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5297, Bordeaux, France, 3 CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France

Abstract

Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of
clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was
referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS
disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total
internal reflection fluorescence microscopy to detect scission events with a resolution of ,2 s. We found that scission
events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always
disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events:
Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/
2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E,
myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2b1, and syndapin2. For each protein we aligned ,1,000
recruitment profiles to their respective scission events and constructed characteristic ‘‘recruitment signatures’’ that were
grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated
recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order,
to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure
of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving
actin, operates at CCSs of diverse sizes and lifetimes.
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Introduction

Clathrin-mediated endocytosis (CME) is the principal means by

which mammalian cells internalize cell surface receptors (reviewed

in [1]). Some 40 years of electron microscopy (EM), genetic, and

biochemical studies are distilled in the canonical model of CME

[2] (reviewed in Figure S1). Here, interaction of receptors with

adaptor proteins stabilise nascent clathrin-coated pits (CCPs) at

random sites on the plasma membrane [3]. Growing CCPs

acquire cargo and invaginate via clathrin polymerization [4] and

the coordinated action of curvature-inducing/sensing BAR [5]

and F-BAR domain proteins [6,7], ENTH domain proteins [8],

and possibly actin [9–11]. The neck of the deeply invaginated

CCP is severed in a mechanism involving the large GTPase

dynamin [12,13], and possibly a phosphoinositide (PI) phosphatase

[14], to release a clathrin-coated vesicle (CCV), which uncoats

through the action of GAK/auxilin [15,16].

Understanding how the multiple components of CME are

spatially and temporally organized is a challenging problem that

has been tackled using live-cell fluorescence microscopy (reviewed

in [2,17]). In a typical experiment using dual colour total internal

reflection fluorescence microscopy (TIR-FM), the recruitment

dynamics of fluorescent protein (FP)–tagged endocytic proteins

were measured relative to the disappearance of spot-like CCPs,

which was used as a fiducial marker to indicate internalization

[6,18,19]. Using this strategy the recruitment dynamics of

endocytic proteins were coarsely grouped into ‘‘early’’ and ‘‘late’’

relative to CCP disappearance [20] (Figure S1), but finer temporal

resolution was not possible because the moment of scission, the

endpoint of the invagination process, was unknown. In addition to

spot-like CCPs, larger clathrin patches were also observed at the

substrate proximal surface of many cell types, where they were

variously thought to participate in the canonical pathway of CME

[4,21] or cell adhesion [22,23], or were thought to represent

endocytic intermediates in an actin-dependent mode of endocy-

tosis distinct from the canonical pathway of CME [23].

To circumvent the subjective classification of endocytically

active clathrin-coated structures (CCSs), a TIR-FM assay was

invented to detect single scission events directly by monitoring the

accessibility of pH-sensitive fluorescent CCP cargo to rhythmically

imposed changes in extracellular pH (the ‘‘pulsed pH’’ [ppH]

assay [10], reviewed in Figure S2). Surprisingly, it was discovered
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that scission events were hosted by spot-like CCPs, as predicted

from the canonical model, and also by larger clathrin patches

(collectively referred to as CCSs [10]), thus raising questions about

what characterises endocytically active CCS at optical resolution.

The following study was designed to explore the fine-grained

temporal structure of late stages of the mammalian CME

machinery using TIR-FM and the ppH assay. First, scission

events were mapped to their host CCSs to determine what

dynamic characteristics defined endocytically active CCSs. It was

found that CCSs of diverse size and lifetimes hosted scission events

that engulfed comparable amounts of receptor cargo, and CCSs

could either disappear (‘‘terminal events’’) or persist (‘‘non-

terminal events’’) following scission. Second, we assessed the

accuracy of CCS disappearance as a fiducial marker for

internalization and showed it introduced an error comparable to

the time course of CCS invagination and CCV formation. It was

thus necessary to use the ppH assay to obtain a precise

measurement of recruitment dynamics. Third, we surveyed the

recruitment dynamics of a representative set of 34 mammalian

endocytic proteins to sites of scission and derived, for each protein,

a characteristic ‘‘recruitment signature’’ by aligning and averaging

,1,000 recruitment traces per protein. A cluster analysis of

recruitment signatures revealed the modular organization of the

CME machinery, similar to yeast [24], while closer inspection

revealed unanticipated features of some signatures. Finally, scaling

relationships between CCS size and lifetime and the cohort of

endocytic proteins recruited to scission events were explored. It

was found that the same set of proteins was recruited in the same

order to scission events at diverse dynamic classes of CCSs,

although subtle scaling relationships between CCS size and

protein recruitment were identified.

Collectively these data provide, to our knowledge, the highest

resolution temporal map of the late stages of mammalian CME to

date. This map (1) suggests a simplified model of mammalian

CME in which the same core mechanism can operate at both spot-

like CCSs and larger clathrin patches observed with fluorescence

microscopy, (2) illustrates the similar modular organization of

mammalian and yeast endocytosis, and (3) proves that recruitment

dynamics of endocytic proteins such as the F-BAR protein FBP17

and BAR domain protein SNX9 cannot always be predicted from

biochemical or structural properties.

Results

Detection of Scission Events at CCSs
To detect CME scission events at CCSs, NIH-3T3 cells were

transiently transfected with Clc-mCherry and TfR-phl and

assayed using the ppH assay, as described previously [10]. A

large-diameter perfusion tip was brought close to the target cell,

and perfusate was cycled between buffer of pH 7.4 and pH 5.5 in

synchrony with image acquisition at 0.5 Hz (see [10] and Figure

S2). In an image acquired at arbitrary time point t, at pH 7.4,

TfR-phl concentrated in spots and patches of Clc-mCherry and

free in the plasma membrane fluoresced brightly (Figure 1A).

When the perfusate was switched to pH 5.5 and an image was

acquired 2 s later (at t+2 s), TfR-phl fluorescence at the plasma

membrane was quenched and revealed bright punctae of pH-

insulated TfR-phl sequestered in internal vesicles, while Clc-

mCherry fluorescence remained unchanged (Figure 1A). The cycle

of pH switching and image acquisition was repeated to generate an

image series acquired at alternating high and low pH. Scission

events manifested as the abrupt appearance of TfR-phl spots in

images acquired at pH 5.5, colocalized with Clc-mCherry-labelled

CCSs (Figure 1B; Video S1). Although it took 4 s to complete a

cycle of pH change, the precision with which scission events were

detected was ,2 s because, for an event to be detected, scission

had to occur in a ,2-s time window at pH 7.4 prior to detection at

pH 5.5 (see [10] and Figure S2). We could therefore align the red

fluorescence traces, acquired at 0.5 Hz, with an accuracy of 2 s.

Visual inspection revealed that scission events were associated with

both punctate CCSs and also larger, pleiomorphic clathrin patches

(Figure 1C; Video S1), and events could occur repeatedly at larger

CCSs, as shown previously [10] (Figure 1D). Larger CCSs may

represent flat clathrin lattices, with peripheral invaginations, or

clusters of smaller CCSs too close to resolve by optical microscopy

[25,26]. Inspection of kymographs revealed that Clc-mCherry and

TfR-phl patches waxed and waned in synchrony at both small and

large CCSs, demonstrating the similarity of these two signals and

suggesting that TfR7 fluorescence could be used as a surrogate

signal to report the relative size or lifetime of CCSs (Figure 1E).

Scission events were not always associated with the disappearance

of the host CCS, and, similar to previous findings, events were

either terminal (where the spot-like CCS disappeared following

scission, red arrows in Figure 1E) or non-terminal (where CCS

persisted following scission, yellow arrows in Figure 1E) [10].

To analyse large numbers of scission events we developed a

semi-automated analysis pipeline to identify candidate events,

screen for bona fide events, and quantify the fluorescence changes

associated with these events in both the green and red channels.

The purpose of this screening strategy was not to detect all scission

events in an image series but to impose stringent selection criteria

and automatically sample a large proportion of genuine scission

events. The criteria for selection of bona fide scission events

included persistence of the TfR5 spot, association with a ‘‘host’’

CCS, adequate signal-to-noise ratio (SNR), and slope of the TfR5

signal following appearance (Figure 1B, see Materials and

Methods for details).

The Dynamic Characteristics of Endocytically Active CCSs
To quantitatively investigate the characteristics of endocytically

active CCSs we detected scission events in seven cells expressing

Clc-mCherry and TfR-phl and identified a set of 851 bona fide

Author Summary

The molecular machinery of clathrin-mediated endocytosis
concentrates receptors at the cell surface in a patch of
membrane that curves into a vesicle, pinches off, and
internalizes membrane cargo and a tiny volume of
extracellular fluid. We know that dozens of proteins are
involved in this process, but precisely when and where
they act remains poorly understood. Here we used a
fluorescence imaging assay to detect the moment of
scission in living cells and used this as a reference point
from which to measure the characteristic recruitment
signatures of 34 fluorescently tagged endocytic proteins.
Pair-wise comparison of these recruitment signatures
allowed us to identify seven modules of proteins that
were recruited with similar kinetics. For the most part the
recruitment signatures were consistent with what was
previously known about the proteins’ structure and their
binding affinities; however, the recruitment signatures for
some components (such as some BAR and F-BAR domain
proteins) could not have been predicted from existing
structural or biochemical data. This study provides a
paradigm for mapping molecular dynamics in living cells
and provides new insights into the mechanism of clathrin-
mediated endocytosis.
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events. First we analysed the relationship between the relative

amount of TfR-phl localized at a CCS (TfR7 fluorescence), the

relative amount of clathrin (Clc fluorescence), and the relative

amount of TfR-phl internalized by a scission event (TfR5

fluorescence). As expected, there was a significant correlation

between TfR7 fluorescence and Clc7 fluorescence (Spearman’s

rho = 0.85, p,0.05; Figure S3), showing that larger CCSs contained

more TfR-phl cargo, and indicating that CCS size could be

estimated using TfR7 fluorescence. However, there was no

significant correlation between Clc7 and TfR5 fluorescence

(Spearman’s rho = 20.0024, p.0.05) or between TfR7 and TfR5

fluorescence (Spearman’s rho = 20.0022, p.0.05; Figure S3).

Therefore, and consistent with both visual inspection of the current

data and previous results [10], the amount of cargo internalized by

scission events was independent of the size of the host CCS, and

endocytically active CCSs could be either spot-like structures or

larger, pleiomorphic clathrin patches. In mechanistic terms, this is

consistent with the relatively constant dimensions of coated

invaginations viewed by EM whether they occurred in isolation,

as part of a cluster, or as a peripheral invagination at a flat patch of

clathrin [25,26]. To check that extracellular acidification did not

affect the size of clathrin-coated invaginations, we fixed cells under

control conditions and after exposure to acidic buffer for 1 min or

10 min, and imaged them using thin section EM (Figure S3). Under

both control and acidified conditions the clathrin-coated invagina-

tions were of relatively uniform size, with a maximum dimension of

,100 nm (Figure S3F–S3I).

Next we explored what dynamic characteristics defined

endocytically active CCSs. All CCSs present in the Clc-mCherry

dataset (seven cells) were tracked using a multi-particle tracking

algorithm, similar to previous studies [27] (see Materials and

Methods), yielding a set of 11,447 track histories. For each CCS

track history the fluorescence of Clc-mCherry was quantified, and

the CCS track histories were classified according to the presence

or absence of scission events, wherein a track history was defined

as scission detected if a bona fide scission event fell within five

pixels, or 500 nm. The median normalised Clc-mCherry fluores-

cence of scission detected CCSs was significantly greater than for

scission undetected CCSs (0.190 versus 0.078, p,0.05; Figure 1F

and 1G), and the median lifetime of scission-detected CCSs was

longer than the lifetime of scission-undetected CCSs (189 s versus

38 s, p,0.05; Figure 1H and 1I). Therefore, scission events

defined a class of larger, longer-lived CCSs. The shorter-lived

scission-undetected CCSs most likely correspond to the ‘‘abortive’’

CCSs described previously [3,27,28], although some of these

structures may have represented endosomal clathrin.

For NIH-3T3 fibroblasts the average time between de novo

appearance of a spot-like CCS and the first detected scission event

was previously found to be ,100 s [10]. This was similar to

previous estimates in BSC1 cells, wherein productive CCSs were

defined as spot-like CCSs having lifetimes anywhere from tens to

hundreds of seconds (average 87 s) [3,27,28]. Because the size and

lifetimes of scission-detected CCSs were so variable (Figure 1H

and 1I), in our subsequent investigation of late events in CME we

made measurements over a time window of 680 s, centred on

scission.

The Recruitment Signatures of 34 Endocytic Proteins to
Sites of Scission with a Temporal Resolution of 2 s

In previous analysis of the molecular dynamics of CME, the

disappearance of spot-like CCSs was used as a fiducial marker to

indicate endocytic events [6,18,19]. However, we discovered that

CCS disappearance gave an inaccurate and imprecise estimate of

scission, with a temporal uncertainty comparable to the time

course of CCS invagination and CCV formation [10] (27622 s;

n = 107; six cells) (Figure 1J and 1K). CCS disappearance most

likely corresponded to CCV uncoating and/or movement, and if

CCS disappearance was used as a fiducial marker for CME the

waveform of aligned and averaged recruitment signatures would

be significantly smeared. We hypothesized that measuring the

recruitment of endocytic proteins with improved temporal

accuracy might reveal otherwise hidden temporal structure in

the CME mechanism, and so we measured the recruitment

signatures of a representative set of 34 mammalian endocytic

proteins relative to scission.

First, and to illustrate the experimental strategy and details of

the analysis, we determined the kinetics of dynamin1 recruitment

relative to scission. The Dyn1-mCherry signals acquired at pH 5.5

and pH 7.4 were corrected for bleed through and interlaced, and

confidence intervals were calculated on the fluorescence recruit-

ment signature using a randomization procedure (Figure S4A–

S4D). As a negative control for protein recruitment we assayed

caveolin1-mCherry, which forms spot-like structures at the plasma

membrane but which is not enriched at sites of CME [29] (Figure

S4E–S4H).

Dynamin is essential for scission [30], and it is thought to be

recruited in the last steps of vesicle formation [18,19]. Cells co-

transfected with TfR-phl and Dyn1-mCherry and imaged with

TIR-FM microscopy at pH 7.4 showed punctuate patterns that

were partially colocalized (Figure 2A), and scission events,

localized to patches of TfR-phl marking CCSs (Figure 2B), were

frequently (75%) preceded by a transient burst of Dyn1-mCherry

Figure 1. The characteristics of endocytically active CCSs. (A) Images from a sequence of 400 images acquired in synchrony with alternating
pH. Portion of an NIH-3T3 cell expressing Clc-mCherry (top panels) and TfR-phl (lower panels) imaged at pH 7.4 (Clc7, TfR7; left panels) at time t and
at pH 5.5 (Clc5, TfR5; right panels) at time t+2 s. (B) Example scission event. A CCS (Clc spot, upper panel) colocalized with a patch of TfR-phl at pH 7.4
(TfR7, middle panel). The scission event manifested as the appearance of a spot of pH-insulated TfR-phl in images acquired at pH 5.5 (TfR5, middle
panel). Bona fide scission events met thresholds for SNR (SNR .5) and post-scission slope (DF/Dt ,0.1; see Materials and Methods for details). (C)
Time-resolved images of region of interest in (A). Scission events (red circles) manifested as the appearance of pH-insulated TfR-phl spots at both
punctate CCSs and larger, pleiomorphic CCSs. (D) Spatial map of scission events in region of interest from (A). Candidate scission events (red crosses)
detected over a 10-min interval were plotted on the average Clc-mCherry image. Scission events tended to cluster at ‘‘hot spots’’. (E) A kymograph of
Clc7 and TfR7 objects graphically illustrates that Clc7 and TfR7 at CCSs co-varied over time. Scission events appeared as transient streaks in the TfR5
image series (arrowheads). Two types of scission events occurred: those associated with complete disappearance of the associated CCS (terminal
events, red arrowheads) and those where the CCS persisted (non-terminal events, yellow arrowheads). (F–I) To explore the characteristics of scission-
competent CCSs further, the segmented Clc7 objects were tracked and divided into scission-detected’’ and scission-undetected CCSs (see Materials
and Methods). (F and G) Histograms of median normalised fluorescence of Clc-mCherry for scission-undetected CCSs (F) and scission-detected CCSs
(G). (H and I) Histograms of lifetimes for scission-undetected CCSs (H) and scission-detected CCSs (I). (J–L) Comparison of CCS disappearance and
scission events as fiducial markers for CME. (J) A CCS disappearance event (grey arrow) with an associated scission event (black arrow). (K) An example
CCP disappearance (grey arrow) without an associated scission event. Of 197 disappearance events, 107 (54%) were associated with scission events,
as predicted. (L) CCS disappearance (red line) versus the timing of scission (grey histogram) for 107 scission-detected CCS disappearance events
(timing of scission relative to CCS disappearance: 27622 s).
doi:10.1371/journal.pbio.1000604.g001
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(Figure 2B and 2C). Examination of the average fluorescence

traces revealed that the TfR7 signal dropped before scission, which

might indicate progressive polarization of receptor cargo in the

invaginating CCS similar to AP2 [31] (Figure 2D). The average

recruitment signatures of Dyn1-mCherry showed a peak 2 to 4 s

before vesicle detection (Figure 2D–2F), which corresponded to

the time of vesicle creation. Before this transient burst Dyn1-

mCherry was, on average, present at low levels on the CCS, as

seen in the average and in individual examples, consistent with

previous observations [32] (Figure 2B and 2D). Visual inspection

revealed that pre-scission recruitment of Dyn1-mCherry manifest-

ed as low-amplitude ‘‘flickering’’, which persisted following scission

in non-terminal events, consistent with continued recruitment of

Dyn1-mCherry to the remaining portion of CCSs at the plasma

membrane (Figure 2E). Strikingly, the temporal spread of Dyn1-

mCherry average fluorescence (,8 s) and peak recruitment

around scission (Figure 2D) was much narrower than when CCS

disappearance was used as a reference for CCV creation (,20 s)

[18,19]. Finally, the recruitment kinetics of Dyn2-mCherry was

very similar to that of Dyn1-mCherry (Figure 2G).

Visual inspection revealed heterogeneity among individual

Dyn1-mCherry fluorescence traces (Figure 3A and 3B). To

explore whether there was any evidence for natural sub-classes

of recruitment signature, the full set of Dyn1-mCherry recruitment

traces was normalised and overlaid to generate a cloud plot

(Figure 3C). The average fluorescence recruitment trace followed

the highest data density, and there was no obvious evidence of

bifurcations or the presence of ‘‘natural’’ sub-classes of Dyn1-

mCherry recruitment traces (Figure 3C). Therefore, the hetero-

geneity apparent among individual traces was largely unstructured

and most likely represented natural noise rather than mechanistic

differences between scission events.

To further test the reproducibility of the Dyn1-mCherry

average recruitment signature two datasets were generated using

either human or mouse Dyn1-mCherry. For human Dyn1-

mCherry seven cells were analysed (1,276 events), and for mouse

Dyn1-mCherry 21 cells were analysed, arbitrarily divided into two

pools of 10 cells (Pool 1, 2,126 events) and 11 cells (Pool 2, 2,622

events). The average recruitment signatures for human Dyn1-

mCherry-transfected cells and either pool of mouse Dyn1-

Figure 2. Dynamin was recruited at the time of CCV formation. (A) Portion of a NIH-3T3 cell co-transfected with TfR-phl (left) and Dyn1-
mCherry (Dyn1, centre), observed with TIR-FM at pH 7.4. Dynamin1 was colocalized with a subset of TfR-phl patches (yellow dots in the merged
image, right). (B) An example scission event. At time 0, a CCV was detected in the image at pH 5 (black arrowhead). Dynamin1 was recruited
transiently, with a peak at time 24 s. (C) Fluorescence measurements (dark green, TfR7; light green, TfR5; red, dynamin1) corresponding to the event
displayed in (B). The dots correspond to the images shown. Vertical blue line shows time = 0 and horizontal lines show fluorescence = 0. (D) Average
fluorescence for TfR7, TfR5, and dynamin1 for the events detected in the cell shown in (A) (n = 290). Black lines represent the median and 95%
confidence limits for random fluorescence measurements (see Materials and Methods for calculation). (E) Data as in (C) pooled for eight cells (1,297
events). Averages of fluorescent traces of terminal (light blue) and non-terminal events (magenta) for TfR7, TfR5, and dynamin1. Note the overlap of
curves before time = 0. (F) Histogram of peak dynamin1 recruitment for individual events. (G) Average dynamin1 (red, eight cells) and dynamin2
(purple, six cells) fluorescence curves normalised to the randomized measures. au, arbitrary units.
doi:10.1371/journal.pbio.1000604.g002
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mCherry-transfected cells were very similar (correlation coefficient

.0.95), with only minor differences in the pre-scission offset

(Figure 3D). Therefore, although individual Dyn1-mCherry

fluorescence recruitment traces were variable, the average Dyn1-

mCherry recruitment signatures were reproducible and remark-

ably stable.

Next, we applied the ppH protocol and analysis to an additional

set of 33 mammalian endocytic proteins fused to mCherry (Figure

S5). To generate an overview of the molecular dynamics of CME

we chose a range of proteins that included well-established players

(e.g., dynamin and GAK), proteins with tentative or poorly

understood links to CME (e.g., Eps8 [33]), and proteins with

Figure 3. Individual Dyn1-mCherry recruitment events were variable, but the average Dyn1-mCherry recruitment signature was
stable. (A and B) Natural variation of Dyn1-mCherry recruitment to sites of scission. (Ai–Avi) Consecutive images of TfR7 (top), TfR5 (middle), and
Dyn1-mCherry (bottom) movies centred on scission events detected in the TfR5 movies. The data are from the cell shown in Figure 2A. (Bi–Bvi)
Quantification of fluorescence for TfR5 (light green curves), TfR7 (dark green curves), and Dyn1 (red curves) images for the corresponding events
shown in (A). Vertical blue lines indicate t = 0 s, and black horizontal lines indicate zero fluorescence. Horizontal scale bar corresponds to 20 s,
fluorescence values as indicated. Dots correspond to frames shown in (A). (C) The full set of Dyn1-mCherry fluorescence traces were normalised and
overlaid as a cloud plot (see Materials and Methods). Red indicates higher data density, blue, lower density, and black, background. The average
fluorescence recruitment trace is indicated by a white line. (D) Replicate Dyn1-mCherry recruitment signatures for either human (Hs) or mouse (Mm)
Dyn1-mCherry. au, arbitrary units; WT, wild type.
doi:10.1371/journal.pbio.1000604.g003
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established links to endocytosis in yeast and which we hypothe-

sized should be recruited to sites of endocytosis in mammalian cells

(e.g., cofilin and coronin [34,35]). Of the 34 endocytic proteins

analysed, only the recruitment signature of cortactin had been

previously measured with a temporal resolution of 2 s, and the

recruitment dynamics of the other 33 proteins remained

uncharacterised at this resolution. A reverse transcription PCR

(RT-PCR) analysis revealed that all proteins except ACK1,

amphiphysin1, CIP4, and FCHo1 were expressed in fibroblasts

(Figure S6). It remains possible that the expression of such a

diverse set of endocytic proteins is peculiar to cultured cells and

would not normally be seen in native tissue. For example,

dynamin1 is thought to be expressed predominantly in neurons

[36], although low levels of dynamin1 expression have been

detected in primary mouse fibroblasts, and the expression level in

fibroblast cell lines was found to increase upon immortalization

[9]. However, and as described previously [15,23,27,37,38], we

expected that proteins expressed in fibroblasts and heterologously

expressed proteins would still incorporate into the CME

machinery and could thus reveal useful information.

For each protein we generated red FP (RFP) fusion constructs

and assayed 5–7 cells per construct using the ppH protocol,

yielding a dataset of ,1,000 bona fide scission events per protein

type (Table S1). Overexpression of mCherry-tagged proteins may

perturb the recruitment dynamics of endocytic proteins or have

other deleterious effects on the endocytic machinery. Therefore, to

ameliorate the possible effects of overexpression cells were

transiently co-transfected with TfR-phl and the relevant RFP

chimera ,48 h prior to the experiment, and cells with only the

lowest 10%–20% levels of expression used for imaging experi-

ments. In our experience this procedure gave the most consistent

results, and target cells showed no overt changes in morphology.

Although the incidence rate of scission events varied up to 5-fold

between constructs (Table S1), variability between cells expressing

the same construct was also high and cells expressing low levels of

a selection of RFP fusion proteins still internalized Tfn-A647

(Figure S7). Moreover, and by definition, the ppH assay measured

the dynamics of protein recruitment only to successful scission

events.

The recruitment signatures of each protein were assessed, and

the full set of traces compared pair-wise and organized in a

dendrogram by hierarchical clustering (Figure 4; the full set of

fluorescence recruitment signatures is shown in Figure S8 and

peaks histograms in Figure S9). This analysis revealed, similar to

previous results in yeast [24], that natural groups or clusters were

formed based on the similarity of recruitment signatures. In each

of the seven groups or modules there were proteins expected to

show similar recruitment signatures on the basis of previous

knowledge (i.e., previous imaging studies, known binding affinities,

and known biochemical properties), while some patterns of

recruitment were unexpected. A brief comparison of key

predictions, based on a priori models, and actual observations

follows below.

Clathrin, Adaptor Proteins, and Receptor Cargo
The clathrin recruitment signature, reported by Clc-mCherry,

showed a slow build up that peaked at scission and dropped

sharply thereafter, presumably as the newly formed vesicle

uncoated (Figure 4A and 4B; although note the different signatures

of terminal and non-terminal events, Figure S8). Most similar to

clathrin were the PI(4,5)P2-binding epsin N-terminal homology

domain (ENTH)/AP180 N-terminal homology domain (ANTH)

adaptor proteins epsin and CALM [8,39], both of which directly

bind clathrin. Surprisingly, NECAP, which has a high affinity for

the AP2a-ear [40], displayed a similar recruitment profile to

clathrin rather than AP2.

Other adaptor proteins formed a distinct subgroup within the

clathrin/adaptor protein module. Based on previous work it was

predicted that AP2 fluorescence (marked by mu2-mCherry) should

markedly decrease before scission, indicating the polarized

segregation of AP2 in the nascent bud [31] and/or loss from

developing buds before clathrin [41] (though see [42]). This was

indeed the case, and, in addition, the adaptor protein Eps15, TfR7

(i.e., the receptor cargo), and the F-BAR domain proteins FCHo1

and FCHo2 showed similar signatures, suggesting that these

proteins were also polarized and/or lost from the developing bud

before clathrin (Figure 4A, 4B,and 4F). This latter observation

may be consistent with a recently proposed role for FCHo proteins

in CCP nucleation and the generation of curvature early in bud

formation [43].

The Dynamin/Myosin Module
Dynamin was present at low levels on CCSs at all times, and a

burst of recruitment preceded scission (Figures 2, 4A, and 4C).

Other proteins showed a similar pattern of biphasic recruitment

and thus defined a dynamin module. These included actin-binding

proteins such as the actin- and clathrin-binding protein Hip1R

[44] as well as the motor protein myosin6, which binds actin and

the adaptor protein Dab2 [45]. Other proteins involved in actin

dynamics and grouped in the dynamin module included the Arp2/

3 activator N-WASP [46,47], Eps8, an actin capping protein that

forms a complex with Abi1 and binds N-WASP [33] and the

motor protein myosin1E [48]. The PI(4,5)P2 phosphatase

synaptojanin2b1, which binds to the NBAR domain protein

amphiphysin1 [49], had recruitment kinetics similar to those of

dynamin and peaked at scission but showed little recruitment at

time points before 220 s (Figure 4A). Finally, the F-BAR protein

syndapin2 [50,51], which binds dynamin and N-WASP, was

recruited early, peaking at 24 s before being quickly discarded

following scission (Figure 4A and 4E). The rapid loss of syndapin2

signal may be due to collapse of the highly curved membrane neck

at the moment of scission.

The improved temporal accuracy of the ppH assay allowed us

to re-evaluate the temporal relationships between dynamin

recruitment and actin dynamics. Earlier work suggested that

dynamin and actin were recruited sequentially to sites of scission

[18]. Here, a more accurate comparison of dynamin and actin

recruitment revealed that dynamin and actin recruitment both

peaked at scission and that the final burst of dynamin recruitment

lagged the onset of actin polymerization by ,20 s (Figure 4C).

Sequential Recruitment of Positive and Negative
Regulators of Actin Polymerization

It is generally accepted that actin polymerization plays a role in

some (but not all, see [52,53]) forms of CME [9,11,18,44,46,

47,50,54]. Here, a more accurate measurement of actin dynamics

using the ppH assay revealed an ordered sequence of proteins

involved in actin dynamics. After the Arp2/3 complex activator N-

WASP, which peaked before all the other actin module proteins

and groups with the dynamin module, the F-actin-binding proteins

Arp3, Abp1, cortactin, and lifeAct were recruited (Figure 4D).

Unique among tested proteins, the average lifeAct signal was

significantly below random prior to scission (Figure 4A), probably

because bright stress fibres adjacent to sites of scission artificially

lowered the background subtracted fluorescence value (e.g., see

Figure S4).

Peak recruitment of the actin-severing protein cofilin [55] and

the Arp2/3 suppressor coronin [56] were both significantly skewed
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post-scission, suggesting an ordered shut down of the actin

polymerization machinery and disassembly of scission-associated

actin (Figure 4D).

Sequential Recruitment of Curvature-Generating/Sensing
BAR and F-BAR Domain Proteins

Based on contemporary models of CME [57] we predicted that

recruitment of BAR and F-BAR domain proteins should follow

patterns consistent with the differing curvatures of their respective

membrane-binding domains, since purified proteins induce

different degrees of curvature in membrane tubulation assays in

vitro and membrane curvature increases as CCSs invaginate [6,7].

The sequential recruitment of the F-BAR domain protein

syndapin2 and a group of NBAR domain proteins (endophilin2,

BIN1, and amphiphysin1) followed by scission matched this

prediction (Figure 4E). Similar to syndapin2, NBAR proteins were

also rapidly discarded following scission, presumably because of

the collapse of the highly curved membrane neck at the moment of

scission. However, the recruitment of the BAR domain protein

SNX9 differed from prediction. SNX9 recruitment began before

scission, peaking ,12 s after scission, similar to coronin and cofilin

rather than to its binding partner, dynamin (Figure 4E). Similarly,

the recruitment of the F-BAR domain proteins CIP4 and FBP17

also differed from prediction [6] (Figure 4F). Both proteins showed

complex recruitment dynamics, with components of recruitment

both before and after scission and, strikingly, FBP17 recruitment

peaked markedly post-scission, at a time similar to that of GAK

(Figure 4F).

The Invariant Recruitment of GAK
It was shown previously that the kinase GAK, which is

necessary for CCV uncoating, was recruited shortly after the

large GTPase dynamin to sites of CME [15,16]. Here, we found

that GAK recruitment commenced at scission and peaked on

average ,8 s thereafter, as predicted. The recruitment profile of

GAK was the same for both terminal and non-terminal scission

events (Figure 4G). In the canonical model of CME, bona fide

endocytic structures were represented as spot-like CCSs that

formed de novo [23]. We therefore analysed a subset of 100

scission events associated with spot-like CCSs that formed de novo

and found that the first detected scission event occurred, on

average, 93 s following CCS inception (minimum = 20 s) and

similar to the 100 s calculated in a previous study [10]. The GAK

recruitment signature was again similar (Figure 4G, inset), and

therefore, irrespective of the behaviour of the host CCS, the

dynamics of the uncoating reaction associated with scission events

were comparable.

The recruitment signature of GAK defined a module including

ACK1, a serine threonine kinase implicated in tumorigenesis [58]

and OCRL1, a 59 phosphatase and Rab5a effector [59].

Interestingly, GAK and OCRL1 were recruited only after scission,

whereas ACK1 was gradually recruited as CCSs matured

(Figure 4A). The last module to be recruited consisted of the

Rab5a effector APPL1 [60] and Rab5a itself (Figure 4A). The

Rab5a signal was small and temporally spread, but significantly

raised above baseline. Most likely this marks the outer limits of

recruitment detection using the ppH protocol.

Having accurately measured the recruitment signatures of a

representative set of endocytic proteins we next asked whether the

same set of proteins was recruited to scission events at different

dynamic classes of CCSs.

The Relationship between the Dynamic Characteristics of
CCSs and Patterns of Protein Recruitment to Sites of
Scission

Previous studies defined different populations of CCSs on the

basis of size (i.e., spot-like CCSs versus larger CCSs) and lifetime

or whether CCSs disappeared following scission (terminal events)

or persisted (non-terminal events) [10,23,28,61]. Detailed mech-

anistic inferences have been based on these types of dynamic

classification [23]. Therefore, we explored whether the set of

endocytic proteins recruited differed between terminal and non-

terminal scission events or between scission events at CCSs of

different size or lifetime.

Patterns of Protein Recruitment to Terminal or Non-
Terminal Scission Events

First we analysed whether the same set of proteins was recruited

to scission events at terminal and non-terminal scission events.

Terminal and non terminal events were sorted by computing the

ratio of average FTfR7 before and after scission (see Materials and

Methods). For all constructs tested, there was approximately the

same number of events in each category (Table S1). For all

proteins tested the average fluorescence profiles were strikingly

similar between terminal and non-terminal events before scission,

with occasional shifts towards higher values for non-terminal

events (Figure S8). This strongly suggests that the mechanisms of

protein recruitment were the same for both classes of events. By

contrast, the recruitment signatures after scission differed mark-

edly for proteins that were significantly recruited at time points

well removed from scission such as clathrin module proteins or

some dynamin/myosin module proteins. Interestingly, in many

recruitment signatures (e.g., Eps15, mu2, myosin6, or CALM), the

average fluorescence trace of non-terminal events increased

steadily after scission to a maximum around 40 s post-scission,

suggesting a characteristic time course of CCS maturation

between successive scission events, and similar to findings in a

previous study [10].

Patterns of Protein Recruitment to Scission Events
Hosted by CCSs of Different Size or Lifetimes

We established that there was a good correlation between Clc-

mCherry fluorescence and TfR7 fluorescence and that, by

inference, TfR7 fluorescence could be used to confidently predict

the relative size or lifetime of CCSs (Figures 1E, S3, 5A, and 5B).

Therefore, to investigate the relationship between CCS size and

patterns of protein recruitment, TfR7 patch fluorescence was

normalised by cell, and, for each trace, the average fluorescence

Figure 4. Modules of endocytic proteins. (A) Left, a list of proteins with significant recruitment to CCVs used in this study. The proteins were
clustered according to the correlation distance between recruitment signatures shown at right. Clusters with distance below 0.2 are marked with a
colour defining a protein module. The two Toca proteins, CIP4 and FBP17, fell outside of any cluster but were grouped together according to
biological arguments (see text). Right, average recruitment signatures normalised to their randomized measures. Vertical black line shows time = 0.
Horizontal black lines show median randomized measures, taken as fluorescence origin, and grey areas the 95% upper and lower confidence
intervals. Scale bars = 20 s (horizontal) and 10695% confidence interval (vertical). (B–F) Detailed view of recruitment traces of (B) TfR7, mu2 (AP2), and
Clc; (C) Dyn1 and lifeAct; (D) N-WASP, lifeAct, Arp3, and cofilin; (E) endophilin, amphiphysin, SNX9, and APPL1; and (F) FCHo2, syndapin2, and FBP17.
(G) GAK for terminal events (T), non-terminal events (NT) and scission events at spot-like CCSs that formed de novo (inset).
doi:10.1371/journal.pbio.1000604.g004
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(FTfR7) was calculated over the time interval 218 s to 210 s

relative to scission (Figure 5C). For each cell the FTfR7 values

formed a continuous distribution (Figure 5C) that was divided into

three equally populated groups representing ‘‘small’’ CCSs (blue

fluorescence traces), ‘‘medium’’ CCSs (green fluorescence traces),

and ‘‘large’’ CCSs (red fluorescence traces, Figure 5). As expected,

when the normalised fluorescence recruitment traces for Clc-

mCherry were assigned to CCS size groups 1–3, the group

average recruitment signatures were well separated (Figure 5Di).

This simply reflected the fact that larger CCSs had more clathrin

and confirmed that TfR7 fluorescence could be used to predict

CCS size (see also Figure S3). However, and as a control, when

Clc-mCherry recruitment traces were randomly assigned to three

groups, the average traces for groups 1–3 were almost identical

(Figure 5Dii). Thus, we can be confident that Clc-mCherry

fluorescence scaled strongly with TfR7 fluorescence, as expected.

Similarly, when TfR7 fluorescence traces were assigned to CCS

size groups 1–3, the fluorescence signatures were (by definition)

well separated (Figure 5Ei), but when TfR5 fluorescence traces

were assigned to CCS size groups 1–3 and averaged, the TfR5

class averages were virtually identical (Figure 5Eii). Therefore (and

similar to Figure S3), the amount of TfR internalized did not scale

strongly with the size of the host CCS, consistent with the idea that

quantized scission events occurred at CCSs of apparently different

sizes.

The analysis was repeated for the 34 endocytic proteins of this

study to assess how different recruitment signatures scaled with

CCS size. Sample classified recruitment signatures are shown in

Figure 5F, and, for each protein, the relative strength of the scaling

relationship between CCS size and protein recruitment was

visualised by calculating the summed absolute difference between

the group averages and overall average (Figure 5G, 95%

bootstrapped confidence interval in grey). Thus, for example,

the average FCHo1 fluorescence traces for the small and large

groups of CCSs (Figure 5G, blue and red, respectively) were well

separated from the pooled FCHo1 average fluorescence trace,

indicating a strong scaling relationship between CCS size and the

amount of FCHo1 at the CCS. The scaling relationship was

significant because it exceeded the boundaries of the confidence

interval in grey (Figure 5G).

In general, the group averages for structural proteins such as

clathrin and the adaptor proteins (mu2, Eps15, and FCHo1/2)

scaled strongly with CCS size. The relationship between Dyn1-

mCherry recruitment and TfR7 cluster size was more complex. As

noted earlier, low amplitude flickering of Dyn1-mCherry was

noted at CCSs before the final recruitment burst that marked

scission (Figures 2B, 2C, 3A, and 3B). The overall amplitude of

Dyn1-mCherry recruitment did scale with CCS size, but this could

be explained by the difference in offset of the ‘‘pre-scission’’ signal,

consistent with two components to the Dyn1-mCherry signal: pre-

scission recruitment scaled with CCS size, suggesting a link with

clathrin in the host CCS, but the burst of dynamin associated with

scission was of relatively constant amplitude, consistent with

recruitment to budding structure of constant dimensions. Other

transiently recruited proteins, such as endophilin2, showed similar

behaviour (Figure 5F). A notable exception was synaptojanin2b1,

which showed robust recruitment to large CCSs but lower

amplitude recruitment to smaller CCSs (Figure 5F). Finally, the

amplitudes of Arp3 and lifeAct recruitment signatures were

independent of CCS size (Figure 5F and 5G). In general, proteins

of the actin module were among the proteins least dependent on

the size of the host CCS.

A second characteristic that has been used to define dynamic

groups of CCSs is lifetime [27,28]. To test whether TfR7 patches

could be used as indicators of CCS lifetime, TfR7 patches from

cells expressing Clc-mCherry were tracked, and the set of 11,091

track histories was classified according to the presence or absence

of scission events. The estimate of scission-undetected TfR7 patch

lifetime was 33.8 s, which was ,11% lower than the 38 s

estimated using Clc-mCherry as a marker for CCSs. This slightly

lower lifetime is because the TfR-phl signal tended to drop slightly

before the Clc-mCherry signal in the run-up to scission (Figures 2D

and 4B). The estimate of scission-detected TfR7 patch lifetime was

found to be 178 s, which is within 6% of the 189 s estimated using

Clc-mRFP as a CCS marker. Therefore, TfR7 patch lifetime

could be used to estimate CCS lifetime.

Similar to CCS size, scaling relationships were found between

CCS lifetime and the relative amount of protein recruited

(Figure 6A–6E). Longer lived CCSs tended to have more clathrin

and adaptor proteins while, by contrast, GAK and lifeAct showed

the weakest dependence on CCS lifetime (Figure 6E and 6F). This

is trivially explained if larger CCSs tended to have longer lifetimes,

and indeed TfR7 patch fluorescence and lifetime had a positive

(though modest) correlation of 0.29 (p,0.05, full set of events

used), similar to previous observations [62].

Collectively, these analyses demonstrate that the same set of

proteins was recruited to scission events at different dynamic

groups of CCSs, with subtle scaling relationships between CCS

size, lifetime, and the relative amount of different proteins

recruited. However, this analysis did not reveal whether the same

set of proteins was recruited to each scission event.

Mechanistic Heterogeneity among Scission Events
The physical properties of CCSs were not predictive of which

endocytic proteins were recruited to scission events (Figures 5 and

6). However, there is evidence that CCSs with different

complements of adaptor proteins and receptor cargo coexist in

the same cell [63], and it has been shown that the dependence of

CME on actin differs between the apical and basolateral domains

in epithelial cells [53]. Therefore, there may be differences in the

set of proteins recruited to individual scission events, even though

they internalized similar amounts of the same cargo (TfnR-phl).

First, we checked whether the automated selection criteria were

biased towards a mechanistically distinct subtype of CME. For five

example cells expressing mCherry chimeras of Clc, Hip1R, N-

WASP, dynamin1, or GAK we visually inspected the set of events

Figure 5. Scaling relationships between CCS size and recruitment signatures. (A–E) Analysis of cells coexpressing Clc-mCherry and TfR-phl.
(A) Example scission event at a punctate CCS. (B) Example scission event at a larger CCS. The larger (brighter) CCS was associated with a larger
(brighter) patch of TfR-phl at pH 7.4. (C) Histogram of normalised TfR7 fluorescence (FTfR7), averaged over 218 to 210 s preceding scission. Size
classes defined as indicated: blue = {FTfR7 ,33rd percentile}; green = {33rd percentile , FTfR7 ,66th percentile}; red = {FTfR7 .66th percentile}. (Di)
Average normalised FClc signatures for classes defined in (C). The signatures are well separated, indicating that FClc scaled with FTfR7. (Dii) Average
normalised Clc-mCherry fluorescence signatures (FClc7) for randomly allocated classes. Note the signatures are very similar. (Ei) Average normalised
FTfR7 signatures for classes defined in (C). The signatures are well separated, as expected. (Eii) Average normalised FTfR5 signatures for classes defined
in (C). The signatures are very similar, indicating that TfR5 fluorescence did not scale strongly with CCS size. (F) Example traces showing the scaling
relationship between FTfR7 and the respective RFP recruitment signatures. (G) Stem plot of sum of differences between class averages and the overall
average ordered by magnitude, colour coding as in (B). Grey bars indicate the 95% confidence interval for random event assignment to classes.
doi:10.1371/journal.pbio.1000604.g005
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rejected by our selection criteria and ‘‘recalled’’ events judged to

be bona fide by a human operator (see Materials and Methods;

Figure S10). There was no significant difference in the kinetics of

protein recruitment to the subset of ‘‘recalled’’ events when

compared to events automatically selected (Figure S10). Therefore,

no measurable bias was introduced by the parameters set for

automatic detection.

Second, we determined how many scission events scored

positive for recruitment of any given protein (Figure 7). The

probability of detecting protein recruitment is dependent on

multiple physical factors including signal and detector limitations,

the kinetics of protein recruitment, and the magnitude and texture

of background fluorescence (see Materials and Methods). Two

strategies were used to detect recruitment (Figure 7). The first

strategy was biased towards the detection of proteins recruited

with slower kinetics and used image segmentation to determine the

maximum probability of detection relative to scission (Figure 7A–

7C). The second strategy was biased towards the detection of more

transient signals and identified significant peaks in the quantified

fluorescence traces (Figure 7D and 7E).

Of the 34 proteins analysed 25 proteins from six modules

(clathrin, actin, dynamin, GAK, FBP17, and Rab5 modules) were

detected at more than 50% of scission events using either detection

strategy (Figure 7). It seems unlikely that these 25 proteins were

recruited to distinct and mutually exclusive variants of CME, and

there was most probably some overlap between any given pair. Of

these proteins high-abundance structural proteins such as clathrin,

adaptor proteins, and other members of the clathrin module were

most readily detected (gold bars, Figure 7C and 7E). Proteins of

the dynamin module were the next most frequently detected (pale

blue bars, Figure 7C and 7E). Proteins of the actin module (red

bars, Figure 7C and 7E) were detected less frequently, with the

notable exception of Abp1 (maximum probability of detec-

tion = 0.97, Figure 7C). The clathrin- and F-actin-binding protein

Hip1R was also detected with high frequency (maximum

probability of detection = 0.99, Figure 7C). Detection of the F-

actin-binding protein Abp1 was facilitated by the proteins’

punctate distribution and low background fluorescence

(Figure 7F). By contrast, an alternative F-actin marker, lifeAct,

was recruited promiscuously to all F-actin structures at the cell

cortex, which gave a bright and highly textured background, and

most likely contributed to the lower probability of detecting lifeAct

at scission events (Figure 7G).

The set of proteins that were detected at ,50% of scission

events or fewer using either detection strategy included the NBAR

module (BIN1, Endo2, and Amph1, pink bars, Figure 7C and 7E).

However, because NBAR proteins are thought to be essential

components of the CME machinery [9,54], this most likely

represents limitations of detection, as found previously [37], rather

than core mechanistic differences between scission events. The low

incidence of detection of other proteins is less easy to interpret. For

instance, CIP4 and Rab5 were detected with low incidence, but

the significance of this currently remains unclear (Figure 7).

Discussion

The Properties of Endocytically Active CCSs
Early EM studies revealed clathrin-coated invaginations at the

substrate proximal surface of adherent cells as discrete entities, in

clusters or at the edges of large, flat lattices of clathrin [25,26].

Subsequent live-cell imaging studies using TIR-FM described, for

a variety of cell types, corresponding heterogeneity among CCSs

labelled with clathrin-FP at the substrate proximal surface of

adherent cells [3,10,23,28,31,62]. It was shown that both transient

spot-like CCSs (average lifetime = ,40–60 s) and larger, longer

lived CCSs (average lifetime = ,60 s to 10 min [or more])

coexisted in NIH-3T3 fibroblasts, HeLa, and COS cells [10,23],

while transient spot-like CCSs (average lifetime = ,40 s) predom-

inated in freshly plated BSC1 cells [3,28,31,62]. Larger and longer

lived CCSs were triggered by specific receptor/adaptor combina-

tions [62], and cell adhesion could also play a role [22]. Faced with

such natural ultrastructural and dynamic heterogeneity, it was

important to establish which CCS characteristics, measured in

live-cell TIR-FM experiments, defined CCS intermediates in

CME. The detection of individual scission events presented here

and previously [10] helps achieve this by quantifying the

relationships between scission and CCS dynamics and size in an

unbiased manner.

We can make four main conclusions from our study of CCS

characteristics relative to scission. First, the lifetimes of scission-

detected CCSs followed a left-skewed distribution ranging from a

few tens of seconds through to hundreds of seconds, as predicted

by earlier studies [3,28]. The shorter lived population of scission-

undetected CCSs identified most likely corresponded to abortive

CCSs described previously [3,28], although intracellular CCSs

may have contributed. The average time between CCS inception

and the first detected scission event was ,100 s (minimum lifetime

of 20 s), which reflected the time required to construct a

productive CCS. However, CCS lifetimes should be interpreted

with caution since CCSs can host multiple scission events (see also

[10] and the third point below).

Second, the size of scission-detected CCSs followed a left-

skewed distribution without obvious quantization. No correlation

was detected between overall CCS size and the amount of TfR-phl

cargo internalized by scission events, consistent with an earlier

study [10].

Third, the disappearance of spot-like CCSs, which has been

widely used as a fiducial marker for CME [18,19], coincided with

scission events with the predicted frequency but it was found to be

an imprecise marker for scission (Dt between scission and spot-like

CCS disappearance = 7622 s; Figures 1 and S2). Moreover, CCS

disappearance did not report all scission events, and approxi-

mately ,50% of scission events were classified as non-terminal

because the host CCS did not completely disappear following

scission. Indeed, CCSs could host multiple scission events before

disappearing (see also [10]).

Fourth, evidence that the scission events detected at different

dynamic groups of CCSs proceeded through to completion (i.e.,

Figure 6. Scaling relationships between CCS lifetime and recruitment signatures. (A and B) Histograms of TfR7 patch lifetime (LTTfR7) for
scission undetected (A) and scission detected (B) TfR7 patches in cells coexpressing Clc-mCherry and TfR-phl. (B) Time classes indicated in grey:
blue = {LTTfR7 ,120 s}; green = {120 s , LTTfR7 ,480 s}; red = {LTTfR7 .480 s}. (Ci) Average, normalised FClc traces for the three classes defined in (B).
The FClc7 class averages are well separated, indicating that FClc7 scaled with LTTfR7. (Cii) Average, normalised FClc traces for three randomly allocated
classes. Note the FClc7 traces are very similar. (Di) Average, normalised FTfR7 traces for the three classes defined in (B). The traces are well separated,
indicating that FTfR7 scaled with LTTfR7. (Dii) Average, normalised FTfR5 traces for the three classes defined in (B). The traces are very similar, indicating
that FTfR5 did not scale strongly with LTTfR7. (E) Example traces showing the scaling relationship between LTTfR7 and the respective RFP recruitment
signatures. (F) Stem plot of sum of differences between class averages and the overall average ordered by magnitude, colour coding as in (B). Grey
bars indicate the 95% confidence interval for random event assignment to classes.
doi:10.1371/journal.pbio.1000604.g006
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CCV uncoating) was provided by the remarkable invariance of

the GAK recruitment signature. The kinase GAK is an

established marker for CCV uncoating [15,16], and the GAK

recruitment signature was the same for terminal and non-

terminal scission events, for scission events at spot-like CCSs that

formed de novo, and for scission events at different size and

lifetime classes of CCSs.

The most parsimonious explanation for these findings is that

CCVs, of similar size, could either bud in isolation or from larger,

heterogeneous CCSs (Figure 8). This is consistent with the

Figure 8. A simplified canonical model of mammalian CME. A simplified schematic illustrating the relative timing of recruitment of the seven
different endocytic protein modules to sites of scission, highlighting some unexpected findings for future investigation. The patterns of recruitment
are the same for terminal events (Ai) and non-terminal events (Aii). The heterogeneous size of endocytically productive CCSs is most easily explained
if clathrin-coated buds formed at the edges of clathrin patches of variable size, thus accounting for the variability in fluorescence of endocytically
active CCSs (Aii). Repeat scission events most likely occurred by re-growth of clathrin-coated invaginations at the edge of ‘‘host’’ patches of clathrin
(lower curved arrow, [Aii]).
doi:10.1371/journal.pbio.1000604.g008

Figure 7. The probability of detecting protein recruitment to sites of scission. (A) A scission event (upper panel) defined a spot on the
plasma membrane to which Abp1-mCherry (middle panel) was recruited. The recruited Abp1-mCherry was identified as an ‘‘object’’ in segmented
images (lower panel). A region of interest (red circle) centred on the scission event (upper panel) was interrogated at each successive frame in the
80 s before and after scission to find whether a segmented object of more than three pixels and .8 s dwell time was present at the site of scission or
not. Frames in which an object was detected were scored ‘‘1’’, and ‘‘0’’ otherwise. The filtering thresholds were set using mCherry as a negative
control, which scored a peak detection probability of 0.013, wherein residual detection of mCherry ‘‘objects’’ was due to detector noise. (B) The
analysis was repeated for all events and the average scores calculated to yield a time-resolved profile representing the ‘‘probability of object
detection’’ at a given frame relative to scission. (C) The analysis was repeated for all the tagged endocytic proteins, which were ranked by probability
of detection and colour coded according to the module membership (as defined in Figure 4). (D) In the second analysis strategy, fluorescence traces,
such as this example fluorescence trace for Abp1, were analysed to identify peaks (defined as biggest peak greater than six standard deviations of the
last six FRFP values of the recording), and the proportion of scission events with a ‘‘significant peak’’ of recruitment was determined. (E) The analysis
was repeated for all the tagged endocytic proteins analysed, which were subsequently ranked. (F and G) Example cells expressing Abp1-mCherry (F)
or lifeAct-mCherry (G) illustrating the different patterns of fluorescence.
doi:10.1371/journal.pbio.1000604.g007
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relatively constant dimensions of clathrin-coated invaginations

previously observed by EM, irrespective of whether the invagina-

tions were isolated or part of larger CCSs [25,26]. Based on these

results we conclude that the classification of endocytically active

CCSs, observed at optical resolution using TIR-FM, should be

broad to encompass the heterogeneity of scission-competent CCS

sizes and lifetimes. As a practical guide, any CCS that colocalizes

with acid-accessible TfR-phl and that exists for more than 20 s

could be considered scission competent [10] and potentially

capable of hosting multiple scission events.

The Same Core Machinery of CME Operates at Different
Dynamic Classes of CCSs, but Subtle Variations in
Mechanism May Occur

In a further exploration of the organization of CME in

fibroblasts we analysed the recruitment of 34 types of endocytic

protein to scission events, 30 of which were native to NIH-3T3

fibroblasts. To appreciate this analysis properly it is important to

consider what physical factors contribute to the observed dynamics

of protein recruitment and the resulting shapes of ensemble

recruitment signatures. First, the fluorescence signals measured at

single scission events using TIR-FM occur in a volume of ,1 al,

illuminated by an evanescent field in which the intensity of the

electromagnetic field decreases exponentially as a function of

distance in the z-axis [64]. Due to the small depth constant of the

illuminating evanescent field (,100 nm) and the comparable

dimension of an invaginating CCP (,100 nm diameter), for two

proteins to show a similar average recruitment signature they must

be recruited to the detection volume over a similar time course and

must share a similar spatial distribution at the developing CCP as

it projects into the evanescent field along the z-axis [10,31].

Second, a recruitment signature reflects the average concentration

of an FP-labelled protein at the site of endocytosis relative to the

cytoplasm. Labelled protein, expressed at low levels, must compete

with endogenous proteins for recruitment, and this, combined with

detector limitations and the relatively low quantum efficiency of

mCherry [65], most likely contributes to noise among individual

recruitment profiles and influences the probability of detecting

protein recruitment. We established that for one example protein,

dynamin1, the noise appeared to be unstructured and that the

trajectories of the averaged recruitment signatures for dynamin1 in

NIH-3T3 cells were remarkably stable.

A detailed analysis suggested involvement of the core clathrin,

actin, and dynamin modules in the majority of scission events since

all coat components (clathrin, AP2, epsin2, FCHo, CALM, and

NECAP) and both Hip1R (which binds clathrin and F-actin [44])

and Abp1 (which binds dynamin, F-actin, and Arp2/3 [66]) were

detected at .90% of scission events, and dynamin1/2, synapto-

janin2b1, myosin6, and Eps15 were detected at .75% of events.

These findings agree with the widely accepted view that TfR

internalizes via a clathrin- and dynamin-dependent pathway

[67,68] and are in agreement with earlier studies that demon-

strated an important, though nonessential, role for actin in CME

in fibroblasts ([9–11], but see [23]). The fact that other proteins

such as the BAR domain proteins endophilin2 or BIN1 were

detected at only a subset of scission events suggests that there were

inherent limitations of recruitment detection, since these proteins

are thought to be essential for scission [9,54]. However, it remains

possible that there were genuine molecular differences between

scission events, perhaps through the influence of other types of

(unlabelled) receptor cargo [63], in response to changes in physical

parameters, such as membrane tension [69] or because of genuine

underlying variability in the core mechanism of CME [53].

Nonetheless, and based on the data presented here, at optical

resolution potential molecular differences between scission events

in NIH-3T3 cells did not correlate with obvious differences in

CCS behaviour.

Next we explored scaling relationships between CCS size and

lifetime and the set of proteins recruited to scission events. As

shown previously [62], CCS lifetime and size were moderately

correlated, with longer lifetimes for larger CCSs, and, as predicted,

the recruitment signatures of some proteins such as the coat

protein clathrin and adaptor proteins scaled with overall CCS size.

A set of core components (e.g., dynamin and endophilin2) showed

more complex scaling relationships with CCS size, perhaps

reflecting variable degrees of recruitment to the budding and

non-budding portions of larger CCSs. However, the recruitment

signatures of a core set of proteins including GAK (a kinase

essential for the uncoating reaction [16,70]), and most notably

actin and actin-binding proteins, were independent of CCS size.

This is consistent with our central thesis that CCVs of relatively

constant size budded at host CCSs of diverse size and lifetime via a

common core mechanism, and supports a role for actin in CME in

NIH-3T3 fibroblasts [10,11].

Similar to Yeast, Mammalian CME Has a Modular Design
Seminal imaging studies from the Drubin lab and other groups

revealed the modular organization of yeast endocytosis [24]. Here

it was shown that at least four modules or groups of proteins

showed similar recruitment dynamics to sites of endocytosis at

yeast actin patches [24]. More recently, comparisons were drawn

between the modular organization of yeast and mammalian

endocytosis, with an emphasis on the conserved role of actin

[9,71]. However, earlier TIR-FM studies of the late stages of

mammalian CME used the disappearance of spot-like CCSs as a

fiducial marker, which could not sample endocytic events from all

dynamic classes of CCSs nor yield a temporally precise estimate of

scission. Consequently, the recruitment dynamics of endocytic

proteins could only be broadly classified as ‘‘early’’ and ‘‘late’’

(Figure S1). The data presented here, based on the comparison of

accurately measured recruitment signatures derived from large

datasets (,1,000 events), give a more detailed overview of the

modular organization of mammalian CME. The modules

identified here comprise the following (Figure 8): (1) the coat

module, divided into (i) a clathrin sub-module (epsin2, CALM,

clathrin light chain, and NECAP) and (ii) an adaptor/F-BAR sub-

module (FCHo1/2, Eps15, AP2); (2) the NBAR domain module

(endophilin2, amphiphysin2, and BIN1); (3) the actin module,

divided into (i) actin polymerization sub-module (Abp1, cortactin,

and Arp3) and (ii) actin depolymerization/suppression (cofilin,

coronin1B, and SNX9); (4) the dynamin/myosin/N-WASP

module (dynamin1, dynamin2, synaptojanin2b1, myosin1E, N-

WASP, Eps8, Hip1R, myosin6, and syndapin2); (5) the GAK/

post-scission module (GAK, ACK1, and OCRL1); (6) the Rab5a

module (Rab5a and APPL1); and (7) the FBP17/CIP4 module,

based on the unique recruitment signatures of these two proteins

and dissimilarity to any other recruitment signatures.

The shapes and relative timing of many of the recruitment

signatures are broadly consistent with measurements made in

previous imaging studies in yeast [24] and in mammalian cells

[6,18,19]. In addition, many recruitment signatures provided new

information as a consequence of improved accuracy. First, and as

predicted from a previous study [31], the recruitment signatures of

members of the adaptor sub-module decreased before scission

because of polarization in the developing invagination. In

addition, the F-BAR domain proteins FCHo1 and FCHo2 showed

similar recruitment signatures, suggesting these curvature-inducing

proteins were also polarized and consistent with a proposed role
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for FCHo proteins in the early stages of the invagination process

[43]. Second, it was predicted that actin recruitment should begin

before dynamin recruitment at sites of scission, although time-

locked measurements with the required accuracy to test this

hypothesis had not previously been made [9,18]. Here, we showed

that the onset of actin polymerization did indeed precede the final

burst of dynamin recruitment by ,20 s, consistent with a role for

actin polymerization early in the invagination stage of CME and

the later recruitment of dynamin to the deeply invaginated CCP,

where it executed scission [9] (Figure 8). We also discovered that

coronin1B and cofilin, proteins involved in the down-regulation of

actin polymerization and F-actin severing, respectively, were

recruited at later time points, again similar to yeast endocytosis

[24,72,73]. Third, it was proposed that scission of endocytic

invaginations in yeast is triggered by a PI-phosphatase that

dephosphorylates PiP2 and thus induces a line tension in the

membrane neck [74]. In mammalian cells the large GTPase

dynamin is thought to execute scission [9,30], but, intriguingly, the

recruitment of the PI-phosphatase synaptojaninb1 showed a

recruitment trajectory similar to that of dynamin (and proteins

of the NBAR module) and also peaked at scission (Figure 4).

Therefore, it is plausible that induction of a line tension also

contributes to the mechanochemistry of scission in mammalian

cells [74]. Finally, it was predicted that recruitment of F-BAR and

BAR domain proteins should follow an ordered sequence dictated

by their preference for different-curvature membrane tubules in

vitro [75] and that recruitment should occur over a trajectory

similar to that of actin polymerization [6,9,76]. The ordered

recruitment of syndapin2 and the NBAR module (endophilin2,

BIN1, and amphiphysin1) did indeed match this prediction.

However the post-scission peak recruitment of SNX9 and the

complex, biphasic recruitment of FBP17 and CIP4 did not. These

findings illustrate that the recruitment sequence of these BAR and

F-BAR domain proteins could not be predicted purely on the basis

of either structural information or biochemical properties. The

possible function(s) of SNX9 and FBP17/CIP4 post-scission

remain to be elucidated, although it is possible that these proteins

may act as relays to recruit additional binding partners to the

newly formed endosome (Figure 8).

Conclusion
The study presented here employed the detection of scission

events to construct what is to our knowledge the highest resolution

temporal map of mammalian CME to date. The map (1) suggests

a simplified canonical model of mammalian CME in which the

same core mechanism operates at both spot-like CCSs and larger

CCSs observed with fluorescence microscopy, (2) illustrates the

similar modular organization of mammalian and yeast endocyto-

sis, and (3) proves that recruitment dynamics of endocytic proteins

such as the F-BAR protein FBP17 and BAR domain protein

SNX9 cannot always be predicted from biochemical or structural

properties.

Materials and Methods

Cell Culture and Imaging
NIH-3T3 cells were cultured as described previously [10]. Cells

were co-transfected using Lipofectamine 2000 (Invitrogen) with

human transferrin receptor fused to super-ecliptic phluorin

(hTfnR-phl [10]) and the relevant endocytic protein open reading

frame (ORF) fused to a RFP. Freshly transfected cells were

replated onto pre-cleaned number 1 borosilicate glass coverslips

(VWR International) and imaged 24–48 h later as described

previously [10].

Cloning and Expression Plasmids
ORFs of endocytic proteins were amplified by PCR (Phusion

PCR kit; Finnzyme) from IMAGE clones (Geneservice), or directly

amplified from cDNA libraries (see Table S2 for details of primers

and cDNA sources for the expression constructs used). Each pair

of PCR primers was engineered with the appropriate 39 and 59

restriction sites for cloning and sequence for either a 9-, 12-, or 13-

amino-acid linker between the target protein and FP, as described

previously [65]. The amplified cDNAs were cloned into

mammalian expression vectors in frame with a RFP (in the case

of Hip1R, tDimer [65]; in the case of myosin1E, mApple [77]; and

for all other proteins mCherry [78]; see Table S2) to generate

either N- or C-terminal fusion proteins upon expression.

RT-PCR
Primers were designed to PCR a ,700-bp fragment that was

specific to the protein isoforms used in this study. Total cell RNA

was purified from NIH-3T3 cells using the RNAeasy Mini Kit

(Qiagen). RT-PCR reactions were run using the OneStep RT-

PCR kit from (Qiagen) using the manufacturer’s protocol. The

QIAxcel capillary gel electrophoresis system (Qiagen) was used to

visualise RT-PCR products. Samples were run using the DNA

screening cartridge using the AM420 run settings (5 kV sample

injection voltage for 10 s, 5 kV separation voltage for 420 s;

suitable for DNA concentrations of 10–100 ng/ml). A photo-

multiplier detector converted the emission signal into a gel image

and an electropherogram that allows visualisation and quantifica-

tion, respectively, of each PCR product. The Biocalculator

software package (Qiagen) was used to analyse the peaks for each

sample. Aligment marker of 50 bp to 1.5 kb was used to align run

samples.

Imaging and Perfusion
The TIR-FM and ppH perfusion system have been described

previously [10].

Transferrin Uptake Experiments
Cells were transfected with plasmid encoding TfR-phl and RFP-

tagged endocytic protein and plated onto coverslips 24 h before

imaging. Transfected cells were located and imaged using a

spinning disk UltraVIEW ERS confocal (PerkinElmer) using a

640/1.4 NA oil immersion PlanApo objective (Olympus). After

acquiring an initial image (denoted t = 0 min) transferrin conju-

gated to Alexa 647 (Tfn-A647; Invitrogen) was added to the

chamber at 10 mg/ml in 10 mM HEPES buffer saline solution

(pH 7.4). After 30 min at room temperature the cells were washed

twice in 10 mM MES (pH 4.0) to strip away surface-bound Tfn-

A647 and returned to HEPES buffer saline (pH 7.4). The cells

were then imaged to determine uptake of transferrin (image

denoted as t = 30 min).

Spot Segmentation, Detection of Protein Clusters (CCSs,
TfR7 Clusters, and TfR5 Vesicles), and Particle Tracking

Movies of cells during the alternate pH protocol were divided in

four parts, TfR-phl at pH 5.5 (TfR5 movie) and at pH 7.4 (TfR7

movie), and the RFP fusion protein at the two pH values (movies

RFP5 and RFP7). To detect protein clusters (CCSs or TfR7

clusters as in Figure S4, CCVs in the TfR5 movies) images were

subjected to segmentation based on wavelet transform (Multidi-

mensional Image Analysis [MIA] add-on to Metamorph 6, written

by V. Racine and J.-B. Sibarita, Curie Institute, Paris, France).

The objects detected were then tracked using a simulated

annealing algorithm [79] to identify endocytic events. The output
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of this tracking was a series of coordinates corresponding to the

centre of mass of the objects, with unique identifiers (event

numbers).

To determine the lifetimes of CCSs using either Clc7 or TfR7, a

different tracking algorithm was used to account for transient

breaks in track histories of 1–2 frames (i.e., gap closing was

incorporated). The coordinate lists generated by MIA were

reassigned in Matlab using a nearest-neighbour algorithm

(‘‘track.pro’’, John C. Crocker and Eric R.Weeks, http://www.

physics.emory.edu/,weeks/idl/index.html). For Clc data, inde-

pendent track histories generated by MIA from Clc7 and Clc5

data were combined and reassigned, while for TfR only the TfR7

data were used. To verify tracking fidelity the reassigned tracks

were overlaid on the original image series in Matlab and inspected

visually. Although the tracking was perhaps not as robust as more

recently published techniques [27], it was sufficiently robust to

differentiate between long-lived CCSs and shorter lived CCSs

(Figures 1 and 6).

Screening of Scission Events
All the tracked objects in the TfR5 movies were screened to

identify genuine endocytic events using routines programmed in

Matlab 7.4 (Mathworks). To qualify as bona fide events each

candidate event required a TfR5 vesicle (i) that persisted for at

least three frames (i.e., 8 s) following appearance, (ii) that appeared

at least 20 frames after the start of the movie, or 20 frames before

its end, to ensure quantification of signals for 80 s before and after

the vesicle’s appearance, (iii) that appeared and remained at more

than seven pixels (0.7 mm) from the edge of the image, to ensure

proper quantification (see below), (iv) that appeared de novo, and

was not produced by the fusion of two objects or the dissociation of

an object into two, (v) that overlapped, on appearance, with a pre-

existing cluster detected in the segmented TfR7 movie, (vi) whose

fluorescence was bigger than a defined SNR of 5 wherein

SNR = (F02av)/std, where F0 is the fluorescence at time 0, and av

and std are the average fluorescence and standard deviation,

respectively, in the five frames before vesicle appearance, and (vii)

that was close to maximal fluorescence at the time of appearance.

We calculated the slope of the fluorescence change in the first

three frames of vesicle appearance (Figure 1) and discarded the

events where this slope was greater than 0.1, which corresponds to

a 10% increase in fluorescence.

The purpose of this screening was not to detect all events in a

recording, but to have stringent criteria to select automatically a

large proportion of events that were genuine scission events, to test

a large number of candidate proteins in a manageable analysis

time. Among the events that occurred at suitable times and

locations (criteria i–iv), only 18.5%60.8% of events (n = 191 cells)

passed the last three criteria (v–vii), for a total of 239611

candidate events per cell. Nevertheless, some false-positive events

remained, so we reviewed our dataset visually by watching each

event individually (the portion of the TfR5 and RFP5 movies

around the 0 frame, and an average of five frames of movie TfR7

before the event) to assess if there were tracking errors, poor signal,

simultaneous events nearby, or other problems. On average,

82.3%60.9% (n = 191 cells) of events were confirmed by this

second, manual screen, for a total of 19168 confirmed scission

events per cell.

To check for bias in the screening procedure we performed a

visual screen on all tracked objects for five cells, each transfected

with different mCherry-tagged proteins (1,4006360 tracked

objects per cell). Of the events rejected by the automated screen

(1,1006318 objects), a total of 10.3%62.2% were visually

identified as genuine scission events (104624 events). Importantly,

when the fluorescence from these ‘‘recalled’’ events was quantified

and averaged, the RFP recruitment signatures were the same as

the signatures obtained from ‘‘semi-automatically selected’’ events

(Figure S10). The sum of absolute differences between average

fluorescence traces of semi-automatically selected and recalled

events was not statistically significant. This shows that our semi-

automated procedure did not select a particular category of

scission events.

Quantification of Protein Recruitment during Scission
Events

Images in the green fluorescent protein (GFP) and RFP

channels were acquired simultaneously with a Dual View (Optical

Insights) beam-splitter that was adjusted with an image of beads

that fluoresce in the two channels (yellow fluorescein carboxylate

beads, 0.2-mm diameter, Invitrogen) to minimize distortion from

one channel to another. However, small (0–5 pixels) shifts

remained in the two channels that needed to be corrected digitally

for optimal colocalization. We used a third-order polynomial

spatial transform that interpolates between ten bead pairs to make

the correction. When we quantified experimental data we did not

transform the raw images (i.e., interpolate and reassign pixel

fluorescence values) but instead used the spatial transform to

recalculate the vesicle centre coordinates in the RFP channel. This

works well, since the difference between the coordinates of a pixel

(x,y) in the green channel and its transformed coordinates (u,v) in

the red channel is only ever a fraction of a pixel.

We quantified the fluorescence 20 frames before and 20 frames

after the appearance of a vesicle for all four movies in a three-

pixel-radius circle centred on the object coordinates at the time of

appearance (frame 0) for this frame and the 20 preceding frames,

then centred at the tracked vesicle coordinates during tracking,

and then on the last known coordinates after tracking was lost.

Local background was estimated in an annulus (three pixels inner

radius, six pixels outer radius) by taking an average of pixel values

between the 20th and 80th percentiles to avoid contributions from

neighbouring brightly fluorescent patches. This quantification is

similar up to this point to other quantifications performed by us in

previous studies [10,18].

To correct for bleed through from the GFP to RFP channels we

introduced a bleed-through coefficient (BT) for each cell to correct

the fluorescence values with the formula FRFPx,corr = FRFPx2

BT?FTfRx, where x is 5 or 7. Such corrections are acceptable as

they involve only linear combinations of fluorescence values. BT was

determined for each cell by minimizing the summed squared

difference for values of BT taken between 0 and 0.05 in 0.001

increments (Figure S4). Values of BT were on average

3.00%60.07% (n = 191). Differences in BT values could arise from

small differences in background fluorescence, non-linearity in the

camera, or changes over months of the optical properties of the

various parts of the system (filters, mirrors, or camera). With this

correction, fluorescence values from RFP5 and RFP7 could be

combined to achieve a time resolution of 2 s (Figure S4).

To determine when the recruitment of a labelled protein

became significant, we generated randomized datasets by shifting

the event coordinates in a random manner within the cell footprint

(Figure S4), and calculated fluorescence for all four movies as

described above. We generated 200 randomized datasets for each

cell, and then combined the average fluorescence measures to

determine, for each data point, 95% upper and lower intervals

(Figure S4).

To sort events into terminal and non-terminal events, we

measured the average FTfR7 for four frames before scission and

nine frames (36 s) after scission. The ratio between these two
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values was used to determine whether the event was terminal (ratio

,0.4) or non-terminal (ratio .0.6). Events with ratios close to 0.5

were not sorted. To determine the time of peak RFP recruitment,

we estimated a noise level with standard deviation of the last six

FRFP values (12 s) of the recording. If the maximum is bigger than

a threshold (six times noise above average), the time of the

maximum FRFP value is taken as the maximum RFP recruitment

time and used to construct the histograms in Figure 1F and others.

The proportion of events with significant peak recruitment is given

in Table S2 for each tested protein.

Construction of Cloud Plot
The goal was to visualise the overall structure of the Dyn1-

mCherry set of fluorescence recruitment traces and determine

whether there were ‘‘natural’’ (as opposed to analyst-imposed)

classes. First the amplitudes of fluorescence traces were normalised

by cell over the range [0,1], and the mean of each fluorescence

trace was subtracted to reduce dispersion in the y-axis. Each

normalised, offset fluorescence trace was projected into an image

matrix, and at those points where the fluorescence trace overlaid a

pixel a ‘‘1’’ was added to the pixel value, ‘‘0’’ otherwise. The

resulting density plot was log-transformed to visualise both high-

and low-density features.

Cluster Analysis of Protein Recruitment Signatures
We compared the average recruitment signatures by computing

the correlation coefficients for each pair of curves corr(RF-

Pa,RFPb). Correlation coefficients were 0.4560.43 (average 6

standard deviation, n = 561). We then used the correlation

distance, dist(RFPa,RFPb) = 12corr(RFPa,RFPb), to perform a

hierarchical clustering using an average linkage algorithm that

generated the dendrogram in Figure 4. This hierarchical cluster

tree reflected the actual correlations between RFP curves, with a

correlation coefficient between the cophenetic distances (the

distances represented as horizontal bars in the tree) and the

correlation distances of 0.81. Other linkage algorithms yielded

lower correlation coefficients.

To perform these comparisons, we used the full range of

measurements, from 282 s to +76 s relative to the time of vesicle

detection. Away from time 0, the differences between the curves

would be less significant than close to the moment of vesicle

formation and so similarity measurements could be affected by the

choice of time interval around vesicle creation. We performed the

same clustering procedure using RFP measures only between 244

and +36 s relative to vesicle formation. The cluster tree generated

was very similar to the one shown in Figure 4. There were only

three minor differences between these two trees: (i) N-WASP

grouped first with syndapin instead of with Eps8, (ii) dynamin2

grouped first with dynamin1 instead of with Hip1R, and (iii)

coronin grouped first with Arp3 and cortactin instead of with

SNX9 and cofilin.

Finally, for many proteins the non-terminal fluorescence traces

showed little variation before and after scission (Figure S8, see

definition below of these two types of events). The clustering could

be different in an analysis using only the terminal fluorescence

traces, wherein most proteins reach random values 80 s after

scission. Therefore, we performed the clustering on non-terminal

events only. Again, the resulting dendrogram was very similar to

the one shown in Figure 4, with the same number of modules

defined by a distance threshold of 0.2, and only minor differences:

(i) ACK1 leaves the GAK cluster to be weakly (distance .0.2)

attached to the dynamin cluster, (ii) endophilin groups first with

syndapin within the dynamin cluster, and (iii) four other different

groupings occur between proteins within the same cluster.

Overall, these tests suggest that the clusters defined in Figure 2

correspond to genuine similarities between the different RFP

recruitment signatures that would correspond to functional units

involved in CCV formation.

Analysis of CCP Disappearance Events
To explore the relationship between scission and CCS

disappearance NIH-3T3 cells were transfected with Clc-mCherry

and TfR-phl and assayed using the ppH protocol. All CCSs were

tracked as described above. The end of each track history was

extended by 20 frames (40 s) by padding with the last detected

CCS location, and the Clc-mCherry fluorescence and TfR5

fluorescence were quantified for each candidate CCS. To identify

CCS disappearance, abrupt drops in Clc-mCherry fluorescence

were detected by convolving each Clc-mCherry fluorescence trace

with a one-dimensional kernel appropriately tuned for negative

edge detection (a negative step function kernel, convolved with a

Gaussian, s= 36 s). Step decreases in Clc-mCherry fluorescence

manifest as spikes in the convolved signal, and the maximum

response was used to define a t0 for each CCP fluorescence trace.

By definition, this algorithm aligns the Clc-mCherry fluorescence

traces to their respective maximal negative derivatives (i.e.,

maximal rate of fluorescence decrease). Although this differs

slightly to the algorithm used previously [18], the temporal

alignment is more robust. The resulting candidate CCS disap-

pearance events were screened by comparing the average

fluorescence of the first nine time points (t = 280 s to t = 244 s)

and the last nine time points (t = 44 s to t = 80 s) of the

fluorescence trace. Only those traces showing a decrease in

average fluorescence with a magnitude at least 2.5-fold greater

than the standard deviation of the first nine values were deemed

bona fide. This removed false-positive disappearance events (i.e.,

abrupt but incomplete drops in Clc-mCherry fluorescence). To

detect scission events associated with disappearing CCSs the TfR5

trace associated with each candidate CCP was screened for step

increases in fluorescence of at least 25 fluorescence units between a

given time point t and the average fluorescence over of the

previous four time points. This is a less stringent criterion for

detecting scission events than used in the main analysis but it was

less prone to discarding dim or noisy scission events. Of 197

disappearing CCSs, 107 (54%) were associated with a scission

event (Figure 1), close to the prediction that50% of events would

be detected when the cell is bathed in pH 7.4 solution, the other

50% being invisible as they occur when the cell is under pH 5.5

solution.

Thin Section EM
NIH-3T3 cells expressing hTfR-SEpHl were isolated by FACS

24 h post-transfection, replated, and allowed to adhere overnight.

To examine potential effects of acidic buffer on CCS morphology

NIH-3T3 cells were incubated with MES buffered saline (pH 5.5)

for 1 or 10 min before being washed briefly in PBS and fixed at

room temperature in a solution of paraformaldehyde (2%) and

glutaraldehyde (2.5%) in sodium cacodylate (0.1 M at pH 7.2).

Fixed cells were harvested by scraping and centrifuged in a

horizontal rotor (1,000 g, 5 min). The resulting cell pellet was

placed in fresh fixative and stored at 4uC. In preparation for EM,

fixed samples were washed thoroughly in sodium cacodylate buffer

(0.1 M), post-fixed in OsO4 (1% in 0.1 M sodium cacodylate) for

1 h, and then washed with distilled water. Samples were stained en

bloc with uranyl acetate (2%) in ethanol (30%) before dehydration

in a graded ethanol series followed by 1,2-epoxypropane

(propylene oxide) and then infiltrated and embedded in CY212

resin (Agar Scientific). Ultrathin (50–70 nm) sections were cut on a
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Reichert Ultracut E microtome and collected on uncoated 200-

mesh grids. Sections were post-stained with saturated uranyl

acetate before staining with Reynolds lead citrate. Images were

acquired using a Philips EM208 microscope, with an operating

voltage of 80 kV, and a CCD camera.

Protein Structures
Graphics for protein structures were downloaded from the

Research Collaboratory for Structural Bioinformatics (RCSB)

consortium Protein Data Bank (PDB) website, where the original

citations are also listed.

N Endophilin: http://www.rcsb.org/pdb/explore/explore.do?

structureId=2C08

N Amphiphysin: http://www.rcsb.org/pdb/explore/explore.

do?structureId=1URU

N APPL: http://www.rcsb.org/pdb/explore/explore.do?struc

tureId=2Q12

N SNX9: http://www.rcsb.org/pdb/explore/explore.do?struc

tureId=3DYT

N Syndapin: http://www.rcsb.org/pdb/explore/explore.do?

structureId=3HAI

N FCHo2: http://www.rcsb.org/pdb/explore/explore.do?struc

tureId=2V0O

Supporting Information

Figure S1 The canonical model of CME. (A) The formation

of a CCV—as deduced from EM, genetic, biochemical, and live-

cell fluorescent imaging data—begins with the random nucleation

of a small patch of adaptors, the F-BAR domain protein FCHo,

and clathrin at the plasma membrane that is stabilised (possibly by

the acquisition of cargo [3,28]) to form a CCP. The CCP

invaginates and grows by the addition of adaptors and clathrin

triskelion before the large GTPase dynamin constricts and pinches

off the membrane neck, releasing a CCV. Following scission, the

coated vesicle is stripped of the clathrin coat by the ATPase Hsc70

and cofactors and is subsequently processed by the endosomal

machinery. (B) A table summarising the findings of live-cell

imaging studies of endocytic protein dynamics in mammalian cells.

In dual colour imaging experiments, different reference signals

have been used to align and decipher the recruitment dynamics of

fluorescently tagged endocytic proteins to sites of endocytosis. In a

typical experiment the disappearance or increase in mobility of

CCPs labelled with GFP or RFP clathrin light chain was used as

an indicator for endocytosis. This approach was used to

characterise the recruitment dynamics of AP2 [3,28,41,80],

Hip1R [5], epsin [4,6], actin [18], endophilin2 [37], synaptojanin1

[37], APPL1 [59,60], OCRL1 [59], FBP17 [6], N-WASP [47],

Arp3 [47,80], GAK [15,16], and dynamin1/2 [3,15,18,41] to

endocytic sites. This enabled CCP/CCV components to be

divided into those that are recruited at early stages (orange time

course in [A]) or transiently at late stages (yellow time course in

[A]). In addition, some studies referenced the recruitment of pairs

of endocytic proteins to one another. For example, the recruitment

of SNX9 was found to occur over a similar time course to

dynamin1 [19], while GAK was recruited to sites of endocytosis

after dynamin1 [15]. Despite these efforts, the recruitment

dynamics of many endocytic proteins remain poorly characterised

and the precise timing of recruitment of endocytic proteins relative

to scission remains unexplored.

Found at: doi:10.1371/journal.pbio.1000604.s001 (1.23 MB TIF)

Figure S2 Detection and timing of single scission events
using TIR-FM and the ppH assay. (A) An adherent cell

growing on the surface of a coverslip was imaged using TIR-FM

[64]. A large-diameter perfusion tip (100 mm internal diameter,

not to scale) was used to perfuse the target cell with buffer,

alternating between buffer of pH 7.4 and pH 5.5 in successive

images. (B) Example pairs of images acquired at arbitrary time

points t and t+2 s of a cell expressing Clc-mCherry and TfR-phl.

Both clathrin, tagged with mCherry (Clc-mCherry), and TfR,

tagged with super-ecliptic phluorin (TfR-phl), fluoresced brightly

at pH 7.4. Immediately following acquisition of the images at

pH 7.4, the perfusate was switched to pH 5.5 buffer and a second

set of images acquired. Clc-mCherry fluorescence was unaffected

by the change in pH, while TfR-phl fluorescence at the plasma

membrane quenched, revealing bright punctae of insulated (i.e.,

endocytosed) TfR-phl. (C) An example scission event from the cell

shown in (B) focused on a short time window immediately before

and after scission. A coated pit (Clc spot, lower panel) colocalized

with a patch of TfR-phl (TfR7, top panel). From t = 212 s

through t = 24 s the patch of TfR7 was accessible to extracellular

acidification. Thereafter, the patch of TfR-phl became insulated

from external acidification, indicating scission occurred in the

preceding pulse of pH 7.4 buffer. The frame in which the acid-

resistant TfR-phl spot appeared was subsequently defined as

t = 0 s. Following scission, the newly formed CCV uncoated,

indicated by loss of clathrin signal between t = 4 s and t = 12 s.

Between t = 8 s and t = 12 s the insulated TfR-phl spot disap-

peared, indicating that the CCV either acidified or moved away

from the plasma membrane. (D) Topological interpretation of key

frames before and after scission indicated by blue box in (C). Fawn

indicates cytosol; blue, extracellular buffer; red, clathrin; and green

or black lollipops, TfR-phl. At t = 24 s the CCP was deeply

invaginated, and TfR-phl was accessible to extracellular acidifica-

tion (black lollipops). In the following image at pH 7.4 TfR-phl

concentrated at the CCP and on the membrane fluoresced

brightly (green lollipops). Between t = 24 s and t = 22 s scission

occurred, insulating the receptor cargo from subsequent external

acidification at t = 0 s. (E) Logic plot of image acquisition (upper

trace, high indicates camera exposing), valve command (middle

trace), and resulting change in pH at the cell. Note that detected

scission events actually occurred between ,23.8 s and ,21.8 s

(indicated in grey).

Found at: doi:10.1371/journal.pbio.1000604.s002 (2.31 MB TIF)

Figure S3 Correlations between Clc, TfR7, and TfR5. (A–

C) Average normalised fluorescence traces for (A) TfR7, (B) TfR5,

and (C) Clc for 851 scission events. Fluorescence traces were

normalised by cell to control for cell-to-cell variability due to

variable expression levels and/or differences in illumination. Grey

bars indicate time intervals over which average fluorescence

measurements were calculated for individual normalised fluores-

cence traces, and which were subsequently used as test statistics to

measure correlations. For TfR5 the peak fluorescence at scission

was corrected for incomplete quenching (i.e., FTfR5 = F22F1). (D

and E) Scatter plots of (D) FTfR7 versus FClc (Spearman’s rho = 0.85,

p,0.05) and (E) FTfR7 versus FTfR5 (Spearman’s rho = 20.0022,

p.0.05). There was also no correlation between Clc and TfR5

fluorescence (not shown, Spearman’s rho = 20.0024, p.0.05).

Solid dark blue lines indicate locally weighted smoothed regressions

to visualise overall trends (smoothing factor = 0.75). Dotted dark

blue lines indicate 95% confidence intervals. From this we conclude

that larger CCSs harboured more TfR-phl cargo and that TfR-phl

can be used as a surrogate signal to indicate CCS size. However,

there was no correlation between CCS size and the amount of TfR-

phl internalized by scission events. (F–I) Thin section EM images of
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clathrin-coated invaginations in NIH-3T3 cells, (F) without TfR-phl

expression, (G) with TfR-phl expression at pH 7.4, and (H and I)

with TfR-phl expression after incubation at pH 5.5 for (H) 1 min

and (I) 10 min.

Found at: doi:10.1371/journal.pbio.1000604.s003 (4.06 MB TIF)

Figure S4 Correction for bleed through, the calculation
of confidence intervals, and the recruitment signature of
Cav1-mRFP as a negative control. (A) Averages of fluores-

cent measures for Dyn1-mCherry for one cell (290 events) at

pH 5.5 (red) and pH 7.4 (brown). Note the offset between the two

measures, most prominent before scission, when the TfR7 signal

was greatest. (B) Average of the same events after bleed-through

correction. For this cell, the bleed-through value (defined as the

minimum of the sum of squared difference between the curves at

the two pHs, inset) was 3.2%. (C) Example of shifts used to

generate the randomized dataset. White area represents the

central part of a cell, and the black area, the cell edges, as

determined by a maximum projection of the TfR7 movie over

time. Blue dots correspond to event coordinates. Starting from

each blue dot, the red segments indicate the shift in the

coordinates used to generate the randomized data. (D) Average

fluorescent measures for the shifted events shown in (C) (green,

TfR7; light green, TfR5; red, Dyn1-mCherry). Black lines show

the median and 95% confidence intervals for 200 shifts. (E) A

scission event in cells expressing Cav1-mCherry (note the Cav1

punctate structure). (F) Fluorescent measurements for TfR7, TfR5,

and Cav1 corresponding to the event shown in (E). The circled

points on the fluorescence traces correspond to the images shown

in (E). Vertical blue line shows time = 0 and horizontal lines show

fluorescence = 0. The horizontal scale bar is equivalent to 20 s.

Note the negative fluorescent values for the Cav1-mCherry signal

associated with the scission event in (E). (G) Average Cav1, TfR7,

and TfR5 signal from all positive scission events (five cells, 846

events). The Cav1 signal associated with scission (red line, bottom

panel) is below the median fluorescence values associated with

random events (middle black line, bottom panel) and negative for

the time points preceding scission, indicating Cav1-mCherry was

excluded from areas of the plasma membrane associated with

scission. (H) A schematic illustration of how a negative fluorescent

recruitment signature arises. When a RFP-tagged protein is

physically excluded by a CCS from the region of interest, centred

upon the scission event (green spot in centre of region of interest),

but is present outside of the region of interest (shown as a red

spots), the average red channel fluorescence of the annulus (FlAnn)

will be greater than the average fluorescence value for the region

of interest (FlROI), resulting in a ‘‘negative fluorescent’’ recruitment

signature (i.e., FlROI2FlAnn,0).

Found at: doi:10.1371/journal.pbio.1000604.s004 (1.38 MB TIF)

Figure S5 Domain plots of the endocytic proteins
analysed in this study. The identity, start point, and end

point of domains were obtained from http://www.pfam.org.

Found at: doi:10.1371/journal.pbio.1000604.s005 (1.71 MB TIF)

Figure S6 Expression analysis of the proteins assayed.
Capillary RT-PCR analysis revealed that 30 of the 34 proteins

analysed using the ppH assay are expressed in NIH-3T3 fibroblasts.

The exceptions are amphiphysin1 and FCHo1, which are only

expressed in mouse brain (*), and ACK1 and CIP4, which are not

expressed in either NIH-3T3 fibroblasts or mouse brain (**).

Found at: doi:10.1371/journal.pbio.1000604.s006 (2.22 MB TIF)

Figure S7 Uptake of Tfn-A647 in transfected NIH-3T3
cells. A subset of RFP fusion constructs was assayed to determine

whether expression had any gross defect upon Tfn uptake.

Transfected NIH-3T3 cells were imaged by confocal microscopy

before (t = 0 min) and after (t = 30 min) incubation with human

transferrin conjugated to Alexa-647 (Tfn-A647). Green, TfR-phl;

magenta, Tfn-A647; red, RFP fusion. (A) TfR-phl alone. (B) TfR-

phl and OCRL1. (C) TfR-phl and BIN1. (D) TfR-phl and SNX9.

(E) TfR-phl and CIP4. (F) TfR-phl and myosin1E. (G) TfR-phl

and CALM. Cells expressing the RFP fusion constructs were still

able to internalize Tfn-A647.

Found at: doi:10.1371/journal.pbio.1000604.s007 (3.90 MB TIF)

Figure S8 Terminal versus non-terminal average fluo-
rescence traces. Average recruitment signatures were generated

for each of the mCherry fusion constructs, and each set of traces

was divided into terminal and non-terminal traces (see Materials

and Methods). For transiently recruited proteins (e.g., Synd2,

GAK, and OCRL1), there was little difference in the fluorescence

traces for terminal versus non-terminal events. For proteins that

bind to clathrin directly (e.g., mu2), there was a difference between

the average fluorescence recruitment signature for terminal and

non-terminal events. For transiently recruited proteins, the

minimal difference in kinetics between terminal and non-terminal

events shows that the core machinery of invagination and scission

was constant, irrespective of the behaviour of the associated

clathrin patch.

Found at: doi:10.1371/journal.pbio.1000604.s008 (4.79 MB TIF)

Figure S9 Peak histograms for recruitment signatures.
For each endocytic protein, the peak fluorescence of recruitment

(defined as the biggest peak greater than six standard deviations of

the last six FRFP values of the recording) was plotted as a

histogram.

Found at: doi:10.1371/journal.pbio.1000604.s009 (4.44 MB TIF)

Figure S10 Comparison of recruitment signatures for
automated analysis and ‘‘recalled’’ events. To check that

the automated analysis did not bias the selection of bona fide

scission events, the sets of rejected events for examples cells

expressing (A) Clc, (B) Hip1R, (C) N-WASP, (D) Dyn1, and (E)

GAK were manually checked. Events deemed by a human

observer to be bona fide were ‘‘recalled’’. The recruitment

signatures for (Ai–Ei) automatically selected events and (Aii–Eii)

recalled events were indistinguishable. Therefore, the automated

selection was not biased.

Found at: doi:10.1371/journal.pbio.1000604.s010 (2.24 MB TIF)

Table S1 Parameters for the cells used in this study.

Found at: doi:10.1371/journal.pbio.1000604.s011 (0.10 MB

DOC)

Table S2 Construct details. To obtain the constructs used in

this study please contact Addgene (http://www.addgene.org).

Found at: doi:10.1371/journal.pbio.1000604.s012 (0.08 MB

DOC)

Video S1 Example region of interest of cell shown in
Figure 1A, 1C, and 1D. Shows Clc-mCherry- (left) and TfR5-

signal-reporting scission events (right).

Found at: doi:10.1371/journal.pbio.1000604.s013 (2.41 MB AVI)
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