What exactly is ‘N’ in cell culture and animal experiments?
Analysis of an example data set

Stanley E. Lazic, Charlie J. Clarke-Williams, Marcus R. Munafo

We compare the results of six models on a data set where pregnant dams were randomised to treatment groups but observations were made on the offspring.

Load packages and set options

```r
library(nlme)
library(lattice)
suppressMessages(library(dplyr))
suppressMessages(library(rstanarm))
options(mc.cores = parallel:::detectCores())
```

This example uses the VPA data set from the labstats R package. In this experiment, six pregnant female mice were randomly assigned to receive an injection of valproic acid (VPA, n = 3) or saline (n = 3) and the outcome variable was the amount of locomotor activity in the offspring. Since the measurements are taken on the offspring, they are the observational units (OU). The research hypothesis is whether prenatal exposure to VPA affects locomotor activity in the offspring, and so the offspring are also the biological units (BU). But since the dams (litters) were randomised to the treatment conditions, the experimental units (EU) are the dams and sample size is therefore the number of dams (N = 6). A subset of the full data set is used here to simplify the analysis and so one experimental condition was dropped and only two offspring from each litter are used. The data are originally from Mehta et al. [1].

```r
data("VPA", package="labstats")
d <- filter(VPA, drug == "SAL") %>%  # select only SAL drug group
  mutate(act = activity/10000) %>%  # put on nice scale for plotting
  select(litter, group, act) %>%    # select key variables
  arrange(litter)                  # order by litter

# the data used for this example
d
```

<table>
<thead>
<tr>
<th>litter</th>
<th>group</th>
<th>act</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>6.7752</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>4.9948</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>6.5769</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>8.1351</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>5.8470</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>5.9803</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>4.5258</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>5.3587</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>5.4880</td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>5.3566</td>
</tr>
<tr>
<td>11</td>
<td>J</td>
<td>5.6953</td>
</tr>
<tr>
<td>12</td>
<td>J</td>
<td>5.0725</td>
</tr>
</tbody>
</table>
The plot below shows the activity by litter.

```r
par(las=1)
beeswarm::beeswarm(act ~ litter, data=d, ylim=c(2,10),
                    pwpch=as.numeric(group), pwcol=as.numeric(group),
                    ylab="Activity (x10000)",
                    xlab="Litter")
legend("topright", pch=1:2, col=c("black","red"), legend=c("SAL","VPA"))
```

![Activity by litter plot](image)

Analysis 1: Pseudoreplication when treating offspring as the EUs

The analysis below analyses all 12 observations, not taking into account that two animals come from each litter and so the number of OUs is twice the number of EUs. Hence, the analysis has an artificially inflated sample size and p-values that are too small.

```r
m1 <- aov(act ~ group, data=d)
summary(m1)
```

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>1</td>
<td>3.87</td>
<td>3.87</td>
<td>5.98</td>
</tr>
<tr>
<td>Residuals</td>
<td>10</td>
<td>6.47</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

The p-value is less than 0.05 and we would conclude that VPA has an effect, but residual degrees of freedom (df) are 10 (shown in the Df column). Since the residual df cannot be larger than the sample size (the number of EUs), it is obvious that the analysis is inappropriate.

Analysis 2: No pseudoreplication, the correct EU is specified with “Error()”

The analysis below uses the Error() argument to specify that the litters are the EUs, and litter is treated as a fixed effect in this analysis.
m2 <- aov(act ~ group + Error(litter), data=d)
summary(m2)

Error: litter
 Df Sum Sq Mean Sq F value Pr(>F)
group 1 3.870 3.870 4.970 0.091
Residuals 4 3.112 0.778

Error: Within
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 6 3.359 0.560

There are two tables in the above output Error: litter and Error: Within. The group variable is found in the Error: litter table and has a p-value of 0.09. Unlike the above analysis we would not conclude that there was an effect of VPA (assuming we are making a hard cutoff at \(p = 0.05 \)). Note that the residual df in the Error: litter is less than the number of EUs, indicating that there is no pseudoreplication.

Analysis 3: No pseudoreplication, treating litter as a random effect

Another way to specify that the litters are the EUs is to treat litter as a random effect. When the data are balanced, meaning that each litter has the same number of observations, this analysis is equivalent to model m2.

m3 <- lme(act ~ group, random=~1|litter, data=d)
anova(m3)

 numDF denDF F-value p-value
(Intercept) 1 6 521.500 <.0001
 group 1 4 4.967 0.0897

The p-value is the same as model m2 (slight differences are due to rounding), and the residual df is also 4 (shown in the denDF column).

Analysis 4: No pseudoreplication, average multiple observations on each EU

The simplest way to analyse such data is to reduce the data so that there is only one value per EU. Here, the average of the two offspring in each litter is calculated. This approach is called a summary measure or derived variable analysis.

Reduce data by calculating litter average
d2 <- group_by(d, litter) %>%
 summarise(group=unique(group), act = mean(act)) %>%
as.data.frame()
d2
The analysis is now equivalent to a t-test, but using the `aov()` function makes the output consistent with the previous analyses.

```r
m4 <- aov(act ~ group, data=d2)
summary(m4)
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>1</td>
<td>1.93</td>
<td>1.934</td>
<td>4.97</td>
<td>0.09</td>
</tr>
<tr>
<td>Residuals</td>
<td>4</td>
<td>1.56</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once again, we get the same p-value (0.09) and the correct dfs. Averaging multiple observations on each EU won’t always give the same results as a mixed effects model (model `m3`), but it occurred here because the number of observations was the same for each EU.

Analysis 5: Bayesian analysis with pseudoreplication

The question of “what is N?” is relevant to both classical frequentist statistics as we showed above, but also to Bayesian methods (Bayesian methods are not discussed here but Kruschke [2] and McElreath [3] provide excellent introductions). Below we fit a model by incorrectly treating all 12 offspring as the EUs; this is the Bayesian equivalent of model `m1`. The priors are chosen to be uninformative and so have little influence on the results.
m5 <- stan_glm(act ~ group, data=d, adapt_delta=0.99, iter=20000,
 prior = normal(0, 20), prior_intercept = normal(5.82, 20),
 prior_aux = normal(0, 20))
summary(m5, pars="groupVPA", digits=3)

Model Info:

function: stan_glm
family: gaussian [identity]
formula: act ~ group
algorithm: sampling
priors: see help('prior_summary')
sample: 40000 (posterior sample size)
num obs: 12

Estimates:

 mean sd 2.5% 25% 50% 75% 97.5%
groupVPA -1.141 0.549 -2.243 -1.482 -1.137 -0.799 -0.045

Diagnostics:

mcse Rhat n_eff

 groupVPA 0.004 1.000 21073

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size.

The above output shows (under the Estimates table) that the mean difference between the two groups is -1.141 units, with a 95% CI from -2.243 to -0.045. Since the 95% CI does not include zero, we can (incorrectly) conclude that there is an effect of VPA.

Analysis 6: Bayesian analysis without pseudoreplication

The summary measure analysis below uses the reduced data set, and the same priors as model m5. This analysis is the Bayesian equivalent to model m4.

m6 <- stan_glm(act ~ group, data=d2, adapt_delta=0.99, iter=20000,
 prior = normal(0, 20), prior_intercept = normal(5.82, 20),
 prior_aux = normal(0, 20))
summary(m6, pars="groupVPA", digits=3)

Model Info:

function: stan_glm
family: gaussian [identity]
formula: act ~ group
algorithm: sampling
priors: see help('prior_summary')
sample: 40000 (posterior sample size)
num obs: 6

Estimates:

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>2.5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupVPA</td>
<td>-1.131</td>
<td>0.950</td>
<td>-2.999</td>
<td>-1.589</td>
<td>-1.133</td>
<td>-0.676</td>
<td>0.763</td>
</tr>
</tbody>
</table>

Diagnostics:

<table>
<thead>
<tr>
<th></th>
<th>mcse</th>
<th>Rhat</th>
<th>n_eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupVPA</td>
<td>0.008</td>
<td>1.000</td>
<td>14525</td>
</tr>
</tbody>
</table>

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size.

The mean difference is similar to model m5, but the 95% CI is now from -2.999 to 0.763. Since zero is included in the interval, we would conclude that VPA has no effect (although Bayesians are unlikely to make hard conclusions about effects being present or absent based on a fixed threshold). To better appreciate the differences in the models, the posterior distributions are plotted below. The posterior distributions represent the uncertainty in the effect of VPA, given the data. Model m5, which incorrectly uses a sample size of 12, has an artificially narrower posterior distribution.

```r
# extract draws from the posterior
post_m5 <- data.frame(m5)
post_m6 <- data.frame(m6)

par(mar=c(5,1,1,1))
plot(density(post_m5$groupVPA), xlim=c(-6.1, 4), main="", yaxt="n",
     xlab="Difference between groups", ylab="")
lines(density(post_m6$groupVPA), lty=2, lwd=2, col="grey40")
abline(v=0, lty=2)
legend("topleft", lty=c(1,2), lwd=c(1,2), col=c("black","grey40"),
       legend=c("m5 (N=12)", "m6 (N=6)"))
```

![Graph showing posterior distributions for models m5 and m6.](image-url)
References:

