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Abstract: Similar patterns of inter-
action, such as network motifs and
feedback loops, are used in many
natural collective processes, proba-
bly because they have evolved
independently under similar pres-
sures. Here I consider how three
environmental constraints may
shape the evolution of collective
behavior: the patchiness of resourc-
es, the operating costs of maintain-
ing the interaction network that
produces collective behavior, and
the threat of rupture of the net-
work. The ants are a large and
successful taxon that have evolved
in very diverse environments. Ex-
amples from ants provide a starting
point for examining more generally
the fit between the particular
pattern of interaction that regu-
lates activity, and the environment
in which it functions.

Collective behavior operates without

central control to regulate activity and

growth. Systems that operate in this way

are ubiquitous in nature. Cells act collec-

tively, for example, as networks of neurons

to produce sensations, or as patrolling T-

cells that mobilize other immune cells to

respond to pathogens. Many animal

groups regulate their movement without

a leader, such as bird flocks that turn in

the sky, or fish schools that swerve to avoid

predators. Social insects live in colonies,

and simple cues, mostly chemical, regulate

how colonies forage, maintain their nests,

and reproduce.

Over the past 20 years, across all the

fields of biology, attention has turned to

deciphering how local interactions pro-

duce collective global outcomes (e.g., [1]).

We see recurring patterns: a small number

of network motifs predominate in gene

transcription [2]; similar neural circuits

are used in different sensory systems [3];

and feedback loops regulate collective

behavior in many interacting groups, such

as bacteria, fish, dolphins, and social

insects [4–8].

It is likely that similar interaction

patterns are used in many natural collec-

tive processes because they have evolved

independently under similar pressures [9].

Such pressures are ecological, a conse-

quence of how the collective behavior acts

within, and acts upon, a dynamic envi-

ronment. But an ecological perspective is

missing so far from the study of collective

regulation, in molecules, cells, and even in

animal groups.

In systems biology and neuroscience,

many motifs and circuits have been

identified, each a process that uses local

interactions to regulate activities such as

gene transcription, metabolism, or percep-

tion. Showing that patterns exist, for

example that the distribution of motifs

differs from a random one [10] is a first

step; the next will be to show how the

patterns have evolved to function in

relation to a particular environment. A

quantitative description of why a process is

effective, or a simulation that selects for

that process [2,11–14], helps us to under-

stand how it works. But to understand its

evolution we need to know its ecological

consequences, what problems it solves in a

particular environment, and how it is

shaped by, and influences, changing

conditions [15].

Outlining hypotheses about the fit

between collective behavior and its envi-

ronment can guide the investigation of

collective behavior. For example, we now

know enough about physiology that we

expect animals that live in hot places to

have adaptations for heat exchange. In the

same way, we can expect the algorithm

that dictates collective organization in

particular conditions to be tuned to the

constraints of those conditions. With

respect to the workings of collective

biological systems, we are like the Euro-

pean naturalists of the early 19th century,

agog in the Amazon. We are searching for

general trends amidst enormous diversity

and complexity. A framework for the

match between process and environmental

conditions can provide predictions that

guide the investigation of new systems.

Here I consider three environmental

constraints that probably shape the evolu-

tion of collective behavior: the patchiness

of resources, the operating costs of main-

taining the interaction network that pro-

duces collective behavior, and the threat of

rupture of the network. Other important

constraints are not considered here to keep

this essay brief.

Ants offer many examples of the match

between particular environmental con-

straints and the regulatory processes used

in those conditions. The ants are a hugely

successful taxon of more than 12,000

species, found in every terrestrial habitat

and using every resource. All ant species

live in colonies that operate without any

central control, using patterns of interac-

tion to regulate activity [6]. We can see

how ant colonies regulate their behavior in

response to their environments, and this

provides a starting point for examining

more generally the fit between a pattern of

interaction and the environment in which

it functions.

Patchiness in Space and Time

A basic function of collective algo-

rithms is to regulate how the system
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explores and exploits its environment,

searching for and using some resource.

How best to search and retrieve depends

on the heterogeneity, in space and time,

of the resource [16,17]. Heterogeneity

can be characterized by the degree of

patchiness (Figure 1). A resource occurs in

patches when its presence means there is

likely to be more nearby, in space or time.

It is not patchy when its occurrence is a

Poisson process, so that it pops up in

space or time unpredictably.

When resources are uniform in space,

the components of a system can engage

independently in search and retrieval,

without using recruitment. For example,

harvester ants in the desert forage for

scattered seeds. The seeds are distributed

by wind and flooding, and are not patchy

in space [18]. An ant can retrieve a seed

on its own, and the presence of one seed

does not mean that there are likely to be

more seeds for others to find. These ants

search individually and do not lay phero-

mone trails to recruit others to seeds.

When resources are patchy in space but

not in time, rapid recruitment is useful. In

ants this leads to trail formation [19,20],

familiar in many of the ant species that show

up in our kitchens. A scouting ant that finds

food lays a trail as it returns to the nest, which

stimulates other foragers to return to the food,

and then lay more chemical trail when they

carry the food back to the nest.

Some cellular systems also utilize re-

sources that are patchy in space. In the

immune system, T-cells hunt through

networks of capillaries for pathogens that

are patchy in space, tending to persist in a

particular location, and reaching patho-

gens quickly is helpful because that limits

the time available to the pathogens to

reproduce and spread. Recruitment by T-

cells uses inflammatory signals that acti-

vate cells in nearby lymph nodes to

respond to the pathogen [21]. Similarly,

metastatic cancer cells may use signals

from healthy tissue to recruit other cancer

cells to a new location [22], if certain areas

of tissue constitute an attractive resource,

persistent in time and space, for the

traveling cells.

When patchy resources persist in both

time and space, the system that regulates

retrieval can afford the luxury of inflexi-

bility. The red wood ant feeds on the

sugary excretions of aphids that suck the

sap from trees. A colony forms permanent

trails from the nest to the tree, and

individual ants travel back and forth on

the same trail all their lives. Once an ant

becomes associated with a certain foraging

direction, it cannot be induced to change

trails even for a higher quality resource

[23].

Inside cells, bistable signal transduc-

tion circuits operate in conditions that

are patchy in time, and produce an

irreversible transition when an unfavor-

able condition changes to a favorable

one. For example, in frog oogenesis, the

MAPK cascade is a bistable signaling

system that is triggered by conditions

favorable to mating, inducing the pro-

duction of progesterone that sends oo-

cytes into cell division and on the path to

further development [24]. These signal-

ing patterns lead to inflexibility in

response to consistent, patchy conditions

or resources.

Operating Costs

Operating costs create a second set of

environmental constraints that influence

regulatory processes (Figure 2) [12].

When operating costs are low, the

system can keep running unless some-

thing stops it, using negative feedback,

or repressors: interactions that tend to

inhibit or dampen activity. For example,

in the humid environment of the tropics,

searching costs for ants are low. With so

many ants searching every surface,

and very high species diversity, ants

of different colonies often meet at

resources. The probability that an ant

stays at a food resource decreases in

response to its encounters with ants that

do not have the odor of nestmates. Thus

ants continue probing every resource

unless they are repelled by another

colony, and whichever colony has more

ants at the resource first is likely to keep

it [25].

In gene transcription networks, inco-

herent loops provide negative feedback

that decrease production by repressing

transcription once threshold amounts are

reached. The system thus bears the cost of

producing two products, one of which

acts to inhibit the other. As with the

tropical ants, low operating costs may

make such network motifs more common,

here for proteins that are cheaper to

produce.

When operating costs are high, so that

significant amounts of resources are used

merely to keep the interaction network

going, regulation works in the opposite

direction, to keep activity down except

when it is worthwhile. Activity is low

unless stimulated by interactions that are

likely to occur only when activity is

warranted.

For example, harvester ants in the

desert lose water by foraging, and get

water by metabolizing the fats out of the

seeds that foragers collect. Thus the colony

must spend water to get water, so

operating costs are high. Colonies regulate

foraging activity using an autocatalytic

process [26]. Outgoing foragers leave the

Figure 2. Effect of operating costs. (A)
Process that stops unless initiated by a
positive event. (B) Process that continues
unless stopped by a negative event.
doi:10.1371/journal.pbio.1001805.g002Figure 1. Patchiness in space and time.

(A) Uniform. (B) Patchy.
doi:10.1371/journal.pbio.1001805.g001
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nest in response to interaction with

returning foragers with food. Each forager

searches until it finds food, so the more

food is available, the more quickly foragers

find it and the more they stimulate others

to leave the nest. When food is scarce

there is little foraging and little water loss.

Likewise TCP, the protocol that manages

traffic congestion in the internet, uses a

similar algorithm in which a signal that a

data packet has successfully passed a

checkpoint stimulates the transmission of

further data [27].

Natural selection is currently shaping

the collective behavior of harvester ant

colonies in response to the high operat-

ing cost of foraging in the desert [28].

Variation among colonies in the regu-

lation of foraging activity is associated

with reproductive success. Colonies that

restrict foraging more in dry conditions,

conserving water by using more strin-

gent autocatalysis to stimulate foraging,

are the ones likely to have offspring

colonies.

In gene transcription networks, activa-

tors and repressors act to provide positive

and negative feedback [29]. For example,

fast-forward loops (FFLs) are based on

positive feedback: signal X stimulates Y,

which stimulates Z, and Z is not produced

unless both X and Y are present. The

extra step, in which X stimulates Y, can be

regulated when Z is not needed and

prevent the production of Z [30,31]. FFL

motifs, based on positive feedback, may be

most common in situations when the

operating cost of producing Z is especially

high.

Threat of Rupture

The threat of rupture is low when

patterns of interaction are protected

from interruption. In such environ-

ments, permanent connections and spe-

cialization can be used. Argentine ants

forage on robust, long-lasting trails that

connect many nests. Recruitment to

new resources is conducted from the

permanent trails, not from the nests

[32]. Thus the function of the trails,

which are rarely ruptured, is specialized

in a way similar to our highways and

roads; some trails are dedicated to

maintaining the flow of ongoing

traffic, while others are used for

shorter distances and more ephemeral

opportunities.

Tissue differentiation in development

relies on a low threat of rupture. Cells

differentiate in response to interactions

with surrounding cells that depend on a

slow gradient of signaling pathways across

space. For example, in most vertebrate

animals brains sit inside hard cases;

traumatic injury is rare (and brains are

not well adapted to recover from it).

Neural functions rely on well-established

sets of connections that grow over a long

time [33]. In a mammalian brain, exper-

imentally linking retinal projections to the

auditory cortex leads auditory neurons to

develop the features of and act as visual

ones [34], because specialization is pro-

duced by the local spatial context, sus-

tained over time. In gene transcription

networks, long cascades can be used when

the threat of rupture is low enough that

there is sufficient time for the many

interactions needed to adjust transcription

[2].

When the threat of rupture is high,

distributed systems and redundancy

can be helpful. Distributed systems, in

which a given component serves differ-

ent functions depending on circum-

stances, are used to create robust large

systems in computer engineering. In

most ant species studied so far it

seems that the allocation of tasks, or

functions, to ants, uses a distributed

system; changes in conditions shift the

rate of local interaction that regulates

ant activity [6]. For example, in har-

vester ants, patrollers change task to

become foragers when more food be-

comes available. In ants distributed

systems of task allocation may be a

widespread response to rupture due to

the frequent loss of ants. The network is

more robust if one ant can easily replace

another.

Redundancy is helpful when the threat

of rupture is high because it helps the

system to recover quickly. Colonies of the

tropical arboreal turtle ant form trails

between food resources and a series of

nests in the trees [35]. They nest in rotten

branches that frequently break and fall

down. The ants quickly re-establish the

connection between the remaining nests

and food sources. A ring network, with

signals or ants flowing in both directions,

allows for rapid recovery, because after a

break in the flow in one direction, the

flow in the other direction can re-establish

a link (Figure 3). Ring networks are used

for similar reasons in fiber optic cable

networks, so that one break does not

bring down the entire system. In gene

transcription networks, dense overlapping

regions may tend to occur in regions

where rupture or recombination is more

likely.

Conclusion

Ecological constraints—such as hetero-

geneity in time and space, operating costs,

and the threat of rupture—may shape the

processes used to regulate activity in many

biological systems. Both theoretical and

empirical work are needed to investigate

this fit, and to move toward a general

understanding of the evolution of collec-

tive behavior. An ecological perspective

can bring together current work in the

investigation of diverse complex systems.

What an ant does generates, and depends

on, the way its colony deals with the world.

This is true of many other biological

systems; to understand the action of any

part, we need to look at what is going on

around it.
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Figure 3. Ring network. (A) Ring network
with flow in both directions. (B) When flow in
one direction is interrupted, flow in the other
direction facilitates recovery.
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