]E[gUλ ]

E[gUλ ] Cov(gTλ , g
U
λ ) + E[gTλ ]E[gUλ ] Var(gUλ ) + (E[gUλ ])2

 , (S.16)

where the expectations, variances, and covariances in Eq. (S.16) are treated as sample averages across
the entire sample of offspring. If p is the frequency of the focal allele at λ among offspring in the sample
(and therefore also among their parents), and F and F ′ are the inbreeding coefficients amongst offspring
and parents respectively at the locus, then we have E[gTλ ] = E[gUλ ] = 2p and Var(gTλ ) = Var(gUλ ) = 2p(1−
p)(1+F ). For Cov(gTλ , g

U
λ ), write g

T
λ = gmatT

λ +gpatTλ and gUλ = gmatU
λ +gpatUλ as before. Since which allele

was transmitted from each parent to the offspring is random, Cov(gmatT
λ , gpatUλ ) = Cov(gmatU

λ , gpatTλ ) =

Cov(gmatT
λ , gpatTλ ). Therefore,

Cov(gTλ , g
U
λ ) = Cov(gmatT

λ + gpatTλ , gmatU
λ + gpatUλ )

= Cov(gmatT
λ , gmatU

λ ) + Cov(gpatTλ , gpatUλ ) + Cov(gmatT
λ , gpatUλ ) + Cov(gmatU

λ , gpatTλ )

= Cov(gmatT
λ , gmatU

λ ) + Cov(gpatTλ , gpatUλ ) + Cov(gmatT
λ , gpatTλ ) + Cov(gmatT

λ , gpatTλ )

= p(1− p)F ′ + p(1− p)F ′ + p(1− p)F + p(1− p)F

= 4p(1− p)F,

where the penultimate line follows from the fact that Cov(gmatT
λ , gmatU

λ ) and Cov(gpatTλ , gpatUλ ) are allelic

covariances in parents while Cov(gmatT
λ , gpatTλ ) is the allelic covariance in offspring. In the last line, we

have made the assumption that the inbreeding coefficients are the same in parents and offspring.
Substituting all of these values into Eq. (S.16),

X ′X = n

 1 2p 2p
2p 2p(1− p)(1 + F ) + 4p2 4p(1− p)F + 4p2

2p 4p(1− p)F + 4p2 2p(1− p)(1 + F ) + 4p2


= n

 1 2p 2p
2p 2p[1 + p(1− p)F ] 4p[p+ (1− p)F ]
2p 4p[p+ (1− p)F ] 2p[1 + p(1− p)F ]

 . (S.17)

From standard linear algebra, we calculate that

(X ′X)−1 =
1

n
· 1

2p(1− p)(1 + 3F )(1− F )

 . . . −2p(1− F ) −2p(1− F )
−2p(1− F ) 1 + F −2F
−2p(1− F ) −2F 1 + F

 , (S.18)

where the term denoted by ellipses is 2p[1 + 3p+ 3(1− p)F ](1− F ) and will not matter in what follows.
Turning to the other term in Eq. (S.15),

X ′Y = n

 1
n

∑n
i=1 Yi

1
n

∑n
i=1 g

T
λ,iYi

1
n

∑n
i=1 g

U
λ,iYi

 = n

 E[Y ]
Cov(gTλ , Y ) + E[gTλ ]E[Y ]
Cov(gUλ , Y ) + E[gUλ ]E[Y ]

 = n

 Ȳ
Cov(gTλ , Y ) + 2pȲ
Cov(gUλ , Y ) + 2pȲ

 . (S.19)
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Therefore,

α̂ =

 k̂
α̂T
λ

α̂U
λ

 = (X ′X)−1X ′Y

=
1

2p(1− p)(1 + 3F )(1− F )

 . . . −2p(1− F ) −2p(1− F )
−2p(1− F ) 1 + F −2F
−2p(1− F ) −2F 1 + F

 Ȳ
Cov(gTλ , Y ) + 2pȲ
Cov(gUλ , Y ) + 2pȲ

 .

(S.20)

So, to calculate the OLS estimates of the coefficients α̂, it remains to calculate Cov
(
gTλ , Y

)
and

Cov
(
gUλ , Y

)
.

We have

Cov
(
gmatT
λ , Y

)
= Cov

(
gmatT
λ , Y ∗ +

∑
l∈L

(
gmatT
l + gpatTl

)
αd
l

+
∑
l∈L

(
gm,mat
l + gm,pat

l

)
αi,m
l +

∑
l∈L

(
gf,mat
l + gf,patl

)
αi,f
l + ϵ

)
=
∑
l∈L

[
Cov

(
gmatT
λ , gmatT

l

)
+Cov

(
gmatT
λ , gpatTl

)]
αd
l

+
∑
l∈L

[
Cov

(
gmatT
λ , gm,mat

l

)
+Cov

(
gmatT
λ , gm,pat

l

)]
αi,m
l

+
∑
l∈L

[
Cov

(
gmatT
λ , gf,mat

l + gf,patl

)]
αi,f
l +Cov

(
gmatT
λ , ϵ

)
=
∑
l∈L

[
D′

λl

(
1− c

♀
λl

)
+ D̃′

λlc
♀
λl +Cov

(
gmatT
λ , gpatTl

)]
αd
l

+
∑
l∈L

(
D′

λl + D̃′
λl

)
αi,m
l +

∑
l∈L

Cov
(
gmatT
λ , gfl

)
αi,f
l +Cov

(
gmatT
λ , ϵ

)
,

and, similarly,

Cov
(
gpatTλ , Y

)
=
∑
l∈L

[
D′

λl

(
1− c♂λl

)
+ D̃′

λlc
♂
λl +Cov

(
gpatTλ , gmatT

l

)]
αd
l

+
∑
l∈L

(
D′

λl + D̃′
λl

)
αi,f
l +

∑
l∈L

Cov
(
gpatTλ , gml

)
αi,m
l +Cov

(
gpatTλ , ϵ

)
.

Note that
Cov

(
gmatT
λ , gpatTl

)
+Cov

(
gpatTλ , gmatT

l

)
= 2D̃λl (S.21)

and, because Cov
(
gmatT
λ , gpatTl

)
= Cov

(
gmatU
λ , gpatTl

)
and Cov

(
gpatTλ , gmatT

l

)
= Cov

(
gpatUλ , gmatT

l

)
,

Cov
(
gmatT
λ , gfl

)
+Cov

(
gpatTλ , gml

)
= Cov

(
gmatT
λ , gpatTl + gpatUl

)
+Cov

(
gpatTλ , gmatT

l + gmatU
l

)
= 2Cov

(
gmatT
λ , gpatTl

)
+Cov

(
gpatTλ , gmatT

l

)
= 4D̃λl. (S.22)
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The identities in Eqs. (S.21) and (S.22) allow for asymmetry across locus pairs in the maternal/paternal

contributions to trans-LD—i.e., we need not assume that Cov
(
gmatT
λ , gpatTl

)
= Cov

(
gpatTλ , gmatT

l

)
. (Such

an asymmetry could arise, for example, under sex-asymmetric models of mate choice, where one sex
displays a mating preference for some phenotype in the other sex.)

Therefore,

Cov
(
gTλ , Y

)
= Cov

(
gmatT
λ + gpatTλ , Y

)
= Cov

(
gmatT
λ , Y

)
+Cov

(
gpatTλ , Y

)
= 2

∑
l∈L

[
D′

λl (1− cλl) + D̃′
λlcλl + D̃λl

]
αd
l +

∑
l∈L

(
D′

λl + D̃′
λl

)(
αi,f
l + αi,m

l

)
+
∑
l∈L

[
Cov

(
gmatT
λ , gfl

)]
αi,f
l +

∑
l∈L

[
Cov

(
gpatTλ , gml

)]
αi,m
l +Cov (gλ, ϵ) , (S.23)

where cλl is the sex-averaged recombination fraction between λ and l. If we further assume that the
indirect effects of the maternal and paternal genotype are equal (αi,m

l = αi,f
l = αi

l), this expression
simplifies to

Cov
(
gTλ , Y

)
= 2

∑
l∈L

[
D′

λl (1− cλl) + D̃′
λlcλl + D̃λl

]
αd
l +2

∑
l∈L

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l+Cov (gλ, ϵ) . (S.24)

We can perform similar calculations for the untransmitted genotype, again using the facts that

Cov
(
gmatT
λ , gpatTl

)
= Cov

(
gmatU
λ , gpatTl

)
, Cov

(
gpatTλ , gmatT

l

)
= Cov

(
gpatUλ , gmatT

l

)
, Cov

(
gmatT
λ , gfl

)
=

Cov
(
gmatU
λ , gfl

)
, and Cov

(
gpatTλ , gml

)
= Cov

(
gpatUλ , gml

)
. Assuming equal indirect effects from maternal

and paternal genotype, we obtain

Cov
(
gUλ , Y

)
= 2

∑
l∈L

[
D′

λlcλl + D̃′
λl (1− cλl) + D̃λl

]
αd
l + 2

∑
l∈L

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l +Cov

(
gUλ , ϵ

)
.

(S.25)
Before we use these expressions to calculate the parent-offspring estimate of the indirect effect, α̂i,T-U

λ ,
it is worth quickly checking that we can use them to recover the same value for the parent-offspring
estimate of the direct effect, α̂d,T-U

λ , that we calculated in Eq. (S.14). From Eqs. (S.20), (S.24), and
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(S.25),

α̂T
λ − α̂U

λ =

(
−2p(1− F ) 1 + F −2F

)
−
(
−2p(1− F ) −2F 1 + F

)
2p(1− p)(1 + 3F )(1− F )

 Ȳ
Cov(gTλ , Y ) + 2pȲ
Cov(gUλ , Y ) + 2pȲ


=

(
0 1 + 3F −(1 + 3F )

)
2p(1− p)(1 + 3F )(1− F )

 Ȳ
Cov(gTλ , Y ) + 2pȲ
Cov(gUλ , Y ) + 2pȲ


=

Cov(gTλ , Y )− Cov(gUλ , Y )

2p(1− p)(1− F )

=
Cov(gTλ , Y )− Cov(gUλ , Y )

Hλ

=
1

Hλ

(
2
∑
l∈L

[
D′

λl(1− 2cλl) + D̃′
λl(2cλl − 1)

]
αd
l +((((((((((((

Cov(gλ, ϵ)− Cov(gUλ , ϵ)

)

=
2

Hλ

∑
l∈L

(
D′

λl − D̃′
λl

)
(1− 2cλl)α

d
l , (S.26)

which is the same as Eq. (S.14).
We now calculate the estimate of the indirect effect from Eqs. (S.20), (S.24), and (S.25):

α̂i
λ = α̂U

λ =

(
−2p(1− F ) −2F 1 + F

)
2p(1− p)(1 + 3F )(1− F )

 Ȳ
Cov(gTλ , Y ) + 2pȲ
Cov(gUλ , Y ) + 2pȲ


=

(1 + F )Cov(gUλ , Y )− 2FCov(gTλ , Y )

2p(1− p)(1− F )(1 + 3F )

=
1

Hλ(1 + 3F )

(
2
∑
l∈L

[
D′

λl[(1 + 3F )cλl − 2F ] + D̃′
λl[−(1 + 3F )cλl + 1 + F ] + (1− F )D̃λl

]
αd
l

+2(1− F )
∑
l∈L

[
D′

λl + D̃′
λl + 2D̃λl

]
αi
l + (1 + F )Cov(gUλ , ϵ)− 2FCov(gλ, ϵ)

)
. (S.27)

This expression includes direct and indirect genetic confounds, as well as environmental confounding. It
is easiest to interpret when F = 0, in which case

α̂i
λ =

1

Hλ

(
2
∑
l∈L

[
D′

λlcλl + D̃′
λl(1− cλl) + D̃λl

]
αd
l + 2

∑
l∈L

[
D′

λl + D̃′
λl + 2D̃λl

]
αi
l +Cov(gUλ , ϵ)

)
. (S.28)

By our definition of Llocal, for l ∈ Llocal, cλl ≈ 0 and F = 0 ⇒ D̃λl = D̃′
λl = 0, so Eq. (S.28) simplifies to

α̂i
λ =

2

Hλ

 ∑
l∈Llocal

D′
λlα

i
l +

∑
l∈L\Llocal

[
D′

λlcλl + D̃′
λl(1− cλl) + D̃λl

]
αd
l +

∑
l∈L\Llocal

[
D′

λl + D̃′
λl + 2D̃λl

]
αi
l +Cov(gUλ , ϵ)

 ,

(S.29)
which is Eq. (9) in the Main Text.
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S2 Polygenic scores and their phenotypic correlations

Suppose that we have estimated effect sizes α̂λ at a set of genotyped loci λ ∈ Λ using a population GWAS
for trait 1. For each individual, we can then compute a polygenic score:

PGS 1 =
∑
λ∈Λ

gλα̂
pop
λ . (S.30)

PGSs are often treated as predictions of individuals’ genetic values for traits. In this regard, we might
therefore be interested in the covariance across the population between the PGS for a trait and individuals’
values for that trait: Cov(PGS 1, Y1). Additionally, if PGSs are treated as predictions of genetic values
of traits, then we might be interested in how the PGS calculated for one trait covaries with the value
of another trait: Cov(PGS 1, Y2). Such covariances might be informative of genetic correlations between
traits, or pleiotropy of the alleles underlying genetic variation in the traits. We focus on the two-trait
covariance, since it nests the single-trait covariance as a special case. If the total set of loci causally
underlying variation in traits 1 and 2 is L, then the population covariance between the PGS for trait 1
and the value of trait 2 is

Cov (PGS 1, Y2) = Cov

(∑
λ∈Λ

gλα̂
pop
λ ,

∑
l∈L

glβl

)

= Cov

(∑
λ∈Λ

(
gmλ + gpλ

)
α̂pop
λ ,

∑
l∈L

(
gml + gpl

)
βl

)
= 2

∑
λ∈Λ

∑
l∈L

(
Dλl + D̃λl

)
α̂pop
λ βl. (S.31)

The effect-size estimates from the population GWAS for trait 1 are

α̂pop
λ =

2

Vλ

∑
l′∈L

(Dλl′ + D̃λl′)αl′ ≈ αλ +
2

Vλ

∑
l′∈L
l′ ̸=λ

(Dλl′ + D̃λl′)αl′ ,

and so Eq. (S.31) is, in general,

Cov (PGS 1, Y2) =
∑
λ∈Λ

2pλ(1− pλ)αλβλ + 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(
Dλl + D̃λl

)
αλβl (S.32)

+ 4
∑
λ∈Λ

∑
l′∈L
l′ ̸=λ

∑
l∈L
l ̸=λ

1

Vλ

(
Dλl′ + D̃λl′

)(
Dλl + D̃λl

)
αl′βl. (S.33)

In a family-based study, we might instead be interested in the covariance between siblings’ differences
in the trait-1 population PGS and their differences in trait 2. We can write this covariance in our model
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as

Cov (∆PGS 1,∆Y2) = Cov

(∑
λ∈Λ

(
∆gmλ +∆gpλ

)
α̂pop
λ ,

∑
l∈L

(
∆gml +∆gpl

)
βl

)

= E

[(∑
λ∈Λ

(
∆gmλ +∆gpλ

)
α̂pop
λ

)(∑
l∈L

(
∆gml +∆gpl

)
βl

)]
=
∑
λ∈Λ

∑
l∈L

E
[(
∆gmλ +∆gpλ

) (
∆gml +∆gpl

)
α̂pop
λ βl

]
=
∑
λ∈Λ

∑
l∈L

(
E
[
∆gmλ ∆gml α̂pop

λ βl
]
+ E

[
∆gpλ∆gpl α̂

pop
λ βl

])
, (S.34)

since maternal and paternal transmission are conditionally independent. Focusing on maternal transmis-
sion, and writing hc,mλl and hr,mλl for the events that the mother is respectively a coupling and a repulsion
heterozygote at loci λ and l, with Hcoup

λl and Hrep
λl their associated probabilities (which are assumed to

be the same for mothers and fathers),

E
[
∆gmλ ∆gml α̂pop

λ βl
]
= E

[
∆gmλ ∆gml α̂pop

λ βl | hc,mλl

]
Hcoup

λl + E
[
∆gmλ ∆gml α̂pop

λ βl | hr,mλl
]
Hrep

λl

=
(
E
[
∆gmλ ∆gml | hc,mλl

]
Hcoup

λl + E
[
∆gmλ ∆gml | hr,mλl

]
Hrep

λl

)
α̂pop
λ βl

=

(
1

2
− c

♀
λl

)(
Hcoup

λl −Hrep
λl

)
α̂pop
λ βl

=
(
1− 2c

♀
λl

)(
D′

λl − D̃′
λl

)
α̂pop
λ βl,

with D′
λl and D̃′

λl measured in the parents. Similarly,

E
[
∆gpλ∆gpl α̂

pop
λ βl

]
=
(
1− 2c♂λl

)(
D′

λl − D̃′
λl

)
α̂pop
λ βl,

and so Eq. (S.34) becomes

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1− 2cλl)
(
D′

λl − D̃′
λl

)
α̂pop
λ βl, (S.35)

where cλl is the sex-averaged recombination fraction between λ and l.
Before we substitute the population GWAS estimates α̂pop

λ into Eq. (S.35), it is worth considering
what value this expression would take if direct genetic effects were correctly estimated at every study
locus, α̂pop

λ = αλ. In this case, Eq. (S.35) becomes

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1− 2cλl)
(
Dλl − D̃λl

)
αλβl

=
∑
λ∈Λ

2pλ(1− pλ)αλβλ + 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1− 2cλl)
(
D′

λl − D̃′
λl

)
αλβl. (S.36)

If the two traits are distinct, then the first term in Eq. (S.36) is the genic covariance of traits 1 and
2 across the set of study loci (more precisely, tagged locally by the study loci), and reflects systematic
pleiotropy at these loci; this term would, for example, be positive if alleles tend to have same-direction
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effects on traits 1 and 2. If we were studying only one trait, then αλ = βλ, and the first term would be
the genic variance of the trait across study loci,

∑
λ∈Λ 2pλ(1 − pλ)α

2
λ. The second term in Eq. (S.36) is

an effect of linkage disequilibria between study loci and the loci that are causal for trait 2; these LDs are
absorbed by the PGS because the PGS is a sum across loci. In the absence of such LDs, or in cases where
the cis- and trans-LDs are equal so that D′

λl − D̃′
λl = 0, Eq. (S.36) would equal the genic variance in the

single-trait case and the genic covariance in the two-trait case.
The effect-size estimates from a population GWAS are in fact

α̂pop
λ =

2

Vλ

∑
l′∈L

(Dλl′ + D̃λl′)αl′ ≈ αλ +
2

Vλ

∑
l′∈L
l′ ̸=λ

(Dλl′ + D̃λl′)αl′ ,

Dλl′ and D̃λl′ are measured in the sample. We assume these to be equal to the values in parents in the
family-based GWAS, D′

λl and D̃′
λl, and so the value taken by Eq. (S.35) is

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1− 2cλl)
(
Dλl − D̃λl

)
α̂pop
λ βl

= 2
∑
λ∈Λ

∑
l∈L

(1− 2cλl)
(
Dλl − D̃λl

)(
αλ +

2

Vλ

∑
l′∈L
l′ ̸=λ

(
Dλl′ + D̃λl′

)
αl′

)
βl

=
∑
λ∈Λ

2pλ(1− pλ)αλβλ︸ ︷︷ ︸
pleiotropy

+ 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1− 2cλl)
(
Dλl − D̃λl

)
αλβl

︸ ︷︷ ︸
covariance from LD absorbed by PGS

because it is a sum across loci

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1− 2cλl)
(
D2

λl − D̃2
λl

)
αlβl/Vλ

︸ ︷︷ ︸
covariance from LD absorbed by PGS
because effect-size estimates absorb LD

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

∑
l′∈L
l′ ̸=λ,l

(1− 2cλl)
(
Dλl′ + D̃λl′

)
αl′

(
Dλl − D̃λl

)
βl/Vλ

︸ ︷︷ ︸
covariance from systematic LD between variants

with same directional effect on trait

. (S.37)

In the absence of genetic confounding (Dλl = D̃λl = 0) or, more generally, if genetic stratification is such
that the cis- and trans-LDs are equal (Dλl− D̃λl = 0), then Eq. (S.37) simplifies to the SNP-tagged genic
covariance between traits 1 and 2:

Cov (∆PGS 1,∆Y2) =
∑
λ∈Λ

2pλ(1− pλ)αλβλ. (S.38)

If traits 1 and 2 are the same, then this is simply the SNP-tagged genic variance of the trait: Cov (∆PGS ,∆Y ) =∑
λ∈Λ 2pλ(1− pλ)α

2
λ.

Eq. (S.37) simplifies somewhat if we focus on a single trait (αl = βl) and assume that there is no
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trans-LD (D̃λl = 0); in this case,

Cov (∆PGS ,∆Y ) =
∑
λ∈Λ

2pλ(1− pλ)α
2
λ︸ ︷︷ ︸

SNP-tagged genic variance

+ 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1− 2cλl)Dλlαλαl

︸ ︷︷ ︸
variance from LD absorbed by PGS

because it is a sum across loci

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1− 2cλl)D
2
λlα

2
l /Vλ

︸ ︷︷ ︸
variance from LD absorbed by PGS

because effect-size estimates absorb LD

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

∑
l′∈L
l′ ̸=λ,l

(1− 2cλl)DλlαlDλl′αl′/Vλ

︸ ︷︷ ︸
variance from systematic LD between variants

with same directional effect on trait

.

(S.39)

S3 Sources of genetic confounding

The calculations above reveal that genetic confounds in GWAS designs can depend on long-range LD in
the sample and among parents of the sample. Here, we consider several possible sources of long-range
LD.

S3.1 Assortative mating

If there is a constant correlation among mates for their values of two traits, then a genetic equilibrium
will eventually be achieved. In this equilibrium, for any pair of loci l and l′, the trans-LD D̃ll′ will be
constant. Call this constant value D∗

ll′ , and suppose that the recombination fraction between the loci
is cll′ . With D̃ll′ constant across generations, the balance of its conversion into cis-LD (at rate cll′ per
generation) and the destruction of cis-LD by recombination (at rate cll′ per generation) will result in an
equilibrium level of cis-LD equal to the degree of trans-LD: Dll′ = D̃ll′ = D∗

ll′ (e.g., [2]).
The value of D∗

ll′ will, in general, depend in a complicated way on the strength of effects of l and l′ on
the traits upon which assortative mating is based and on the linkage relations of these loci to one another
and to other causal loci. However, while it is therefore difficult to calculate the individual equilibrium LD
terms D∗

ll′ , we can in some cases calculate weighted sums of these terms across locus pairs. Note that the
calculations below assume that the number of loci influencing the traits in question is large.

Let the set of loci that influence one or both traits be L, and let αl be the effect size of the focal variant
at locus l on trait 1 and βl its effect on trait 2 (the analyses below also apply to same-trait assortative
mating, setting αl = βl). Recall the notation gm,mat

l and gm,pat
l for a mother’s maternally and paternally

inherited genotype at locus l, with gf,mat
l and gf,patl a father’s analogs. The mother’s breeding value for

trait 1 is

Gm
1 =

∑
l∈L

gml αl =
∑
l∈L

(
gm,mat
l + gm,pat

l

)
αl =

∑
l∈L

gm,mat
l αl +

∑
l∈L

gm,pat
l αl = Gm,mat

1 +Gm,pat
1 ,

and, similarly, her breeding value for trait 2 is

Gm
2 =

∑
l∈L

gm,mat
l βl +

∑
l∈L

gm,pat
l βl = Gm,mat

2 +Gm,pat
2 .

The father’s breeding values for the two traits are

Gf
1 =

∑
l∈L

gf,mat
l αl +

∑
l∈L

gf,patl αl = Gf,mat
1 +Gf,pat

1

14



and
Gf

2 =
∑
l∈L

gf,mat
l βl +

∑
l∈L

gf,patl βl = Gf,mat
2 +Gf,pat

2 .

We assume that individual trait values equal the breeding values plus environmental disturbances that
are uncorrelated with the breeding values:

Y m
1 = Gm

1 + ϵm1 ; Y m
2 = Gm

2 + ϵm2 ; Y f
1 = Gf

1 + ϵf1; Y f
2 = Gf

2 + ϵf2;

where
Var(ϵm1 ) = Var(ϵf1) = V 1

E , Var(ϵm2 ) = Var(ϵf2) = V 2
E ,

and
Cov(ϵmi , G

m
i ) = Cov(ϵfi, G

f
i) = 0 for i ∈ {1, 2}.

S3.1.1 Same-trait assortative mating, or cross-trait assortative mating that is symmetric
with respect to sex

We first consider the case where the strength of assortative mating between two traits, as measured by
their correlation coefficient across mating pairs, is equal in the female-male and male-female directions.
Notice that this scenario covers same-trait assortative mating. In the case of cross-trait assortative
mating, it could occur if assortative mating arises by mechanisms other than direct female (or male)
mating preferences.

We assume that there is a constant correlation ρ among mating pairs for their phenotypic values of
traits 1 and 2. In equilibrium, this will translate to a constant correlation ρG between their breeding
values as well (e.g., [3]). To calculate ρG, we first note that, because assortative mating is based on
phenotypic values and not breeding values per se, if we know the phenotypes of a pair of mates, we obtain
no further information about the similarity of their breeding values; that is,
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(
Gm

1 , G
f
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Y m
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})
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2 , G
f
1 |
{
Y m
2 , Y f

1

})
= 0. (S.40)

For the same reason, if we know the phenotypic values of two mates, then the trait-2 value of the male
does not offer any information on the female’s trait-1 breeding value beyond that already offered by the
female’s trait-1 phenotype, and vice versa; that is,
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[
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1 | Y f
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]
. (S.41)

If Y1 and G1, and similarly Y2 and G2, are bivariate normal, then

E [G1 | Y1] = E [G1] + h21 (Y1 − E [Y1]) and E [G2 | Y2] = E [G2] + h22 (Y2 − E [Y2]) (S.42)

where h21 and h22 are the heritabilities of traits 1 and 2, respectively.
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From the law of total covariance,
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m
1 , h22Y

f
2

)
[from Eq. S.42]
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. (S.43)

Similarly, Cov
(
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2 , G
f
1

)
= h21h

2
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Y m
2 , Y f

1

)
.

Let V 1 and V 2 be the phenotypic variances of traits 1 and 2, and V 1
G and V 2

G their additive genetic
variances, assumed to be the same across the sexes. Given the calculations above, the correlation among
mates for their breeding values of traits 1 and 2, ρG, can be written
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(S.44)
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When traits 1 and 2 are the same, we have ρG = h2ρ, a standard result (e.g., [3, 4]).
Expanding the numerator of Eq. (S.44),
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(S.46)
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But
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since grandmaternal and grandpaternal alleles are transmitted to the offspring with equal probability,
independently across maternal and paternal transmission. The three additional terms in Eq. (S.46)
likewise each amount to

∑
l∈L
∑

l′∈L D̃ll′αlβl′ , and so
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Noting that the trans-covariance at a given locus D̃ll = pl(1−pl)r̃ll, where r̃ll is the within-locus correlation
(equal to the inbreeding coefficient at the locus), we can split Eq. (S.47) into within- and between-locus
terms:
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In the denominator of Eq. (S.44),
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(S.49)
Expanding the first term,
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The third, covariance term in Eq. (S.49) is
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Putting these together in Eq. (S.49),
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In equilibrium, D′
ll′ = D̃′

ll′ = D̃ll′ = D∗
ll′ for l ̸= l′, and r̃′ll = r̃ll = r̃∗ll, so

1

2

[
Cov

(
Gm

1 , G
f
2

)
+Cov

(
Gm

2 , G
f
1

)]
= 4

∑
l∈L

pl(1− pl)r
∗
llαlβl + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlβl′ , (S.50)
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where V 1
g and V 2

g are the genic variances of traits 1 and 2, and the approximations come from the fact

that, under assortative mating for a polygenic trait, the sum of the ∼|L|2 cross-locus trans-LD terms D̃∗
ll′

dominates the sum of the |L| within-locus trans-LD terms D̃∗
ll = pl(1 − pl)r̃

∗
ll [5, Ch. 4]. Eq. (S.44) in

equilibrium is therefore
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We now consider some special cases.
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Same-trait assortative mating with equal effect sizes. In the case of same-trait assortative mating,
αl = βl, so Eq. (S.53) simplifies to
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from which
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Since, in equilibrium, Dll′ = D̃ll′ , this expression can also be written
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Because the additive genetic variance VG = Vg + 2
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ll′)αlαl′ , Eq. (S.56) can also be

written
VG = Vg/(1− ρG), (S.57)

which is a classic result [Ch. 4]wright1921, crow1970.
If we make the further assumption that effect sizes are the same across loci (αl = α for all l ∈ L),

then Eq. (S.56) becomes
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In a population association study at locus l, assuming no indirect effects and no sources of genetic
confounding other than assortative mating, the effect-size estimate is
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so that the proportionate bias in the effect-size estimate at l is

α̂l − αl

αl
=

2

Vl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

) αl′

αl
=

2

Hl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
, (S.59)

since αl′ = αl by assumption and Vl ≈ Hl = 2pl(1− pl) because assortative mating does not substantially
increase within-locus homozygosity when the number of loci that affect the trait is large [5, Ch. 4]. The
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average proportionate bias across loci is then
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where we have used Eq. (S.58) and have assumed that minor allele frequencies do not differ widely
across loci. Since ρG = h2ρ, where ρ is the phenotypic correlation among mates and h2 = VG/VP is the
heritability of the trait, Eq. (S.60) can also be written
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Sex-symmetric cross-trait assortative mating with distinct genetic bases and equal effect
sizes. In the case of cross-trait assortative mating, if the sets of loci underlying the two traits, L1 and
L2, are distinct, then αl ̸= 0 ⇒ βl = 0 and βl ̸= 0 ⇒ αl = 0. In this case, Eq. (S.53) becomes
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from which
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Because assortative mating is cross-trait, the LDs that assortative mating induces across L1 and L2

will dominate the second-order LDs induced within L1 and within L2. Therefore, V
1
G ≈ V 1

g and V 2
G ≈ V 2

g .
The effect-size estimate at a locus l ∈ L1 in a population GWAS on trait 2 is
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while the true effect size βl is zero, since l /∈ L2. In equilibrium, the average effect-size estimate, and thus
the average deviation of these estimates from the true values, is therefore

1

|L1|
∑
l∈L1

β̂l ≈
1

|L1|
∑
l∈L1

2

Hl

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ ≈

2

|L1|H̄1

∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ , (S.65)

where we have assumed that minor allele frequencies are not very different across L1 (H̄1 is the average
heterozygosity in L1).
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If we further assume that effect sizes at causal loci are equal for each trait (αl = α for all l ∈ L1 and
βl′ = β for all l′ ∈ L2), then Eq. (S.65) can be written
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recalling from Eq. (S.45) that ρG =
√
h1h2ρ.

In the further special case where both the genetic and the phenotypic variances of the two traits are
equal, then so are the heritabilities of the two traits. In this case, Eq. (S.66) simplifies to

1

|L1|
∑
l∈L1

β̂l ≈
VG

VP
ρα = h2ρα, (S.67)

where h2 is the common heritability of the two traits.

Sex-symmetric cross-trait assortative mating for traits with different genetic architectures.
Eq. (S.67) reveals an interesting role for genetic architecture in the bias that cross-trait assortative mating
can generate in population association studies performed at non-causal loci. Suppose, as we did in deriving
Eq. (S.67), that the two traits on which assortative mating is based have the same genetic and phenotypic
variances, VG and V , and therefore also the same heritabilities, h2. We shall make the further assumption
that the traits have the same genic variance, Vg. Assume further that the sets of loci underlying traits 1
and 2, L1 and L2, have similar mean heterozygosities ≈ H̄. Normalize the effect size sizes at loci causal
for trait 2 to β = 1, so that the traits’ common genic variance is Vg = |L2|H̄.

Suppose that we now perform a population GWAS for trait 2. At loci that are causal for trait 2
(l ∈ L2), we will estimate effect sizes accurately: β̂l ≈ 1 (there will be a small positive second-order bias,
of order ρ2, since the locus l ∈ L2 comes into positive LD with loci l′ ∈ L1, which in turn have come into
positive LD with loci l′′ ∈ L2).

At loci that are causal for trait 1 (l ∈ L1), and which therefore have no effect on trait 2, we will
estimate effect sizes on average as given by Eq. (S.67): β̂l = h2ρα.

How does the number of loci underlying variation in trait 1, |L1|, affect this biased estimate of their
effect on trait 2? For the genic variance of trait 1 to be the same as that of trait 2, Vg = |L1|H̄α2 =
|L2|H̄β2 = |L2|H̄), and so we must have α2 = |L2|/|L1|. Substituting this into the average effect-size
estimate at non-causal loci, β̂l = h2ρ

√
|L2|/|L1|.

So, the average effect-size estimate at causal loci l ∈ L2 is β̂l ≈ 1, while the average effect-size estimate
at non-causal loci l ∈ L1 is β̂l = h2ρ

√
|L2|/|L1|. How do these two quantities compare? If the number

of loci underlying the two traits is the same, L1 = L2, and effect-size estimates at non-causal loci are
smaller than those at causal loci by a factor of about h2ρ. However, if there are more loci underlying trait
2 than underlying trait 1—i.e., if trait 1 has a more concentrated genetic architecture L1 < L2—then
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the effect-size estimates at non-causal loci will be closer to those at causal loci. Indeed, if trait 1 has a
sufficiently concentrated architecture relative to trait 2, specifically, if L1 < h4ρ2L2, then the effect-size
estimates at non-causal loci will, on average, be larger in magnitude than effect-size estimates at causal
loci.

More generally, the calculations above suggest that, in a more realistic scenario where effect sizes vary
across loci, the trait-2 GWAS distribution of magnitudes of effect-size estimates at trait-1 loci (non-causal)
will overlap more with the distribution of magnitudes of effect-size estimates at trait-2 loci (causal) if the
genetic architecture of trait 1 is more concentrated (Fig. 4). This will lead to a greater number of trait 1
loci being identified as statistically significantly associated with trait 2 in the trait-2 GWAS.

S3.1.2 Cross-trait assortative mating that is asymmetric with respect to sex

We now consider the case where the strength of assortative mating between two traits, as measured by
their correlation coefficient across mating pairs, is not equal in the female-male and male-female directions.
This is clearest in the case of an active mate preference exhibited by one sex for some phenotype exhibited
by the other sex.

To study this case, we make several simplifying assumptions. First, we assume that the genetic bases
of variation in the two traits are distinct: αl ̸= 0 ⇔ βl = 0. Second we assume that there is only one
active direction of assortative mating: female trait 1 and male trait 2. That is, conditional on the mother’s
breeding value for trait 1 and the father’s breeding value for trait 2, there is no correlation between the
mother’s breeding value for trait 2 and the father’s breeding value for trait 1:

Cov
(
Gm

2 , G
f
1

∣∣ {Gm
1 , G

f
2}
)
= 0.

Suppose that there is a constant correlation ρG between mothers’ breeding values for trait 1 and
fathers’ breeding values for trait 2:

ρG =
Cov

(
Gm

1 , G
f
2

)√
V 1
GV

2
G

. (S.68)

To study the genetic consequences of this assortment, we need to know the average bi-directional corre-
lation among mates for traits 1 and 2 (Eq. S.44). Since traits 1 and 2 will come into a positive genetic
correlation via assortative mating of female trait 1 and male trait 2, there will also be a positive covariance
between mothers’ breeding values for trait 2 and fathers’ breeding values for trait 1, which we can express
using the law of total covariance:
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. (S.69)

If Gm
1 and Gm

2 are bivariate normal (more generally, if Gm
2 = a+ bGm

1 + ε, with E [ε] = E [εGm
1 ] = 0), then

E
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where ρm1,m2 = Corr (Gm
1 , G

m
2 ) is the genetic correlation between traits 1 and 2 in mothers, and where we

have assumed that the two traits have equal variance. Similarly, if Gf
1 and Gf

2 are bivariate normal, then

E
[
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1

∣∣Gf
2

]
= E

[
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1

]
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(
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2 − E
[
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2

])
.

Substituting these expressions into Eq. (S.69),
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)
. (S.70)

But, in our case, ρm1,m2 = ρf1,f2, the common value of which we shall call ρ12, and so the average
bi-directional correlation is
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. (S.71)

Given this value, the calculations of the effect of assortative mating on the weighted sums of cis- and trans-
covariances, and thus on the additive genetic variance, proceed as for the case of symmetric assortative
mating above.

Assuming the genetic bases of the two traits to be distinct, we may substitute the average bi-directional
correlation, ρG

(
1 + ρ212

)
/2, into Eq. (S.63) to find

ρG
(
1 + ρ212

)
=

4
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But

ρ12 =
2
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,

and so Eq. (S.72) can be written as the quadratic equation ρG(1 + ρ212) = 2ρ12, the relevant solution

to which is ρ12 =
(
1−

√
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)
/ρG. If ρG is small, we use the first-order Taylor approximation√
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In the particular scenario we have simulated in Fig. 2, V 1
g = V 2

g , αl = 1 for all l ∈ L1, and βl = 1 for
all l ∈ L2, so Eq. (S.73) further simplifies to

4
∑
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∑
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(
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= ρV 1

g (S.74)

In a population association study for trait 2 performed at a locus l ∈ L1 (so that βl = 0),

β̂l = βl +
2
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Across loci in L1, the average estimate is

β̂l =
1

|L1|
∑
l∈L1

2
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(
Dll′ + D̃ll′

)
. (S.76)

In our simulations, pl ≈ 1/2 for all l so that Vl ≈ 2pl(1 − pl) = 1/2, and |L1| = |L2| = 500, so
V 1
g = V 2

g = 250. Under this configuration,
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2
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g
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The trait we simulated is genetic, with heritability 1, and so ρG = ρ, the phenotypic correlation among
mates. We chose a strength of assortative mating of ρ = 0.2, and so, in equilibrium, the average effect-size
estimate at non-causal loci should be approximately 0.1, which is indeed the case in Fig. 2.

Sex-asymmetric cross-trait assortative mating for traits with different genetic architectures.
For the case where the numbers of loci underlying traits 1 and 2 differ, and noting that the ‘effective’
correlation among mates in the sex-asymmetric case is approximately half that in the sex-symmetric case
(Eq. S.73), we can perform a similar back-of-the-envelope calculation as in the sex-symmetric cross-trait
assortative mating case above to find that, when effect sizes are constant across trait-1 loci and constant
across trait-2 loci (though differing across traits 1 and 2), the effect-size estimates at trait-1 (non-causal)

loci in a trait-2 population GWAS is, on average, a fraction h2ρ
2

√
|L2|/|L1| of the estimates at trait-2

(causal) loci.
Thus, more generally, when the number of loci underlying trait 1 is small relative to the number of

loci underlying trait 2, the distribution of magnitudes of effect-size estimates at trait-1 loci in a trait-2
GWAS can overlap substantially with the distribution of magnitudes of effect-size estimates at trait-2 loci
(Fig. 4), causing variants at these non-causal trait-1 loci to show up as significant in the trait-2 GWAS.

S3.2 Population structure

In the model we have considered, with results displayed in Fig. 5, there are initially two isolated pop-

ulations of equal size. The frequency of the focal variant at locus l is p
(1)
l in population 1 and p

(2)
l in

population 2, so that its overall frequency is pl =
(
p
(1)
l + p

(2)
l

)
/2. A population GWAS at locus λ returns

an effect-size estimate
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∑
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where Dλl and D̃λl are calculated across both populations and are generally nonzero because of allele
frequency differences between the two populations at loci λ and l [6]. In our case,
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and
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so
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Squaring this and multiplying by 2pλ(1− pλ),
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(S.77)

Neutral allele frequency divergence. If allele frequency divergence between the two populations is
neutral, frequency changes at different loci are independent of one another and of effect sizes, so the second
term in square brackets above is zero in expectation. In addition, because Hardy-Weinberg equilibrium
obtains within each population, non-zero expected values of Fλ derive only from allele frequency differences
between the populations, so that Fλ = FST,λ in expectation. Therefore,
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,

where Hl = 2pl(1−pl). If the ancestral allele frequency at l was pal , then E[Hl|pal ] = 2pal (1−pal )(1−FST,l),
and so E[Hl] is calculated using the law of iterated expectations by averaging this quantity over the
ancestral distribution of allele frequencies: E[Hl] ≈ E[Ha

l ](1− FST ), where Ha
l = 2pal (1− pal ). So
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. (S.78)

Selection and phenotype-biased migration. Above, in calculating the mean heterozygosity-weighted
value of (α̂λ)

2 under neutral frequency divergence between populations, we assumed that in Eq. (S.77)
the second term in the square brackets was zero, i.e., that the effect-size-signed population allele fre-
quency difference was uncorrelated across loci. Howevever, when selection or phenotype-biased migra-
tion acts, this will no longer be true. For example, if higher genetic values of the trait were favoured
in population 1 relative to population 2, then selection will on average have driven a mean shift such

that E
[(

p
(1)
l − p

(2)
l

)
αl

]
> 0. This in turn will drive systematic positive covariances between terms(

p
(1)
l − p

(2)
l

)
αl and

(
p
(1)
l′ − p

(2)
l′

)
αl′ , and as these covariances are summed over all pairs of loci in

Eq. (S.77), the resulting inflation of the average squared effect-size estimate (and other genome-wide
summaries) could be quantitatively substantial.
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More general population stratification. Given a sample of N individuals, the sample cis-LD be-
tween two markers λ and l can be written generally as

Dλl =
1

N − 1

N∑
i=1

(
∆gmi,λ∆gmi,l +∆gpi,λ∆gpi,l

)
, (S.79)

where ∆gmi,k and ∆gpi,k are the deviations of individual i’s maternal and paternal focal allele count at locus
k from their mean frequencies. The trans-LD between λ and l is

D̃λl =
1

N − 1

N∑
i=1

(
∆gmi,λ∆gpi,l +∆gmi,l∆gpi,λ

)
. (S.80)

These cis- and trans-LD terms are equal only if

Dλl − D̃λl =
1

N − 1

N∑
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(
∆gmi,λ −∆gpi,λ

)(
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)
= 0, (S.81)

i.e., if the maternal and paternal alleles at the one locus are exchangeable with respect to deviations of
the allelic state at the other locus.

We might often be concerned with stratification along some specific axis of variation in our sample. Call
this axis v, with every individual having a value along v, with mean zero across individuals (for example,
in our two population case above, the vector v could be 1 for population 1 and −1 for population 2). The
covariance of the maternal allele at locus l with the vector v is proportional to aml · v =

∑
i a

m
i,lvi. So the

contribution of LD along this axis to the difference in cis- and trans-LD is

D
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· v
)
, (S.82)

which is zero only if the maternal and paternal genotypes at the two loci are exchangeable with respect
to each other along the axis v.

S3.3 Admixture

Suppose that two previously isolated populations admix in proportions A and 1 − A, with subsequent
random mating in the admixed population. Following the notation in the Section S3.2 above, before

admixture, the frequency of the focal variant at locus l was p
(1)
l in population 1 and p

(2)
l in population 2,

so that its overall frequency in the admixed population is pl = Ap
(1)
l + (1−A)p

(2)
l .

When the two populations admix, trans-LD between all pairs of loci disappears in expectation, owing
to random mating in the admixed population: D̃t

λl = 0 for any pairs of loci λ and l and for any number
of generations t after admixture. However, cis-associations between alleles that were more prevalent in
one ancestral population than in the other will be retained as cis-LD in the admixed population until
these associations are eroded by recombination. The initial degree of cis-LD between loci λ and l in the
admixed population is

D0
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(
p
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)(
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)
.

When t generations have elapsed since admixture, this cis-LD will have been eroded by recombination to
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where cλl is the sex-averaged recombination rate between λ and l. Therefore, t generations after admixture,
a population association study at λ returns an effect-size estimate
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while a sibling-based association study at λ returns
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where we have substituted Vλ = Hλ = 2pλ(1− pλ) owing to random mating in the admixed population.
Squaring the population estimate and multiplying by 2pλ(1− pλ),
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while the heterozygosity-weighted squared sibling effect size is
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Neutral allele frequency divergence. If allele frequency divergence between the two populations
was neutral, then frequency changes at different loci are independent of one another, of effect sizes, and of
recombination rates (assuming the loci are sufficiently far apart), so the second terms in square brackets
in Eqs. (S.83) above is zero in expectation, so that
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,

where (1− c)2t is the average value of (1− cll′)
2t taken across all pairs of loci l, l′.

Similarly, under drift in the ancestral populations, the average squared sibling-based effect-size esti-
mate can be simplified to

E
[
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]
≈ 16A2(1−A)2(1− c)2t(1− 2c)2 |L|F 2
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,

where (1− c)2t(1− 2c)2 is the average value of (1− cll′)
2t(1− 2cll′) taken across all pairs of loci l, l′.
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Selection and phenotype-biased migration. As in the case of population structure, selection and
phenotype-biased migration in the ancestral populations can drive systematic positive covariances between

the terms
(
p
(1)
l − p

(2)
l

)
αl and

(
p
(1)
l′ − p

(2)
l′

)
αl′ in Eqs. (S.83) and (S.84) above, so that the second terms

in square brackets in these equations do not cancel in expectation as they did under neutral divergence
between the ancestral populations. Again, as these covariances are summed over all pairs of loci in
Eqs. (S.83) and (S.84), the resulting inflation of the average squared effect-size estimate and other genome-
wide summaries could be substantial.

S3.4 Stabilizing selection

We consider the model of Bulmer [7,8], in which a very large number of loci contribute variation to a trait
under stabilizing selection. We assume that the distribution of trait values is centered on the optimal
value Y ∗, and that the relative fitness of an individual with trait value Y is exp

(
−(Y − Y ∗)2/2VS

)
, where

VS , the width or ‘variance’ of this gaussian selection function, governs the strength of stabilizing selection,
with larger VS values implying weaker selection.

Under this model, selection acts to reduce the phenotypic variation each generation. If the trait value
is normally distributed with variance VP , then selection reduces the within-generation phenotypic variance
by an amount

∆VP =
−V 2

P

VS + VP
. (S.85)

If the trait is heritable, then this reduction in trait variance is partially reflected in a reduction in genetic
variance for the trait, which takes the form of negative cis- and trans-LD between trait-increasing alleles.
The reduction in trait variance (S.85) will then partially carry over to the offspring generation in the form
of cis-LD; how much of it will carry over depends on the recombination process and the heritability of
the trait.

Because selection generates both cis- and trans-LD within each generation, but only cis-LD is (par-
tially) transmitted to the next generation, the degree to which stabilizing selection will confound a GWAS
depends on whether selection has or has not yet acted in the generation from which the GWAS sample
is drawn. Because the degree of LD generated by stabilizing selection is usually discussed in the theoret-
ical literature in terms of its value among zygotes—i.e., before the action of selection—we shall initially
focus on the case where the GWAS is performed before selection has acted in the sampled individuals’
generation. We shall then turn to the case where selection has acted fully in the sampled individuals’
generation. If stabilizing selection on the trait in question extends across individuals’ lifetimes, such that
it has only partially acted in the sampled individuals’ generation, then its effects on the GWAS will lie
between the pre-selection and post-selection extremes that we consider.

S3.4.1 GWASs performed before selection has acted in the sampled individuals’ generation

Owing to the large number of loci in this model, the buildup of LD among them occurs on a faster
timescale than the change in allele frequencies at individual loci. Assuming the loci to have equal effect
sizes, Bulmer [8] showed that the overall reduction in the phenotypic variance due to stabilizing selection,
d, measured before the action of stabilizing selection, rapidly approaches a quasi-equilibrium value that
approximately satisfies

d∗ =
1

2
h∗4∆V ∗

P /c̄h, (S.86)
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where ∆V ∗
P is the within-generation reduction in phenotypic variance in this equilibrium, h∗2 is the

equilibrium heritability of the trait, and c̄h is the harmonic mean of the recombination rates amongst all
pairs of loci. On this rapid timescale, the reduction in variance is due to cis-LD among the loci underlying
the trait; in fact,

d = 2α2
∑
l∈L

∑
l′∈L

Dll′ , (S.87)

where α is the common per-locus effect size and Dll′ is defined with respect to the trait-increasing alleles
at l and l′. The individual linkage disequilibria Dll′ , in expectation, are proportional to the inverse
recombination rates 1/cll′ . Writing

2α2
∑
l∈L

∑
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, (S.88)

where (|L|
2 ) = |L|

(
|L| − 1

)
/2 is the number of pairs of distinct loci in L, it is apparent that
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2 )

. (S.89)

Henceforth we deal only with equilibrium quantities and therefore drop the star superscript for neat-
ness. The phenotypic variance VP can be written VP = VG + VE = Vg + d+ VE , where VG is the additive
genetic variance, Vg is the genic variance, and VE is the variance due to the environment. Eqs. (S.85) and
(S.86), together with the definition of heritability h2 = VG/VP , define a quadratic equation in d:

(1 + 2c̄h)d
2 + 2[(VS + Vg + VE)c̄h + Vg]d+ V 2

g = 0. (S.90)

Eq. (S.90) matches Eq. (10) in [8], with Bulmer’s parameters c replaced by 1/2VS and H by c̄h. For ease
of reference in what follows, we write Eq. (S.90) in the standard form ad2 + bd+ c = 0. The roots are

d+,− =
−b±

√
b2 − 4ac

2a
=

−[(VS + Vg + VE)c̄h + Vg]±
√
[(VS + Vg + VE)c̄h + Vg]2 − (1 + 2H)V 2

g

1 + 2c̄h
.

(S.91)
To see which of these roots is the relevant one, we first note that the roots are both real, since the
requirement for this is

[(VS + Vg + VE)c̄h + Vg]
2 ≥ (1 + 2c̄h)V

2
g ⇔ (VS + Vg + VE)c̄h + Vg ≥

√
1 + 2c̄hVg

⇔ VS + VE ≥
√
1 + 2c̄h − 1− c̄h

c̄h
Vg,

and
√
1 + 2c̄h <

√
1 + 2c̄h + c̄2h = 1 + c̄h for c̄h > 0, while VS + VE > 0. Furthermore, since b > 0 and

This is a ‘quasi-equilibrium’ value because, when the number of loci underlying variation in the trait is finite, stabilizing
selection induces underdominant selection at each locus, so that the frequency of the rarer allele is expected to decline. This
reduces heterozygosity at individual loci, reducing variance in the trait. However, this reduction occurs on a slower timescale
than the initial reduction due to the generation of linkage disequilibria.
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4ac > 0, both roots are in fact negative, with d− < d+ < 0. Now note that

2d− < d+ + d− = − b

a
= −2[(VS + Vg + VE)c̄h + Vg]

1 + 2c̄h

< −2[(Vg + Vg + VE)c̄h + Vg]

1 + 2c̄h
(since Vg < VS)

< −2[(Vg + Vg)c̄h + Vg]

1 + 2c̄h
(since VE > 0)

= −2Vg,

i.e., Vg + d− < 0. But then if the relevant root were d = d−, 0 ≤ VG = Vg + d− < 0, a contradiction. So
the relevant root is in fact

d = d+ =
−[(VS + Vg + VE)c̄h + Vg] +

√
[(VS + Vg + VE)c̄h + Vg]2 − (1 + 2c̄h)V 2

g

1 + 2c̄h
, (S.92)

from which

− d

Vg
=

1− c̄h

(√
1 + 2

(
1 + 1

c̄h

)
X +X2 − (1 +X)

)
1 + 2c̄h

, (S.93)

where X = VS+VE
Vg

. Since, in the absence of selection, VG = Vg, Eq. (S.93) gives the proportionate
reduction in the additive genetic variance due to selection.

Note that

1− c̄h

(√
1 + 2

(
1 +

1

c̄h

)
X +X2 − (1 +X)

)
< 1− c̄h

(√
1 +

1

c̄h
+ 2

(
1 +

1

c̄h

)
X +X2 − (1 +X)

)

= 1− c̄h

√(1 + 1

c̄h
+X

)2

− (1 +X)


From Eq. (S.87), d = 2α2

∑
l

∑
l′ ̸=l Dll′ , and, since Vg =

∑
l 2pl(1 − pl)α

2 = α2H̄|L|, with |L| the
number of loci and H̄ the average heterozygosity across them, we have

d

Vg
=

2
∑

l

∑
l′ ̸=l Dll′

H̄L
. (S.94)

In a population association study performed at locus l, the effect-size estimate is

α̂pop
l = αl +

2

2pl(1− pl)

∑
l′ ̸=l

Dll′αl′ = α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

Dll′

 , (S.95)

so that the proportionate error is
2

2pl(1− pl)

∑
l′ ̸=l

Dll′ . (S.96)
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The mean proportionate error across loci is therefore

1

|L|
∑
l∈L

 2

2pl(1− pl)

∑
l′ ̸=l

Dll′

 ≈
2
∑

l

∑
l′ ̸=l Dll′

H̄|L|
=

d

Vg
, (S.97)

from Eq. (S.94), and assuming that the heterozygosities do not vary much across loci. That is, the average
proportionate bias to effect-size estimation that stabilizing selection induces is approximately equal to the
proportionate reduction in the additive genetic variance, which is given in general form by Eq. (S.93).

In a within-family association study performed at locus l, the effect-size estimate is

α̂fam
l = αl +

2

2pl(1− pl)

∑
l′ ̸=l

(1− 2cll′)Dll′αl′ = α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

(1− 2cll′)Dll′

 , (S.98)

so that the proportionate error is

2

2pl(1− pl)

∑
l′ ̸=l

(1− 2cll′)Dll′ . (S.99)

The mean proportionate error across loci is therefore

1

|L|
∑
l∈L

 2

2pl(1− pl)

∑
l′ ̸=l

(1− 2cll′)Dll′

 ≈
2
∑

l

∑
l′ ̸=l(1− 2cll′)Dll′

H̄|L|

≈
2
∑

l

∑
l′ ̸=l(1− 2cll′)

dc̄h
2α2(|L|

2 )cll′

H̄|L|

=
dc̄h

α2H̄|L|(|L|
2 )

∑
l

∑
l′

(
1

cll′
− 2

)
=

dc̄h
Vg(|L|

2 )

(
(|L|

2 )

c̄h
− 2(|L|

2 )

)
=

d

Vg
(1− 2c̄h) , (S.100)

where we have used Eq. (S.89) in the second line. Therefore, the mean error in the within-family GWAS
is smaller in magnitude than that in a population GWAS by a factor 1− 2c̄h.

S3.4.2 GWASs performed after selection has acted in the sampled individuals’ generation

The calculations above assume that the GWASs are performed before selection has yet acted in the
generation from which the GWAS sample is drawn. The genetic confounds induced by stabilizing selection
are therefore due only to the cis-LD transmitted to this generation by the previous generation.

Incrementing the cis-LD transmitted to it by the previous generation, selection within a generation
generates cis- and trans-LD in equal measure. Consider a pair of loci l and l′, between which the equilib-
rium degree of cis-LD measured in zygotes (pre-selection) is Dpre

ll′ . Selection within the generation adds an
amount xll′ to this cis-LD and generates an equal amount xll′ of trans-LD between the loci. The amount
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of cis-LD transmitted to the next generation is therefore (Dpre
ll′ +xll′)(1−cll′)+xll′cll′ = (1−cll′)Dll′ +xll′ .

In equilibrium, this must equal Dpre
ll′ , and so xll′ = cll′Dll′ .

Notice that, because the cis- and trans-LD generated within each generation are equal in expectation,
these within-generation incremental LDs will not affect the estimates produced by a within-family GWAS,
which depend only on the difference between cis- and trans-LD (and therefore depend only on the cis-LD
transmitted from the previous generation, as calculated above). However, they will affect a population-
based GWAS, which depends on the sum of the cis- and trans-LDs. The effect-size estimate in a population
GWAS performed at locus l is

α̂pop
l = α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

(
Dll′ + D̃ll′

)
= α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

(
[Dpre

ll′ + xll′ ] + xll′
)

= α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

(1 + 2cll′)D
pre
ll′

 . (S.101)

But, from Eq. (S.89), E[Dpre
ll′ ] ∝ 1/cll′ , and so∑

l′ ̸=l

cll′D
pre
ll′ = c̄h

∑
l′ ̸=l

Dpre
ll′ ,

from which it follows that

α̂pop
l = α

1 +
2

2pl(1− pl)

∑
l′ ̸=l

(1 + 2cll′)D
pre
ll′

 = α

1 +
2(1 + 2c̄h)

2pl(1− pl)

∑
l′ ̸=l

Dpre
ll′

 . (S.102)

The proportionate attentuation bias in the population GWAS performed after selection has acted is
therefore

2(1 + 2c̄h)

2pl(1− pl)

∑
l′ ̸=l

Dpre
ll′ . (S.103)

From Eq. (S.97), the mean proportionate error is therefore

(1 + 2c̄h)d

Vg
; (S.104)

that is, 1+2c̄h times greater than the proportionate attenuation bias in the population GWAS performed
before selection has acted.

S3.4.3 Numerical values for humans

If ∼1,000 loci underlie variation in the trait (and all contribute approximately the same variation), c̄h ≈
0.4640 in humans (see Methods), and so the average bias that stabilizing selection induces in within-family
GWASs will be about 1−2c̄h ≈ 7.2% that in pre-selection population GWASs and (1−2c̄h)(1+2c̄h) ≈ 3.7%
that in post-selection population GWASs. If ∼10,000 loci underlie variation in the trait, c̄h ≈ 0.4346, and
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so the bias in within-family GWASs will be about 13% that in pre-selection population GWASs and 7%
that in post-selection population GWASs.

The calculations above give the average proportionate bias to GWAS estimates in terms of the basic
parameters of the model, Vg, VE , VS , and c̄h. Often, however, not all of these parameters will be
measurable. For example, human height appears to be under stabilizing selection [9], is highly heritable,
and this heritability is believed to be underlain largely by direct genetic effects [10]. However, it is difficult
to directly measure the genic variance in height Vg because not all causal loci will be assayed in association
studies—and, moreover, even if they were, effect-size estimation at these causal loci would be biased by
the genetic confounds that we have studied in this paper. However, the phenotypic variance in height VP

can obviously be measured, and the heritability of height h2 can also be measured using classical methods
rather than effect-size estimation in association studies. The strength of stabilizing selection on height can
also be measured [9]. From VP and h2, the additive genetic variance VG can be estimated (VG = h2VP ).

This example suggests that, in many applications, it might be useful to be able to estimate the equi-
librium value of d using VG (or VP ), VE , VS , and c̄h, even though VG (and VP ), in the model we have
considered, is a state variable influenced by the state variable of primary interest, d. This is straightfor-
ward: returing to our use of a star superscript to denote equilibrium values, if we treat VG and VP as
their equilibrium values V ∗

G and V ∗
P , Eq. (S.86) can be estimated directly, and also simplifies to

d∗ = − 1

2c̄h
·

V ∗2
G

VS + V ∗
G + VE

= − 1

2c̄h
·

V ∗2
G

VS + V ∗
P

= − 1

2c̄h
·
h∗4V ∗2

P

VS + V ∗
P

. (S.105)

The proportionate bias in a pre-selection population GWAS, given by Eq. (S.97), can similarly be esti-
mated from h2, VP , VS , and c̄h, by first observing that

Vg = V ∗
G − d∗ = V ∗

G +
1

2c̄h

V ∗2
G

VS + V ∗
P

= V ∗
G

(
1 +

1

2c̄h
·

V ∗
G

VS + V ∗
P

)
,

so that Eq. (S.97) can be written

d∗

Vg
=

− 1
2c̄h

· V ∗2
G

VS+V ∗
P

V ∗
G

(
1 + 1

2c̄h
· V ∗

G
VS+V ∗

P

) =
− 1

2c̄h
· V ∗

G
VS+V ∗

P

1 + 1
2c̄h

· V ∗
G

VS+V ∗
P

=
− 1

2c̄h
· h∗2V ∗

P
VS+V ∗

P

1 + 1
2c̄h

· h∗2V ∗

VS+V ∗
P

= − 1

2c̄h

(
1+VS/V

∗
P

h∗2

)
+ 1

, (S.106)

which reveals that the proportionate bias depends only on c̄h, h∗2 and the scaled inverse strength of
selection, VS/V

∗
P .

Similarly, the proportionate bias in a post-selection population GWAS, given above by Eq. (S.104),
can also be written

d∗

Vg
(1 + 2c̄h) = − 1 + 2c̄h

2c̄h

(
1+VS/V

∗
P

h∗2

)
+ 1

, (S.107)

From Eq. (S.100), the proportionate bias in a within-family GWAS is approximately

d∗

Vg
(1− 2c̄h) = − 1− 2c̄h

2c̄h

(
1+VS/V

∗
P

h∗2

)
+ 1

. (S.108)
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S3.4.4 Stabilizing selection attenuates estimates of the strength of assortative mating based
on cross-chromosome PGS correlations

Recently, the strength of assortative mating has been estimated based on measurement of the correlation
of polygenic scores across distinct sets of chromosomes (e.g., [11, 12]). Were assortative mating acting in
isolation, such correlations would be due entirely to the positive cis- and trans-LDs among same-effect
alleles created by assortative mating. Since stabilizing selection, acting in isolation, generates negative cis-
LDs among same-effect alleles, it will attenuate the positive cis-LDs generated by assortative mating, and
therefore reduce the correlation in PGSs among distinct sets of chromosomes, leading to underestimates
of the strength of assortative mating if this effect is not taken into account.

To quantify this attenuation, we first calculate the strength of (positive) cross-chromosome LDs ex-
pected under assortative mating alone; then we calculate the strength of (negative) cross-chromosome
LDs expected under stabilizing selection alone; then, assuming these LDs to be generated independently
of one another—so that the LDs generated under the joint action of assortative mating and stabilizing
selection are the sums of the LDs expected under these forces alone—we calculate how much stabilizing
selection attenuates the correlation in PGSs across distinct sets of chromosomes.

Cross-chromosome correlations in PGSs. The number of autosomes in the haploid set is n (= 22 in
humans). Label the set of loci on chromosome k that contribute variation to our trait of interest Lk; the
overall set of loci underlying variation in the trait is L = {L1, L2, . . . , Lk}. We divide the chromosomes
into distinct sets K1 and K2 (e.g., K1 could be the set of odd numbered chromosomes and K2 the
even). Let L(1) and L(2) be the sets of causal loci on the chromosomes in K1 and K2 respectively (i.e.,
L(i) = ∪k∈Ki

Lk).
Suppose that we have accurately estimated effect sizes at all loci l ∈ L. For each individual, we then

calculate a polygenic score for K1 and for K2:

P1 =
∑

l∈L(1)

glαl; P2 =
∑

l′∈L(2)

gl′αl′ .

We are interested in the correlation in the population between P1 and P2, and in particular, how this
correlation is affected by assortative mating and stabilizing selection for the focal trait. The correlation
can be written

Corr(P1, P2) =
Cov(P1, P2)

Var(P1)Var(P2)
,

with

Cov(P1, P2) = Cov

 ∑
l∈L(1)

glαl,
∑

l′∈L(2)

gl′αl′


=
∑

l∈L(1)

∑
l′∈L(2)

Cov (gl, gl′)αlαl′

= 2
∑

l∈L(1)

∑
l′∈L(2)

(
Dll′ + D̃ll′

)
αlαl′ . (S.109)

Since, to make progress in the case of stabilizing selection, we will assume effect sizes to be equal across
loci, we make that assumption now, so that

Cov(P1, P2) = 2α2
∑

l∈L(1)

∑
l′∈L(2)

(
Dll′ + D̃ll′

)
. (S.110)
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Since every pair of loci (l, l′) across L(1) and L(2) are by definition unlinked, under many processes
(including assortative mating and stabilizing selection), the values of Dll′ and D̃ll′ will not differ much in
expectation across locus pairs, in equilibrium. Therefore, we may approximate Dll′ = D∗ and D̃ll′ = D̃∗

for all l ∈ L(1) and l′ ∈ L(2, so that Eq. (S.110) simplifies further:

Cov(P1, P2) = 2
∣∣L(1)

∣∣ ∣∣L(2)
∣∣(D∗ + D̃∗)α2. (S.111)

Assortative mating alone. Under assortative mating with equal effect sizes across loci, in equilibrium,
LDs are approximately equal across locus pairs, regardless of the recombination rate between them;
moreover, cis- and trans-LDs are equal (see above). Therefore, to calculate D∗ (= D̃∗), we simply
apportion the total LD given by Eq. (S.55) among individual locus pairs:

h2ρ

1− h2ρ
Vg ≈ 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′ = 4|L|(|L| − 1)α2D∗

⇒ D∗ ≈
h2ρ

1−h2ρ
Vg

4|L|(|L| − 1)α2
=

h2ρ
1−h2ρ

|L|H̄α2

4|L|(|L| − 1)α2
=

h2ρ
1−h2ρ

H̄

4(|L| − 1)
≈ 1

4
· h2ρ

1− h2ρ
· H̄

|L|
, (S.112)

when |L| is large. Similarly,

D̃∗ ≈ 1

4
· h2ρ

1− h2ρ
· H̄

|L|
, (S.113)

so that the overall contribution of assortative mating to the covariance in Eq. (S.111) is proportional to

D∗ + D̃∗ ≈ 1

2
· h2ρ

1− h2ρ
· H̄

|L|
. (S.114)

Stabilizing selection alone, pre-selection in the focal generation. Under stabilizing selection,
the total amount of negative cis-LD present before selection has acted in a given generation is given by
Eq. (S.106):

2α2
∑
l∈L

∑
l′∈l
l′ ̸=l

Dll′ = d = − Vg

2c̄h

(
1+VS/VP

h2

)
+ 1

, (S.115)

where we have dropped the equilibrium ‘∗’ markers. This expression does not easily decompose into
terms from individual locus pairs. However, if we assume that stabilizing selection is relatively weak
(VS/V

∗
P ≫ 1) and that the recombination process is such that the harmonic mean recombination rate

c̄h ∼ 1/2 (as is the case in humans), Eq. (S.115) can be approximated by

2α2
∑
l∈L

∑
l′∈l
l′ ̸=l

Dll′ = d ≈ − Vg

2c̄h

(
1+VS/VP

h2

) = −1

2
· h2Vg

1 + VS/VP
· 1

c̄h
= −1

2
· h2Vg

1 + VS/VP
·
2
∑

l,l′ 1/cll′

|L|(|L| − 1)
,

from which we infer that, in expectation,

2α2Dll′ ≈ − h2Vg

1 + VS/VP
· 1/cll′

|L|(|L| − 1)
.
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Therefore, for unlinked l and l′ (cll′ = 1/2), in expectation,

Dll′ ≈ − 1

α2|L|(|L| − 1)
· h2Vg

1 + VS/VP
= − H̄

α2H̄|L|(|L| − 1)
· h2Vg

1 + VS/VP
= − H̄

(|L| − 1)Vg
· h2Vg

1 + VS/VP

= − H̄

|L| − 1
· h2

1 + VS/VP
≈ − H̄

|L|
· h2

1 + VS/VP
. (S.116)

under random mating, before selection has acted in the focal generation, D̃ll′ = 0 in expectation. There-
fore, under stabilizing selection alone, and before selection has acted in the focal generation, the contri-
bution of an unlinked locus pair to the covariance in Eq. (S.111) is

D∗ + D̃∗ = D∗ ≈ − H̄

|L|
· h2

1 + VS/VP
. (S.117)

Stabilizing selection alone, post-selection in the focal generation. As noted above, for any pair
of loci l and l′, the amount of cis-LD and the amount of trans-LD generated by stabilizing selection within
the focal generation are equal, and equal to cll′ times the degree of cis-LD transmitted from the previous
generation, in expectation. Therefore, across pairs of unlinked loci, the sum of the cis- and trans-LD
generated by selection within the focal generation is equal to the amount of cis-LD that was transmitted
from the previous generation, so that the total amount of cis- and trans-LD after selection has acted
is twice the amount that was transmitted from the previous generation. Therefore, we simply need to
double Eq. (S.117) to find the total cis- and trans-LD across unlinked locus pairs after selection has acted
in the focal generation:

D∗ + D̃∗ ≈ −2H̄

|L|
· h2

1 + VS/VP
. (S.118)

How much does stabilizing selection attenuate the signal of assortative mating? Comparing
Eqs. (S.114) and (S.117), we find that the proportionate attenuation of assortative mating’s effect (in
isolation) by the action of stabilizing selection across generations, but before stabilizing selection has
acted in the current generation, is

− H̄
|L| ·

h2

1+VS/VP

1
2 · h2ρ

1−h2ρ
· H̄
|L|

=
−2

1 + VS/VP
· 1− h2ρ

ρ
. (S.119)

For example, in the case of human height (h2 ∼ 0.8), the signal of assortative mating (strength ρ ∼ 0.25)
is attenuated by stabilizing selection (strength VS/VP ∼ 30) by a proportionate amount of approximately
20%. That is, one might measure by other means (e.g., the phenotypic correlation among mates, together
with an estimate of the heritability of height) that the strength of assortative mating is ρ = 0.25, but
estimating this strength from cross-chromosome PGS correlations without accounting or correcting for
stabilizing selection on height would yield ρ̂ ≈ 0.2, 20% smaller than the true value.

From Eqs. (S.114) and (S.118), the proportionate attenuation of assortative mating’s effect (in isola-
tion) by the action of stabilizing selection across generations, after stabilizing selection has acted in the
current generation too, is

−2H̄
|L| ·

h2

1+VS/VP

1
2 · h2ρ

1−h2ρ
· H̄
|L|

=
−4

1 + VS/VP
· 1− h2ρ

ρ
. (S.120)
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For human height, the signal of assortative mating is attenuated by stabilizing selection by a proportionate
amount of approximately 40%; i.e, though the strength of assortative mating is ρ = 0.25, estimating this
strength from cross-chromosome PGS correlations without correcting for stabilizing selection would yield
ρ̂ ≈ 0.15.

S4 Relationship to LD-score regression

In the Main Text, we focused on the influence of various forms of confounding on the average heterozygosity-
weighted squared effect-size estimate at genotyped locus λ, 2pλ(1− pλ)α̂

2
λ. We chose this as a metric for

the degree of confounding because (i) it is the metric that determines the significance (in terms of p-values)
of the locus in a GWAS, (ii) it is an estimate of the locus’s contribution to the genic variance of the trait,
and (iii) it is proportional to the usual GWAS χ2-statistic. In this section, we relate this metric—and
our analyses of how confounding affects it—to metrics produced by LD-score regression. We initially
focus on the within-trait LD-score regression, which can produce estimates of the degree of confounding
in the GWAS and the heritability of the trait. We then turn to cross-trait LD-score regression, which can
produce estimates of genic correlations between traits.

Note that the original LD-score regression calculations [13,14] involved normalized values of genotypes
and variant effect sizes, whereas we use unnormalized values for comparison with our calculations elsewhere
in this paper.

Note too that several other papers considered the effect of various forms of confounding on the output
of LD-score regression (e.g., [15, 16]). Our analysis here is included for completeness.

S4.1 Same-trait genetic variance

Consider a trait affected by genetic variation at a set of bi-allelic loci L. The frequency of the trait-
increasing variant at locus l ∈ L is pl, and its expected effect on the trait is to increase its value by αl.
Locus l therefore contributes an amount vl = 2pl(1−pl)α

2
l to the genic variance of the trait, Vg =

∑
l∈L vl.

A population-based association study is performed at a bi-allelic locus λ, which may or may not be in
L (we’ll consider both cases separately below). The frequency of the focal variant at λ is pλ. Assuming
that genotype frequencies are approximately in Hardy-Weinberg equilibrium, the estimate of the focal
variant’s effect size is

α̂λ ≈

∑
l∈L

(
Dλl + D̃λl

)
αl

pλ(1− pλ)
. (S.121)

The χ2-statistic at λ is then proportional to

2pλ(1− pλ)α̂
2
λ =

2
(∑

l∈L(Dλl + D̃λl)αl

)2
pλ(1− pλ)

=
2
∑

l∈L(Dλl + D̃λl)
2α2

l + 2
∑

l∈L
∑

l′ ̸=l(Dλl + D̃λl)(Dλl′ + D̃λl′)αlαl′

pλ(1− pλ)

=
∑
l∈L

(rλl + r̃λl)
2vl +

∑
l,l′∈L
l ̸=l′

(rλl + r̃λl)
√
vl sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (αl′), (S.122)

where rll′ = Dll′/
√

pl(1− pl)pl′(1− pl′) and r̃ll′ = D̃ll′/
√
pl(1− pl)pl′(1− pl′) are the cis- and trans-

correlation coefficients of allelic state between loci l and l′, and sgn (x) = +1 if x > 0 and sgn (x) = −1 if
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x < 0 (we specify the signs of the effects of the focal alleles, instead of assuming them to be positive as
we have done till now, for consistency with the next section on genetic correlations between traits).

The focal locus λ does not itself affect the trait.

If λ /∈ L, the LD between the focal variants at λ and a locus l ∈ L does not depend on the strength
or direction of the effect of the focal variant at l. Therefore, the expectation of the first term on the
right-hand side of Eq. (S.122) can be written

E

[∑
l∈L

(rλl + r̃λl)
2vl

]
= |L|E

[
(rλl + r̃λl)

2
]
E[vl] =

(
1

|L|
∑
l∈L

(rλl + r̃λl)
2

)∑
l∈L

vl = SλVg/|L|, (S.123)

where Sλ is the LD score of locus λ (it is usually denoted lλ, but we have used l to index causal loci).
The expectation of the second term on the right-hand side of Eq. (S.122) can be written

E

[ ∑
l,l′∈L
l ̸=l′

(rλl + r̃λl)
√
vl sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (αl′)

]

=
∑
l,l′∈L
l ̸=l′

Cov
(
(rλl + r̃λl)

√
vl sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (αl′)

)
, (S.124)

since, when λ /∈ L, E
[
(rλl + r̃λl)

√
vl sgn (αl)

]
= 0 for l ∈ L.

Therefore, for tag loci λ (λ /∈ L), the expectation of Eq. (S.122) can be written

E
[
2pλ(1− pλ)α̂

2
λ

]
= SλVg/|L|+

∑
l,l′∈L
l ̸=l′

Cov
(
(rλl + r̃λl)

√
vl sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (αl′)

)
. (S.125)

If the second, covariance term in Eq. (S.125) is zero, then the regression of 2pλ(1 − pλ)α̂
2
λ on the

LD-scores Sλ (here augmented to include trans-LD) returns a slope proportional to Vg. This is the basis
of the estimation of heritability in LD-score regression. However, if the covariance term is systematically
positive or negative, inflating or deflating E

[
2pλ(1− pλ)α̂

2
λ

]
relative to its LD-score expectation, then

LD-score regression will yield a systematically biased estimate of Vg. When should the covariance term
be zero, and when should it be systematically positive or negative?

First, note that ‘neutral’ population structure, in which linkage disequilibria are generated because of
the drift of alleles up or down in frequency in different populations/regions, will not cause the covariance
term to be systematically positive or negative. If allele frequencies at λ, l, and l′ all change across
regions/populations, this generates (cis- and trans-) LD between λ and l and between λ and l′, but,
because drift at l and l′ is independent, these LDs are linearly indepdendent of one another, so the
covariance term in Eq. (S.125) is zero. Therefore, ‘neutral’ population structure will not lead LD-score
regression to systematically under- or overestimate the heritability [14].

Under same-trait assortative mating, however, the covariance term in Eq. (S.125) is positive. This is
because the trait-increasing alleles at l and l′ will tend to be in positive LD under same-trait assortative
mating, and so, if the focal allele at λ is in positive (resp. negative) LD with the trait increasing allele at
l, it will also tend to be in positive (resp. negative) LD with the trait-increasing allele at l′. Same-trait
assortative mating will therefore lead LD-score regression to overestimate the heritability of the trait (see
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also ref. [16]). The same will hold under other forces that generate systematic positive LD among variants
with the same directional effect on the trait, such as trait-biased migration.

Under stabilizing selection, on the other hand, the covariance term in Eq. (S.125) is negative: since
the trait-increasing alleles at l and l′ will tend to be in negative LD under stabilizing (and other forms
of) selection, if the focal allele at λ is in positive (resp. negative) LD with the trait increasing allele at l,
it will tend to be in negative (resp. positive) LD with the trait-increasing allele at l′. Stabilizing selection
will therefore lead LD-score regression to underestimate the heritability of the trait.

To get a sense of the magnitude of these inflations/deflations of E
[
2pλ(1− pλ)α̂

2
λ

]
, assume that

(
(rλl+

r̃λl)
√
vl sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (αl′)

)
is bivariate normal with correlation coefficient ρ. Then we can

write the covariance term in Eq. (S.125) as∑
l,l′∈L
l ̸=l′

Cov
(
(rλl + r̃λl)

√
vl sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (αl′)

)
=
∑
l,l′∈L
l ̸=l′

ρVar
(
(rλl + r̃λl)

√
vl sgn (αl)

)
= ρ

∑
l,l′∈L
l ̸=l′

E
[(
(rλl + r̃λl)

√
vl sgn (αl)

)2]
= ρ

∑
l,l′∈L
l ̸=l′

E
[
(rλl + r̃λl)

2vl
]

= ρ
∑
l,l′∈L
l ̸=l′

E
[
(rλl + r̃λl)

2
]
E
[
vl
]

= ρSλVg/|L|, (S.126)

from Eq. (S.123). Therefore, Eq. (S.125) simiplifies to

E
[
2pλ(1− pλ)α̂

2
λ

]
= (1 + ρ)SλVg/|L|, (S.127)

and so the slope of the LD score, and therefore the LD-score regression estimate of Vg, is inflated by a
factor 1 + ρ.

The focal locus λ does affect the trait.

If λ ∈ L, so that αλ ̸= 0, then, from Eq. (S.122), the χ2-statistic at λ is proportional to

2pλ(1− pλ)α̂
2
λ = vλ +

∑
l∈L
l ̸=λ

(rλl + r̃λl)
2vl +

∑
l,l′∈L
l ̸=l′

(rλl + r̃λl)
√
vl sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (αl′). (S.128)

Now, the terms (rλl + r̃λl)
2 and vl in Eq. (S.128) are no longer independent, since, under forces like

assortative mating, the strength of effect of the variants at l ∈ L will mediate the strength of their LD
with the causal variants at λ.

S4.2 Cross-trait genetic correlation

For two traits 1 and 2, given a set of causal loci L at which the reference allele has effect size αl on trait
1 and βl on trait 2 (with at least one of these effect sizes being non-zero for each l ∈ L), we can define
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the genic covariance of the traits over the set of loci L as:

Cg =
∑
l∈L

2pl(1− pl)αlβl =
∑
l∈L

cl, (S.129)

where cl = 2pl(1− pl)αlβl is the contribution of locus l to Cg. Further define

Ug =
∑
l∈L

2pl(1− pl)α
2
l =

∑
l∈L

ul and Vg =
∑
l∈L

2pl(1− pl)β
2
l =

∑
l∈L

vl (S.130)

to be the genic variances of traits 1 and 2 over L, with ul and vl the contributions of locus l.
Given effect size estimates α̂λ and β̂λ at locus λ, we consider the quantity 2pλ(1 − pλ)α̂λβ̂λ, which

might be taken to be a naive estimate of locus λ’s contribution to Cg. Since

α̂λ ≈

∑
l∈L

(
Dλl + D̃λl

)
αl

pλ(1− pλ)
and β̂λ ≈

∑
l∈L

(
Dλl + D̃λl

)
βl

pλ(1− pλ)
, (S.131)

we have

2pλ(1− pλ)α̂λβ̂λ =
∑
l∈L

2αlβl

(
Dλl + D̃λl

)2
pλ(1− pλ)

+
∑
l,l′∈L
l′ ̸=l

2αlβl′
(
Dλl + D̃λl

)(
Dλl′ + D̃λl′

)
pλ(1− pλ)

=
∑
l∈L

2pl(1− pl)αlβl

(
Dλl + D̃λl

)2
pλ(1− pλ)pl(1− pl)

+
∑
l,l′∈L
l′ ̸=l

√
2pl(1− pl)αl

(
Dλl + D̃λl

)√
2pl′(1− pl′)βl′

(
Dλl′ + D̃λl′

)
√
pλ(1− pλ)pl(1− pl)

√
pλ(1− pλ)pl′(1− pl′)

=
∑
l∈L

(rλl + r̃λl)
2cl +

∑
l,l′∈L
l′ ̸=l

(rλl + r̃λl)
√
ul sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (βl′), (S.132)

where sgn (x) = +1 if x > 0 and sgn (x) = −1 if x < 0. The signs of the effects αl and βl are not specified
because we cannot assume them to have concordant directions of effect on the two traits.

The focal locus λ does not causally affect the traits.

If λ /∈ L, the expectation of the first term on the right-hand side of Eq. (S.132) can be written

E

[∑
l∈L

(rλl + r̃λl)
2cl

]
= |L|E

[
(rλl + r̃λl)

2
]
E[cl] =

(
1

|L|
∑
l∈L

(rλl + r̃λl)
2

)∑
l∈L

cl = SλCg/|L|, (S.133)

where Sλ is the LD score of locus λ. Just as in Eq. (S.124), the expectation of the second term in
Eq. (S.132) can be written

E

[ ∑
l,l′∈L
l ̸=l′

(rλl + r̃λl)
√
ul sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (βl′)

]

=
∑
l,l′∈L
l ̸=l′

Cov
(
(rλl + r̃λl)

√
ul sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (βl′)

)
, (S.134)
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Therefore, for tag loci λ (λ /∈ L), the expectation of Eq. (S.132) can be written

E
[
2pλ(1− pλ)α̂λβ̂λ

]
= SλCg/|L|+

∑
l,l′∈L
l ̸=l′

Cov
(
(rλl + r̃λl)

√
ul sgn (αl), (rλl′ + r̃λl′)

√
vl′ sgn (βl′)

)
. (S.135)

If the second, covariance term on the right-hand size of Eq. (S.135) is zero, then the regression of
2pλ(1− pλ)α̂λβ̂λ on the LD scores Sλ will yield a slope proportional to Cg—this is the basis of LD-score
regression estimation of the genetic correlation of traits. However, if the covariance term in Eq. (S.135) is
systematically positive or negative, then LD-score regression will produce a biased estimate of the genic
covariance Cg.

Again, neutral population structure will not cause the covariance term in Eq. (S.135) to be system-
atically negative or positive, and therefore will not lead to biases in LD-score regression estimation of
genetic correlations [13].

However, consider positive cross-trait assortative mating between traits 1 and 2. This will tend to
generate positive LD between variants that increase trait 1 (αl > 0) and variants that increase trait 2
(βl′ > 0). Therefore, if the focal variant at the tag locus λ is in positive (resp. negative) LD with a
trait-1-increasing variant at l ∈ L, it will tend also to be in positive (resp. negative) LD with the trait-
2-increasing variant at l′ ∈ L. The result is a positive covariance between (rλl + r̃λl)

√
ul sgn (αl) and

(rλl′ + r̃λl′)
√
vl′ sgn (βl′); i.e., a positive covariance term in Eq. (S.135).

Therefore, if the underlying genic correlation between traits 1 and 2 is positive, cross-trait assortative
mating will tend to inflate LD-score regression’s estimate of this genic correlation. On the other hand, if
the underlying genic correlation is negative, positive cross-trait assortative mating will tend to attenuate
LD-score regression’s estimate of the genic correlation.

Again, to get a sense of the magnitude of these biases, we assume that
(
(rλl + r̃λl)

√
ul sgn (αl), (rλl′ +

r̃λl′)
√
vl′ sgn (βl′)

)
is bivariate normal with mean (0, 0), variance (σ2, σ2), and correlation ρ. Then, per-

forming a similar calculation to that in Eq. (S.126), we find that Eq. (S.135) simplifies to

E
[
2pλ(1− pλ)α̂λβ̂λ

]
= SλCg/|L|

(
1 + ρ

Vg

Cg

)
, (S.136)

where Vg is the genic variance of traits 1 and 2, here assumed to be equal.

The focal locus λ does causally affect the traits.

If λ ∈ L, then αλ ̸= 0 or βλ ̸= 0 (or both). Eq. (S.132) then becomes

2pλ(1− pλ)α̂λβ̂λ = cλ +
∑
l∈L
l ̸=λ

(rλl + r̃λl)
2cl +

∑
l,l′∈L
l′ ̸=l

(rλl + r̃λl)
√
ul sgn (αl)(rλl′ + r̃λl′)

√
vl′ sgn (βl′), (S.137)

Now, (rλl + r̃λl)
2 and cl can no longer be taken to be independent. Suppose, for example, that αλ > 0,

and that cl ̸= 0 for some l ̸= λ. Then, under cross-trait assortative mating for traits 1 and 2, the value of
βl mediates both the size of cl and the degree of LD between the focal variants at λ and l.
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