Monkey M

All significant neurons
Neurons with mean information ≥ median
Neurons with mean information ≥33rd percentile
Neurons clustered in the higher mean information group by K-means algorithm

Bias score for D and D_{rate}

Temporal sensitivity q (s$^{-1}$)

$n=61$

$n=31$

$n=20$

$n=15$

Bias score for D and D_{rate}

Temporal sensitivity q (s$^{-1}$)

$n=48$

$n=23$

$n=15$

$n=7$

Difference of time averaged D between q_{opt} and $q=0$

$p=0.73$

$p=0.70$

$p=0.50$

$p=0.64$

$p=0.81$

$p=0.15$

$p=0.57$

$p=0.0625$

q_{opt} for classification = 15 (s$^{-1}$)

q_{opt} for classification = 10 (s$^{-1}$)

q_{opt} for classification = 5 (s$^{-1}$)

Bias score for D and D_{rate}

Temporal sensitivity q (s$^{-1}$)

$n=48$

$n=23$

$n=15$

$n=7$

Difference of time averaged D between q_{opt} and $q=0$

$p=0.73$

$p=0.70$

$p=0.50$

$p=0.64$

$p=0.81$

$p=0.15$

$p=0.57$

$p=0.0625$

q_{opt} for classification = 15 (s$^{-1}$)

q_{opt} for classification = 10 (s$^{-1}$)

q_{opt} for classification = 5 (s$^{-1}$)

Bias score for D and D_{rate}

Temporal sensitivity q (s$^{-1}$)

$n=48$

$n=23$

$n=15$

$n=7$

Difference of time averaged D between q_{opt} and $q=0$

$p=0.73$

$p=0.70$

$p=0.50$

$p=0.64$

$p=0.81$

$p=0.15$

$p=0.57$

$p=0.0625$

q_{opt} for classification = 15 (s$^{-1}$)

q_{opt} for classification = 10 (s$^{-1}$)

q_{opt} for classification = 5 (s$^{-1}$)